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Abstract—This study explores the development of a
model to classify electrical activity in speech-related
muscles to one of five possible phonemes. This
constitutes groundwork to build a Glottis-Computer
Interface (GCI) aimed at restoring speech capabilities
in individuals who have undergone laryngectomy or
suffer from vocal cord disorders. Data was obtained
with surface electromyography (sEMG) from six
muscles in the throat and mouth area, and a random
forest classifier was trained to predict phonemes. The
experimental results demonstrated a phoneme
classification accuracy of 86.7%, highlighting the
system's effectiveness in interpreting muscle signals.
Future work will focus on improving sensor technology,
expanding the dataset, and developing a wearable
device to enhance usability and accuracy, making this
technology accessible to a broader range of users.
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I. INTRODUCTION

Laryngectomy is a surgical procedure that removes the
larynx (or voice box) as a treatment for laryngeal cancer
and severe laryngeal tuberculosis, resulting in a permanent
loss of natural voice production, although the patients’
ability to move speech-related muscles remains [1]. As of
2013, over 60000 people in the United States alone had

undergone a laryngectomy [2]. Existing communication
aids, such as electrolarynx devices, try to replace the
vibration previously given by the vocal cords, but often
lack the naturalness and ease of use desired by patients,
making speech sound mechanical and less intelligible [3].
These limitations underscore the need for innovative
solutions that can provide more natural and efficient
communication means.

The advent of brain-computer interfaces (BCIs) has
opened new avenues for assisting individuals with speech
production impairments, Recent advances in surface
electromyography (sEMG) technology, which measures
muscle electrical activity through electrodes placed on the
skin that cover the target muscles, offer a promising
alternative that is also non-invasive. Literature shows that
capturing the unique activation patterns of the glottis and
mouth muscles during speech production makes it possible
to predict intended speech from the act of silently
mouthing words (Silent Speech Recognition, or SSR) [4,
5]. Current technology also allows us to predict the
patterns of stress and intonation that humans can give to
sentences during speech, also known as prosody [6].

Recent work is focused on predicting speech at the word or
sentence level, which has a fundamental scalability
problem. For instance, a study on prosody used a corpus of
2500 English words to train its model, far below the
490,000 entries in Merriam-Webster’s dictionary as of
May 2024 [7], a number that excludes plural forms, verbal
variations, and other words too modern or too niche to
appear in said dictionary. If we factor in languages other
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than English, word-level prediction seems to be an
unscalable approach to SSR. In contrast, English has 44
phonemes we combine to create those words. Efforts to
predict phonemes in silent speech, coupled with the current
work on prosody, could bring us closer to a system for a
language-agnostic speech production assistive technology.

This study investigates the potential of a Glottis-Computer
Interface (GCI) to predict phonemes. Our approach
leverages machine learning, specifically a random forest
classifier, to analyze sEMG data of isolated phoneme
enunciations by individuals with a voice box. This study
aims to bridge the gap between current assistive
communication devices and the natural speech experience
desired by users.

II. METHODS

A. Participants

Seven participants were selected based on the following
inclusion criteria to ensure the collection of reliable and
consistent data:

● Age: 18 years or older.
● Language Proficiency: Fluent in English.
● Health Status: No existing speech production

impairments and healthy skin in the mouth and
throat areas.

The recruitment process aimed to eliminate variability due
to pre-existing conditions, ensuring that the sEMG data
accurately reflected the muscle activity associated with
phoneme production.

B. Materials

MyoWare 2.0 Muscle Sensors (Advancer Technologies,
LLC; Raleigh, NC, USA) were chosen to acquire sEMG
data for their high sensitivity and reliability in detecting
muscle activations (see Figure 1). The sensor has a
triangular shape, with two leads for the target muscles and
one reference lead for a non-target muscle or bone that will
not show activity during the protocol task. The sensors'
specifications are as follows:

● Voltage Input: Minimum = +2.27V, Typical =
+3.3V or +5V, Maximum = +5.47V

● Input Bias Current: 250 pA, maximum 1 nA
● Input Impedance: 800 kΩ
● Common Mode Rejection Ratio (CMRR): 140

dB
● Filters:

○ High-pass Filter: Active 1st order, cutoff
frequency (fc) = 20.8 Hz, -20 dB

○ Low-pass Filter: Active 1st order, fc =
498.4 Hz, -20 dB

● Rectification Method: Full-wave
● Envelope Detection: Linear, Passive 1st order, fc

= 3.6 Hz, -20 dB

Fig. 1. MyoWare 2.0 Muscle Sensor

The analog output of the MyoWare 2.0 Muscle Sensors
were converted to digital with an Arduino microcontroller
and a shield previously programmed with code written in
Arduino IDE. Arduino IDE and CoolTerm were the pieces
of software used to visualize and acquire the signals in
Windows computers. Data analysis was performed on
Google Colab, which runs on Python.

C. Protocol

The overall protocol diagram is shown in Figure 2. Due to
issues encountered during data processing, the protocol
was revised. The revised protocol is shown in Figure 3.

Participants were seated comfortably–in a position where
none of the targeted muscles were under strain–in a
noise-controlled environment. After cleaning the skin with



alcohol wipes, six MyoWare Muscle Sensors were
positioned on three key throat and mouth locations on the
left side and its mirror counterparts on the right to capture
the muscle activity associated with speech production for
six total positions (see locations in a test subject in Figure
4):

1. The first sensor pair was positioned laterally on
the upper jaw along the masseter muscle with a
reference electrode positioned at the back of the
neck.

2. The second sensor pair was positioned under the
jawline in the midpoint between the chin and the

end of the jaw along the mandibular muscles, with
measuring electrodes placed horizontally.

3. The third and final pair was positioned vertically
along the platysma cervicalis, with reference
electrodes placed on the clavicle.

Fig. 4. EMG sensor setup on test subject

Each participant was instructed to reproduce the 44
phonemes in the English language. where a woman
teaches how to pronounce the phoneme and a noun with
that phoneme to make it easier for the audience. Once the
participant demonstrated they could replicate the phoneme,
a single 6-channel sEMG recording of the participant
saying the phoneme 10 times was collected. The sampling
frequency of the Analog-to-Digital converter was
approximately 440 Hz.



In the revised protocol, each participant was instructed to
replicate specific phonemes 20 times each in separate
sEMG recordings. Given the significant increase in time to
acquire data, this protocol only focused on five phonemes:

● [æ] as in the ‘a’ in ‘apple’.
● [e] as in the ‘e’ in ‘elephant’.
● [ɪ] as in the ‘i’ in ‘igloo’.
● [ɒ] as in the ‘o’ in ‘octopus’ pronounced in

American English.
● [ʌ] as in the ‘u’ in ‘umbrella’.

D. Data Processing

The rectified envelope signals coming from the MyoWare
2.0 Muscle Sensors were used over the raw signals to
make signal processing more efficient. To remove the
effects from the DC offset, a high-pass filter with a cutoff
frequency of 0.1 Hz and an order of 5 was applied to all
signals.

TABLE I. Features extracted from phoneme sEMG recordings

Feature Domain Formula/Definition

Mean Absolute
Value (MAV)

Time

Root Mean
Square (RMS)

Time

Number of
Zero Crossings
(ZC)

Time

Waveform
Length (WL)

Time

Number of
Slope Sign
Changes (SSC)

Time

Spectral
Entropy (SE)

Frequency

where P(f) is the normalized
power spectral density.

Median
Frequency
(MF)

Frequency Frequency below which 50%
of the power in the power
spectrum is located.

Peak
Frequency
(PF)

Frequency

where P(f) is the power
spectral density.

Total Power
(TP)

Frequency

where P(f) is the power
spectral density.

A wave-snipping algorithm was built to obtain the 10
phonemes from each file containing the 10 enunciations of
the corresponding phoneme. The algorithm computed the
mean and standard deviation of 45 random samples within
the first second of the signal, which were then used to
determine activation regions in the signal. An activation in
any of the 6 channels in the sEMG recordings meant
overall activation. The difficult application of this
algorithm for the first four subjects prompted the switch to
the revised protocol, which focused on getting pre-sliced
phonemes.

Five time-domain features and four frequency-domain
features were extracted from each of the 6 channels in
every phoneme sEMG recording, which adds up to a total
of 54 features per single phoneme. The features and the
way they were calculated are shown in Table 1.

E. Model Training and Evaluation

A random forest classifier was employed to train the model
using the extracted features. The dataset was randomly
split into a training set (80%) and an evaluation set (20%)
using the random state 42. Hyperparameter optimization
was performed using grid search to achieve the best
performance. The hyperparameters tried were:

● Number of estimators: 100, 200, 300
● Maximum features: auto, sqrt



● Maximum depth: None, 10, 20, 30
● Bootstrap: True, False

Overall accuracy and individual phoneme classification
rates were calculated, and a confusion matrix was
generated to visualize the classification accuracy for each
phoneme. Due to the study design revision, the primary
focus of the model was the individual phonemes [æ], [e],
[ɪ], [ɒ] and [ʌ]. Detailed precision and recall metrics were
computed for each phoneme to understand the classifier's
strengths and weaknesses in distinguishing between
similar-sounding phonemes.

III. RESULTS

A total of 5 female participants and 2 male participants
finished the study. Their mean age was 27 years old and
they did not present speech production impediments. From
these 7 participants, 2 male participants and 1 female
participant went through the revised protocol. 296
phoneme files were included in the model, and 4 corrupted
phoneme files were discarded.

Fig. 5. EMG recording of ten enunciations of phoneme [s] from test
subject 1.

Fig. 6. EMG recording of ten enunciations of phoneme [w] from test
subject 1.

The reason for switching to the revised protocol can be
observed in Figures 5 and 6. Figure 5 shows the results of
a successful wave snipping for phoneme [s], with gray
areas representing parts of the EMG recording ruled out.
Figure 6 shows an unsuccessful attempt, as seen by the
unsnipped regions of the signal. Figures 7 to 11 show
pre-sliced EMG recordings for phonemes [æ], [e], [ɪ], [ɒ]
and [ʌ] for illustrative purposes.

The random forest classifier achieved an overall accuracy
of 86.7%, indicating a respectable level of precision in
predicting the correct phonemes. The confusion matrix is
shown in Table 1. The classifier exhibited the highest
accuracy for phoneme [æ] and performed worst on
phoneme [ʌ], which was often misclassified as phoneme
[ɒ]. This indicates a need for further refinement in feature
extraction or model complexity to better differentiate these
phonemes. Table II reports precision, recall, and f-1 scores
for each of the phonemes.



Fig. 7. EMG recording of one enunciation of phoneme [æ] from test
subject 6.

Fig. 8. EMG recording of one enunciation of phoneme [e] from test
subject 6.

Fig. 9. EMG recording of one enunciation of phoneme [ɪ] from test
subject 6.

Fig. 10. EMG recording of one enunciation of phoneme [ɒ] from test
subject 6.

Fig. 11. EMG recording of one enunciation of phoneme [ʌ] from test
subject 6.

TABLE II. Confusion matrix for random forest classifier tested on
evaluation set. The diagonal of the matrix corresponds to phonemes
correctly classified, the rest are misclassifications.

[æ] [e] [ɪ] [ɒ] [ʌ]

[æ] 11 0 0 0 0

[e] 1 10 0 0 0

[ɪ] 0 0 6 1 0

[ɒ] 0 0 2 11 0

[ʌ] 0 0 0 4 14

TABLE III. Classification report for random forest classifier tested on
evaluation set.

Precision Recall f1-score Support



[æ] 0.92 1.00 0.96 11

[e] 1.00 0.91 0.95 11

[ɪ] 0.75 0.86 0.8 7

[ɒ] 0.69 0.85 0.76 13

[ʌ] 1.00 0.78 0.88 18

IV. DISCUSSION

Our study hypothesized that the unique activation patterns
of the glottis muscles, captured via sEMG, could be used
to predict phonemes accurately, thus enabling the
reconstruction of natural speech for individuals with vocal
cord disabilities in the future. The results substantiated our
hypothesis, as the random forest classifier achieved an
overall phoneme classification accuracy of 86.7%. These
findings indicate that sEMG data can effectively capture
the nuanced differences in muscle activations associated
with different speech sounds.

The findings align closely with recent advancements in the
field of electromyography for speech synthesis. For
instance, studies such as Janke and Diener (2017) and
Chan et al. (2021) [5,6] have demonstrated the feasibility
of using facial sEMG data to generate speech. However,
our research extends these findings by focusing
specifically on phoneme prediction, which has advantages
over word or sentence prediction.

If further progress is made to enable live phoneme
prediction from muscle activations, our design would
allow for capturing accent, intonation, and song in addition
to speech reconstruction. By reducing the input space to 44
phonemes instead of all words, this approach dramatically
increases the density of samples in comparison to an equal
number of word recordings.

A. Limitations

While our study achieved high accuracy, several
limitations need to be addressed. Firstly, variability in
sensor placement can significantly affect data quality.
Future studies should focus on developing more robust
methods for sensor placement to minimize this variability.
This study was also limited by only recruiting individuals
without speech impairments. Including participants with
diverse speech and health conditions could help generalize
our findings. Lastly, our small sample size makes our
random forest classifier vulnerable to overfitting. More
participants should be recruited to develop a more robust
model.

The current study strategy, while it could potentially lead
to language-agnostic speech production assistive
technology, would not be accent-agnostic. Unlike
phonemes, phones provide a way to refer to a specific
sound or speech gesture. For instance, the phoneme [p]
includes the allophones [p] and [pʰ], the latter being an
aspirated ‘p’ sound. Switching from phoneme to phone
prediction, although more complex, could make our
technology truly predict unique sounds and eventually
replicate the accent the individual naturally possesses or is
trying to emulate. Thus, individuals without a voice box
would retain their own accent when speaking a language
other than their mother tongue, and accent assimilation
would occur organically with use, as it happens in
individuals with a healthy voice box.

B. Future Research Directions

To enhance the capabilities of the GCI system, future
research should focus on expanding the phoneme set. For
example, including consonants and complex phonetic
combinations will improve the system's versatility and
applicability. Further, optimizing the system for real-time
speech synthesis is essential for practical applications. This
involves not only improving the computational efficiency
of the model but also ensuring the stability and reliability
of the sEMG data acquisition. Lastly, model overfitting
should be assessed using a brand new set of participants
and evaluating whether our model achieves similar
accuracy in phoneme prediction.

While conducting the present study, research involving a
novel technique using a sensing-actuating system based on



soft magnetoelasticity was published [8]. Instead of
measuring the electrical activity of speech-related muscles,
the movement of the muscles is translated into electrical
signals by the system. Given that the bioimpedance of
human skin diminishes the power of the electrical signals
detected by the surface electromyography electrodes, using
another data source for speech prediction seems a valid
alternative pathway. The technique was tested at the
sentence level in 5 sentences and should be further
explored to be applicable in real situations.

Because small signals are generated in the glottis when
speech is thought of, our approach could further enable an
alternative to a brain-computer interface by detecting the
glottal signals as a proxy for our thoughts. This level of
detection would require either embedded electrodes or a
magnetoelastic system as described above given the
magnitude of the signals produced.

V. CONCLUSION

This study successfully demonstrated the potential of using
surface electromyography (sEMG) data from the glottis
muscles to accurately predict phonemes, achieving a
classification accuracy of 86.7%. This validates the
hypothesis that unique muscle activation patterns can be
utilized to reconstruct natural speech for individuals who
have undergone laryngectomy or suffer from severe vocal
cord disorders. The high accuracy of the Glottis-Computer
Interface (GCI) underscores its potential to significantly
enhance communication aids, providing a more natural and
effective solution for speech restoration. The high
accuracy of phoneme classification suggests that
sEMG-based systems could greatly improve the
naturalness and intelligibility of speech synthesis devices
for individuals who have undergone laryngectomy. The
development of a wearable device is crucial for practical
application, promising to revolutionize assistive
communication devices and significantly improve the
quality of life for individuals with speech impairments.

Beyond medical applications, this technology holds the
potential to enable silent speech communication in noisy
environments or for individuals seeking discreet
communication methods.
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