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Abstract. The aim of this work is to construct a complex which through

its higher structure directly controlls deformations of general prestacks, build-

ing on the work of Gerstenhaber and Schack for presheaves of algebras. In
defining a Gerstenhaber-Schack complex C•GS(A) for an arbitrary prestack A,

we have to introduce a differential with an infinite sequence of components

instead of just two as in the presheaf case. If Ã denotes the Grothendieck con-
struction of A, which is a U-graded category, we explicitly construct inverse

quasi-isomorphisms F and G between C•GS(A) and the Hochschild complex

CU (Ã), as well as a concrete homotopy T : FG −→ 1, which had not been

obtained even in the presheaf case. As a consequence, by applying the Homo-

topy Transfer Theorem, one can transfer the dg Lie structure present on the
Hochschild complex in order to obtain an L∞-structure on C•GS(A), which

controlls the higher deformation theory of the prestack A. This answers the

open problem about the higher structure on the Gerstenhaber-Schack complex
at once in the general prestack case.

1. introduction

Throughout the introduction, let k be a field. In [8], [9], [10] Gerstenhaber and
Schack define the Hochschild cohomology of a presheaf A of k-algebras over a poset
U as an Ext of bimodules HHn(A) = ExtnA−A(A,A), in analogy with the case of
k-algebras. They construct a complex C•GS(A) which computes this cohomology,
obtained as the totalization of a double complex with horizontal Hochschild differ-
ential and vertical simplicial differential. From A, they construct a single k-algebra
A! such that

(1.1) HHn(A) ∼= HHn(A!)

for the standard Hochschild cohomology of A! on the right hand side. Further, the
authors construct two explicit cochain maps

(1.2) τ : C•GS(A) −→ C•(A!) and τ̂ : C•(A!) −→ C•GS(A)

relating their complex C•GS(A) to the Hochschild complex C•(A!), which they prove
to be inverse quasi-isomorphisms. They present two essentially different approaches
to (1.1), (1.2) and the relationship between the two:

(A1) In a first approach [8], [9], (1.1) follows from their (difficult) Special Co-
homology Comparison Theorem (SCCT) which compares more general bi-
module Ext groups. Both sides of (1.1) are particular cases of such Ext
groups, and a universal delta functor argument shows that the isomorphism
(1.1) is actually induced by the map τ in (1.2), whence the latter is a quasi-
isomorphism.

(A2) In a second approach [10], in case U is a finite poset, the authors focus on the
compositions τ̂ τ and τ τ̂ . They prove directly that τ̂ τ = 1, and a comparison
of lifts of resolutions implies that τ τ̂ and the identity are homotopic. Thus,
in this case the isomorphism (1.1) follows without invoking the SCCT.
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Although deformation theory for presheaves of algebras was thoroughly studied
by Gerstenhaber and Schack, the following problems remained:

(P1) Unlike in the algebra case, first order deformations of A as a presheaf are
classified by the second cohomology group HH2

s (A) of the sub-complex
of C•GS(A) containing simple cochains. In general, as we have HH2

s (A) 6=
HH2(A), this raises the question as to the precise role of the entire Gersten-
haber-Schack complex in deformation theory.

(P2) It is a fundamental principle of deformation theory in characteristic 0, due
to Deligne, that every deformation problem is governed by a dg Lie alge-
bra or, by extension, an L∞-algebra. So it is natural to ask what higher
structure is present on the Gerstenhaber-Schack complex.

Concerning (P2), when the poset U is finite, Gerstenhaber and Schack’s argu-
ment in (A2) proves the existence of a homotopy τ τ̂ −→ 1, yet it is not construc-
tive. Thus the Homotopy Transfer Theorem (HTT) implies the existence of an
L∞-structure on C•GS(A) transfered from the dg Lie algebra structure on C(A!),
yet it does not provide the tools to make this structure concrete. More recently,
using operadic methods Y. Frégier, M. Markl and D. Yau constructed an explicit
L∞-structure on the Gerstenhaber-Schack complex of a morphism of algebras [7],
which corresponds to the special case of a presheaf over a single arrow. However, the
general problem (P2) has remained open both as regards existence and construction
of the higher structure. One of the main results in our paper is the construction
of a concrete homotopy map (Theorem 4.13) in the general prestack case which
resolves this open problem.

Concerning (P1), in our recent joint work with L. Liu [3], the second cohomology
of C•GS(A) is shown to classify deformations of A as a twisted presheaf, as is seen
from direct inspection of the complex C•GS(A).

Another way to understand the occurence of twists is by viewing a presheaf of
algebras as a prestack, that is a pseudofunctor taking values in k-linear categories
(algebras are considered as one object categories). If A is a prestack over a small

category U , then A has an associated U-graded category Ã, obtained through a
k-linear version of the Grothendieck construction from [1]. If A is a presheaf over

a poset, then Ã and A! are closely related. In [12] it was shown based upon the

construction of Ã that the appropriate U-graded Hochschild complex C•U (Ã) of Ã
satisfies

(1.3) HnCU (Ã) = ExtnÃ−Ã(Ã, Ã)

and controls deformations of Ã as a U-graded category (DefU (Ã)) and, equivalently,
deformations of A as a prestack (Defpre(A)). Further, in [14], Lowen and Van den
Bergh prove a Cohomology Comparison Theorem (CCT) for prestacks A. If we

define HHn(A) = ExtnA−A(A,A) and HHn
U (Ã) = ExtnÃ−Ã(Ã, Ã), it follows in

particular from the CCT that

(1.4) HHn(A) ∼= HHn
U (Ã),

that is, the analogue of (1.1) holds.
All of the above suggests that it is most natural to work at once in the context of

arbitrary prestacks A. In particular, it should be possible to define a Gerstenhaber-
Schack complex C•GS(A) which is directly seen to control prestack deformations of
A, and such that we can define a new version of the inverse quasi-isomorphisms
(1.2) above in this setup. Realizing this is the main goal of this paper. In summary,
we have the following picture of the references in which various relations are studied
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for a prestack A, where [∗] stands for the present paper:

ExtA−A(A,A)

[11]

C•GS(A)
[∗]

[∗]

Defpre(A)

[10]

ExtÃ−Ã(Ã, Ã)
[10]

C•U (Ã)
[10]

DefU (Ã)

The content of the paper is as follows. After recalling basic terminology on
prestacks and map-graded categories in §2, the complex C•GS(A) for a prestack A
on a small category U is defined in §3. As a graded module, according to (3.12),
C•GS(A) is the totalization of a double object which is a modification of the one in
the presheaf case. Precisely, we put

Cp,q(A) =
∏

Homk

(
A(Up)(Aq−1, Aq)⊗ · · · ⊗A(Up)(A0, A1),A(U0)(σ]A0, σ

∗Aq)
)
.

Here, the product is taken over all p-simplices

(1.5) σ = ( U0 u1

// U1 u2

// . . .
up−1

// Up−1 up
// Up )

in the nerve of U and all (q+1)-tuples (A0, . . . , Aq) of objects in A(Up). Further, if
we denote, for u : V −→ U in U , the associated restriction functor by u∗ : A(U) −→
A(V ), then we put σ∗ = (up . . . u2u1)∗ and σ] = u∗1u

∗
2 . . . u

∗
p.

The occurrence of the twists significantly complicates the definition of the dif-
ferential. Precisely, we have to introduce an infinite family of components (dj)j≥0

with
dj : Cp,q

GS(A) −→ Cp+j,q+1−j
GS (A),

and for each n, we define

(1.6) d = d0 + d1 + · · ·+ dn : Cn−1
GS (A) −→ Cn

GS(A).

We have d0 = dHoch for the horizontal Hochschild differential dHoch and d1 =
(−1)ndsimp for the vertical simplicial differential dsimp. The additional components
dj of d, given in (3.18), are necessary to make the differential square to zero, as is
shown in Theorem 3.9. Note that the algebraic structure of the prestackA naturally
corresponds to an element

(m, f, c) ∈ C0,2(A)⊕C1,1(A)⊕C2,0(A) = C2
GS(A)

with m encoding compositions, f encoding restrictions, and c encoding twists. Our
definition of the components dj ensures the following desired result (Theorem 3.20),
of which the proof makes use of normalized reduced cochains as defined in §3.4:

Theorem 1.1. The second cohomology group H2CGS(A) classifies first order de-
formations of A as a prestack.

The definition of the higher components dj is combinatorial in nature. It makes
essential use of the following ingredients:

• So called paths of natural transformations between σ] and σ∗, each path
building up a (p − 1)-simplex in the nerve of Fun(A(Up),A(U0)) by using
one twist isomorphism in each step (the precise definition is given in the
beginning of §3.3).

• The natural action of shuffle permutations on nerves of categories, as dis-
cussed in §3.1.

In §4 we go on to define cochain maps

(1.7) F : C•GS(A) −→ C•U (Ã) and G : C•U (Ã) −→ C•GS(A)

between C•GS(A) and the U-graded Hochschild complex C•U (Ã) from [12].
Our main theorem is the following (see Proposition 4.9 and Theorem 4.6):
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Theorem 1.2. The maps F and G are inverse quasi-isomorphisms. More precisely

(1) GF(φ) = φ for any normalized reduced cochain φ;
(2) there is an explicit homotopy T : FG ∼ 1.

In combination with (1.4) and (1.3), we thus obtain

Corollary 1.3. HnCGS(A) = ExtnA−A(A,A).

Note that, in contrast with [9], in our setup we do not give a direct proof of
Corollary 1.3, whence the approach (A1) is not available to us.

Although the existence of the maps F and G is inspired by the existence of the
maps in (1.1), due to our more complicated differential on CGS(A), the maps in
(1.7) are actually new and the development of the appropriate combinatorial tools
in order to prove Theorem 1.2 constitutes the technical heart of the paper.

Our construction of the homotopy T : FG ∼ 1 in part (2) is new even in the
presheaf case and has the following important consequence. By the Homotopy
Transfer Theorem [11, Theorem 10.3.9], using T we can transfer the dg Lie alge-

bra structure present on C•U (Ã) (see [12]) in order to obtain an L∞-structure on
C•GS(A). This L∞-structure determines the higher deformation theory of A as a
prestack, which thus becomes equivalent to the higher deformation theory of the
U-graded category Ã described in [12]. A more detailed elaboration of this L∞-
structure, as well as a comparison with the L∞ deformation complex described in
the literature in an operadic context [7], [5], [15] is work in progress [4].

In future work, we intend to extend the techniques and constructions in this
paper in order to shed new light on the difficulies arising in Shresta and Yetter’s
deformation theories of monoidal categories and pasting diagrams [16] [17] and
Elgueta’s deformation theory of monoidal bicategories [6]. In particular, in [16],
after introducing the components d0, d1 of a desired differential on the Yetter com-
plex of monoidal categories, Shrestha describes the components d2, d3 for cochains
of low degrees, and conjectures that there is an infinite family of components con-
stituting a differential on this complex. By applying shuffle products of morphisms
and natural transformations as described in Section 3.1, we succeeded in describing
the differentials d2, d3 on cochains of arbitrary higher degrees, and we found the
formula of the differential d4. Details will appear in [2].

Acknowledgement. The second author is very grateful to Michel Van den Bergh
for many interesting discussions, and in particular for his proposal of map-graded
Hochschild cohomology which was originally made in the context of a local-to-
global spectral sequence [13]. Both authors are grateful to Jim Stasheff for valuable
comments on an earlier version of the paper, and thank both Jim Stasheff and
an anonymous referee for suggesting an illuminating interpretation of our paths,
currently explained after Example 3.5.

2. Prestacks and Map-graded categories

Let k be a commutative ground ring. Except for certain Ext interpretations of
cohomologies, notably the ones occuring in (4.1), all our results hold true in this
generality.

In this section, we recall the notions of prestacks and map-graded categories,
thus fixing terminology and notations. As described explicitly in [12], prestacks
and map-graded categories constitute two different incarnations of mathematical
data that are equivalent in a suitable sense. A prestack is a pseudofunctor taking
values in k-linear categories. We use the same terminology as in [14], [3].

Let U be a small category.
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Definition 2.1. A prestack A = (A,m, f, c) on U consists of the following data:

• for every object U ∈ U , a k-linear category (A(U),mU , 1U ) where mU is the
composition of morphisms in A(U) and 1U encodes the identity morphisms
on A(U);

• for every morphism u : V −→ U in U , a k-linear functor fu = u∗ : A(U) −→
A(V ). For u = 1U , we require that f1U = 1U .
• for every couple of morphisms v : W −→ V , u : V −→ U in U , a natural

isomorphism

cu,v : v∗u∗ −→ (uv)∗.

For u = 1 or v = 1, we require that cu,v = 1. Moreover the natural
isomorphisms have to satisfy the following coherence condition for every
triple w : T −→W , v : W −→ V , u : V −→ U :

(2.1) cu,vw(cv,w ◦ u∗) = cuv,w(w∗ ◦ cu,v).

Remark 2.2. A presheaf of k-linear categories is considered as a prestack in which
cu,v = 1 for every v : W −→ V , u : V −→ U .

A prestack being a pseudofunctor, we obviously define a morphism of prestacks
to be a pseudonatural transformation.

Definition 2.3. Consider prestacks (A,m, f, c) and (A′,m′, f ′, c′) on U . A mor-
phism of prestacks (g, τ) : A −→ A′ consists of the following data:

• for each U ∈ U , a functor gU : A(U) −→ A′(U);
• for each u : V −→ U and A ∈ A(U), an element

τu,A ∈ A′(V )(u′∗gU (A), gV (u∗A))

These data further satisfy the following conditions: for any v : W −→ V , u : V −→
U and a ∈ A(U)(A,B),

(1) m′V (gV u∗(a), τu) = m′V (τu, u′∗gU (a));
(2) m′W (τuv, c′u,v) = m′W (gW (cu,v), τv, v′∗(τu));
(3) m′U (τ1U , 1′U ) = gU (1U ).

Let Mod(k) be the category of k-modules and let Mod(k) be the constant prestack
on U with value Mod(k). We are mainly interested in modules and bimodules.

Definition 2.4. LetA be a prestack on U . AnA-module is a morphism of prestacks
M : Aop −→ Mod(k). More precisely, an A-module consists of the following data:

• for every U ∈ U , an A(U)-module MU : A(U)op −→ Mod(k);
• for every u : V −→ U , a morphism of A(U)-modules Mu : MU −→MV u∗;

such that the following coherence condition holds for every u : V −→ U, v :
W −→ V : the morphism Muv equals the canonical composition

MU Mu
// MV u∗

Mvu∗ // MW v∗u∗
MW (cu,v)// MW (uv)∗ .

Definition 2.5. Let A, B be prestacks on U . An A-B-bimodule is a module over
Aop ⊗ B. More concretely, an A-B-bimodule M consists of abelian groups

MU (B,A)

for U ∈ Ob(U), A ∈ Ob(A(U)), B ∈ Ob(B(U)), together with restriction mor-
phisms

Mu(B,A) : MU (B,A) −→MV (u∗B, u∗A)

for u : V −→ U in U satisfying the natural coherence condition obtained from
Definition 2.4.
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Next we turn to map-graded categories in the sense of [12], where “map” stands
for the maps in the underlying small category U .

Definition 2.6. A U-graded k-category a = (a, µ, id) consists of the following data:

• for every object U ∈ U , we have a set of objects a(U);
• for every morphism u : V −→ U in U and objects A ∈ a(V ), B ∈ a(U), we

have a k-module au(A,B) of morphisms.

These data are further equipped with compositions and identity morphisms in the
following sense. The composition µ on a consists of operations

µu,v,A,B,C : au(B,C)⊗ av(A,B) −→ auv(A,C)

satisfying the associativity condition

µw,uv,A,C,D(µu,v,A,B,C ⊗ 1aw(C,D)) = µwu,v,A,B,D(1av(A,B) ⊗ µw,u,B,C,D).

The identity id on a consists of elements idA ∈ a1(A,A) satisfying the condition

µu,1,A,A,B(1au(A,B) ⊗ idA) = 1au(A,B) = µ1,u,A,B,B(idB ⊗ 1au(A,B)).

The most natural type of modules to consider over a map-graded category turn
out to be a kind of bimodules:

Definition 2.7. Let a be a U-graded k-category. An a-bimodule M consists of
k-modules

Mu(A,B)

for u : V −→ U,A ∈ a(V ), B ∈ a(U) and compositions

ρ : au(C,D)⊗Mv(B,C)⊗ aw(A,B) −→Muvw(A,D)

satisfying the following associativity and identity conditions:

(1) ρ(µ⊗ 1⊗ µ) = ρ(1⊗ ρ⊗ 1);
(2) ρ(id⊗ 1⊗ id) = 1.

Let (A,m, f, c) be prestack on U . The associated U-graded category (Ã, µ, id)
is defined as a k-linear version of the Grothendieck construction from [1], more
precisely:

• for each object U ∈ U , we put Ã(U) = Ob(A(U));

• for every morphism u : V −→ U and objects A ∈ Ã(V ), B ∈ Ã(U), we put

Ãu(A,B) = A(U)(A, u∗B).

The composition operations

µ : Ãu(B,C)⊗ Ãv(A,B) −→ Ãuv(A,C)

are defined by setting µ(b, a) = m(cu,v,C , v∗b, a) for every a ∈ Ãv(A,B), b ∈
Ãu(B,C) and the identities are given by idA = 1U,A ∈ A(U)(A,A) = Ã1U (A,A)
for A ∈ A(U).

There is a natural functor

(̃−) : Bimod(A) −→ Bimod(Ã) : M 7−→ M̃

defined by

M̃u(A,B) := MV (A, u∗B)

for every u : V −→ U,A ∈ Ã(V ), B ∈ Ã(U). In [14], inspired by Gerstenhaber and
Schack’s Cohomology Comparison Theorem [9], this functor is shown to induce a
fully faithful functor on the level of the derived categories. In particular:
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Theorem 2.8. [14, Theorem 1.1] For any M,N ∈ Bimod(A), we have

ExtnA−A(M,N) ∼= ExtnÃ−Ã(M̃, Ñ)

for all n.

3. The Gerstenhaber-Schack complex for prestacks

If A is a presheaf of k-categories, then in analogy with the case of presheaves
of k-algebras treated in [9, §21] and [8], one defines the Gerstenhaber-Schack (GS)
complex (C•GS(A,M), dGS) for an A-bimodule M as the total complex of a double
complex with dGS = dHoch + dsimp for the horizontal Hochschild differential dHoch

and the vertical simplicial differential dsimp. The cohomology of this complex is
called Gerstenhaber-Schack (GS) cohomology and denoted

HHn
GS(A,M) = HnC•GS(A,M).

We denote C•GS(A) = C•GS(A,A) and HHn
GS(A) = HnC•GS(A).

In analogy with [3, §2] one sees that the second cohomology group HH2
GS(A)

naturally classifies the first order deformations of A as a prestack. Even though
many prestacks of interest are in fact presheaves - for instance (restricted) structure
sheaves of schemes as treated in [3] - the fact that prestacks turn up naturally as
deformations suggests that it is really prestacks of which one should understand
Gerstenhaber-Schack cohomology and deformations in the first place.

Our main aim in this section is to define a Gerstenhaber-Schack (GS) complex
C•GS(A,M) for an arbitrary prestack A. Contrary to what one may at first expect,
the change from the presheaf case to the prestack case is a major one. Indeed, if A
is non-trivially twisted (cu,v 6= 1), with the natural definitions of dHoch and dsimp

we now in general have d2
simp 6= 0 so we do not obtain a double complex. Instead,

we construct a more complicated differential on the total double object C•GS(A,M)
by adding more components to the formula. After introducing the double object
C•GS(A,M) in §3.2 as a slight modification of the object associated to a presheaf,
in §3.3 we introduce the infinite family of components (dj)j≥0 in (3.18), with

dj : Cp,q
GS(A,M) −→ Cp+j,q+1−j

GS (A,M),

and we define the total differential

(3.1) d = d0 + d1 + · · ·+ dn : Cn−1
GS (A,M) −→ Cn

GS(A,M).

We have d0 = dHoch and d1 = (−1)ndsimp. The new differential d is shown to square
to zero in Theorem 3.9. The definition of the higher components dj is combina-
torial in nature. It makes essential use of certain paths of natural transformations
introduced in §3.3 and of the natural action of shuffle permutations on nerves of
categories, as discussed in §3.1.

In order to properly relate the GS cohomology to deformation theory, we have
to turn to the complex of normalized reduced cochains, which is introduced in §3.4
as a subcomplex of the GS complex and shown to be quasi-isomorphic to the latter
in Propositions 3.13, 3.17. Finally, in §3.5 generalizing [3, Thm 2.21], in Theorem
3.20 we prove that HH2

GS classifies first order deformations of A as a prestack.

3.1. Shuffle products. In this section, we discuss the natural action of shuffle per-
mutations on nerves of categories. Let Sn be the symmetric group of permutations

of {1, . . . , n}. For ni ≥ 0 with
∑k
i=1 ni = n, a permutation β ∈ Sn is an (ni)i-

shuffle if the following holds: for 1 ≤ i ≤ k and
∑i−1
j=1 nj + 1 ≤ x ≤ y ≤

∑i
j=1 nj
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we have β(x) ≤ β(y). The permutation is a conditioned (ni)i-shuffle if moreover
we have

β(

l−1∑
i=1

ni + 1) ≤ β(

l∑
i=1

ni + 1)

for all 1 ≤ l ≤ k − 1. Let S(ni)i ⊆ Sn be the subset of all (ni)i-shuffles and

S̄(ni)i ⊆ S(ni)i the subset of conditioned (ni)i-shuffles. For any set X, Sn obviously
has an action of Xn. For β ∈ Sn and (x1, . . . , xn) ∈ Xn, we define

β(0)(x1, . . . , xn) = (xβ(1), . . . , xβ(n)).

When working with (ni)i-shuffles, we will often consider different sets Xi for 1 ≤ i ≤
k and elements xi = (xi1, . . . x

i
ni) ∈ (Xi)

ni for 1 ≤ i ≤ k. Thus, for a permutation

β, we obtain the formal shuffle by β of (xi)i:

(3.2) β(0)((xi1, . . . x
i
ni)i) = β(0)(x1

1, . . . , x
1
n1
, . . . , xk1 , . . . x

k
nk

) ∈ (

k∐
i=1

Xi)
n.

For instance, for k = 2, β ∈ Sm,n, x = (x1, . . . xm) ∈ Xm and y = (y1, . . . yn) ∈ Y n,
we denote the formal shuffle by β of (x, y) by:

x ∗
β

(0) y = β(0)(x, y) = β(0)(x1, . . . , xm, y1, . . . , yn).

In the remainder of this section, we discuss the action of shuffle permutations on
nerves of categories. Consider categories Ai for 1 ≤ i ≤ k. We now refine action
(3.2) to obtain a shuffle action

(3.3) S(ni)i ×
k∏
i=1

Nni(Ai) −→ Nn(

k∏
i=1

Ai).

Consider β ∈ S(ni)i and

ai = ( Ai0
aini // Ai1

aini−1 // . . .
ai2 // Aini−1

ai1 // Aini ) ∈ Nni(Ai).

Note that it may occur that ni = 0 and ai = Ai0 ∈ N0(Ai) = Ob(Ai). For the
associated elements ai = (ai1, a

i
2, . . . , a

i
ni−1, a

i
ni) ∈ Mor(Ai)ni , we obtain the formal

shuffle b = β(0)((ai)i) = (b1, . . . , bn). We now inductively associate to b an element

b = β((ai)i) ∈ Nn(

k∏
i=1

Ai)

with source
∏k
i=1A

i
0 and target

∏k
i=1A

i
ni . Then b is called the shuffle product by

β of (ai)i, and b is called the formal sequence of b.

Since β is a shuffle permutation, we have b1 = aj1 : Ajnj−1 −→ Ajnj for some

1 ≤ j ≤ k. We put Bn =
∏k
i=1A

i
ni , Bn−1 = A1

n1
× · · · ×Ajnj−1 × · · · ×Aknk and

b1 = (1A1
n1
, . . . , aj1, . . . , 1Aknk

) : Bn−1 −→ Bn.

Now suppose

b̂l = ( Bn−l
bl // Bn−l+1

bl−1 // . . .
b2 // Bn−1

b1 // Bn ) ∈ Nl(
k∏
i=1

Ai)

has been defined withBn−l =
∏k
i=1B

i
n−l andBin−l = Aini−αi where αi = max{t | ait ∈

{b1, . . . , bl}}. It then follows that bl+1 = ajαj+1 for some 1 ≤ j ≤ k and we put

Bn−l−1 = A1
n1−α1

× · · · ×Ajnj−αj−1 × · · · ×Aknk−αk and
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bl+1 = (1A1
α1
, . . . , ajαj+1, . . . , 1Akαk

) : Bn−l−1 −→ Bn−l.(3.4)

We thus arrive at the element

b = β((ai)i) = b̂n = (b1, . . . , bn) ∈ Nn(

k∏
i=1

Ai)

which concludes the definition of (3.3).

Remark 3.1. Suppose A is a category and φ :
∏k
i=1Ai −→ A is a functor. We

naturally obtain an induced map Nn(
∏k
i=1Ai) −→ Nn(A) which upon composition

with (3.3) gives rise to a φ-shuffle action

(3.5) S(ni)i ×
k∏
i=1

Nni(Ai) −→ Nn(A) : (β, (ai)i) 7−→ β(φ)((ai)i).

Obviously, taking φ = 1∏k
i=1Ai

, we recover the shuffle action (3.3). If φ is under-

stood from the context, it will be omitted from the notation.

Example 3.2. Let a and b be small categories and put A1 = Fun(a, b), A2 = a,
A = b and

φ : Fun(a, b)× a −→ b : (F,A) 7−→ F (A).

Consider a = (a1 : A1 −→ A0) ∈ N1(a) and

ε = ( T0
ε2 // T1

ε1 // T2 ) ∈ N2(Fun(a, b)).

The three elements in S2,1 correspond to the following three formal shuffles of
ε and a: (a, ε1, ε2), (ε1, a, ε2) and (ε1, ε2, a). The three corresponding shuffles in
N3(Fun(a, b)× a) according to (3.3) are given by:

T0 ×A0

ε2×1A0// T1 ×A0

ε1×1A0// T2 ×A0

1T2×a // T2 ×A1 ;

T0 ×A0

ε2×1A0// T1 ×A0

1T1×a // T1 ×A1

ε1×1A1// T2 ×A1 ;

T0 ×A0

1T0×a // T0 ×A1

ε2×1A1// T1 ×A1

ε1×1A1// T2 ×A1 .

The three corresponding φ-shuffles in N3(b) according to (3.7) are given by:

T0(A0)
ε2(A0) // T1(A0)

ε1(A0) // T2(A0)
T2(a) // T2(A1) ;

T0(A0)
ε2(A0) // T1(A0)

T1(a) // T1(A1)
ε1(A1) // T2(A1) ;

T0(A0)
T0(a) // T0(A1)

ε2(A1) // T1(A1)
ε1(A1) // T2(A1) .

Remark 3.3. Consider small categories b0, . . . , bk and put Ai = Fun(bk−i, bk−i+1).
Applying the natural composition of functors to each element bl+1 in (3.4), we
obtain

b′l+1 = A1
α1
◦ · · · ◦ ajαj+1 ◦ · · · ◦Akαk : B′n−l−1 −→ B′n−l(3.6)

where B′n−l−1 = A1
n1−α1

◦ · · · ◦ Ajnj−αj−1 ◦ · · · ◦ Aknk−αk . Concatenating these

morphisms, we obtain the simplex

b̂′n = (b′1, . . . , b
′
n) ∈ Nn(Fun(b0, bk)).

Example 3.4. Consider

ε = ( T0
ε2 // T1

ε1 // T2 ) ∈ N2(Fun(b0, b1))
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and

ξ = ( S0
ξ // S1 ) ∈ N1(Fun(b1, b2)).

The shuffle products of ξ and ε with respect to composition of functors correspond-
ing to the formal sequences (ξε1, ε2), (ε1, ξ, ε2), (ε1, ε2, ξ) are

S0T0
S0ε2 // S0T1

S0ε1 // S0T2
ξT2 // S1T2 ;

S0T0
S0ε2 // S0T1

ξT1 // S1T1
S1ε1 // S1T2 ;

S0T0
ξT0 // S1T0

S1ε2 // S1T1
S1ε1 // S1T2 .

Now suppose β ∈ S̄(ni)i is a conditioned shuffle. In this case it is possible to
adapt the inductive procedure we just described in order to arrive at the datum,
for (ai)i as before, of a sequence

(3.7) (ĉ1, . . . , ĉk) ∈
k∏
l=1

Nγl(
l∏
i=1

Ai)

where the numbers γl are determined by β and satisfy
∑k
l=1 γl = n. We put φ = 1

and suppress it in the notations (the adaptation to arbitrary φ is easily made and
will be used in the paper). Since β is a conditioned shuffle, there are uniquely

determined numbers γl such that b1 = a1
1, bγ1+1 = a2

1, . . . , b∑l
i=1 γi+1 = al+1

1 , . . . ,

b∑k−1
i=1 γi+1 = ak1 and γk = n−

∑k−1
i=1 γi. For 1 ≤ l ≤ k we now have that for every∑l−1

i=1 γi + 1 ≤ ρ ≤
∑l
i=1 γi there exists 1 ≤ j ≤ l and t with bρ = ajt . Moreover,

for fixed j, there exists

aj,l = ( Aj
nj−t+1−mlj

aj
t+ml

j
−1

// . . .
ajt // Ajnj−t+1 ) ∈ Nmlj (Aj)

such that the morphisms ajs occuring in aj,l coincide precisely with the elements

occurring as bρ for
∑l−1
i=1 γi + 1 ≤ ρ ≤

∑l
i=1 γi. Here we make the convention that

if no ajz occurs as such bρ, we put aj,l ∈ N0(Aj) equal to the domain of aj,l−1, or

equal to aj,l−1 in case aj,l−1 ∈ N0(Aj). We have
∑l
j=1m

l
j = γl. As a consequence,

there is a unique βl ∈ S(mlj)j
such that

β
(0)
l ((aj,l)j) = (bρ)∑l−1

i=1 γi+1≤ρ≤
∑l
i=1 γi

.

In (3.7) we now put ĉl = βl((a
j,l)j) ∈ Nγl(

∏l
i=1Ai).

3.2. The Gerstenhaber-Schack complex. Let U be a small category, A a prestack
on U and M a bimodule over A. Let N (U) denote the simplicial nerve of the small
category U . Our standard notation for a p-simplex σ ∈ N (U)p is

(3.8) σ = ( U0 u1

// U1 u2

// . . .
up−1

// Up−1 up
// Up ).

If confusion can arise, we write Ui = Uσi and ui = uσi instead. We also write
σ = (u1, . . . , up) for short.

For σ ∈ Np(U), we obtain a functor

σ∗ = (up . . . u2u1)∗ : A(Up) −→ A(U0)

and a functor

σ] = u∗1u
∗
2 . . . u

∗
p : A(Up) −→ A(U0).
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For each 1 ≤ k ≤ p− 1, denote by Lk(σ) and Rk(σ) the following simplices

Lk(σ) = ( U0 u1

// U1 u2

// . . .
up−1

// Uk−1 uk
// Uk )

Rk(σ) = ( Uk uk+1

// Uk+2 uk+2

// . . .
up−1

// Up−1 up
// Up )

We consider the following natural isomorphisms:

(3.9) cσ,k = cuk···u1,up···uk+1 : (Lkσ)∗(Rkσ)∗ −→ σ∗

(3.10) εσ,k = u∗1 · · ·u∗k−1c
uk,uk+1u∗k+2 · · ·u∗p : σ] −→ u∗1 · · · (uk+1uk)∗ · · ·u∗p

For A ∈ Ob(A(Up)), we write cσ,k,A = cσ,k(A) and εσ,k,A = εσ,k(A).
For the category A(U), U ∈ U , we use the following standard notation for a

q-simplex a ∈ N (A(U))q:

(3.11) a = ( A0

aq // A1

aq−1 // · · · a2 // Aq−1
a1 // Aq ).

We also write a = (a1, . . . , aq) for short.
Let

Cσ,A(A,M) = Homk

(
A(Up)(Aq−1, Aq)⊗ · · · ⊗ A(Up)(A0, A1),MU0(σ]A0, σ

∗Aq)
)
.

and put

Cσ,q(A,M) =
∏

A∈A(Up)q+1

Cσ,A(A,M),

Cp,q(A,M) =
∏

σ∈Np(U)

Cσ,q(A,M).

Then we obtain the double object

(3.12) Cn
GS(A,M) =

∏
p+q=n

Cp,q(A,M)

The usual Hochschild differential defines vertical maps

dHoch : Cp,q−1(A) −→ Cp,q(A).

Precisely, given (φσ)σ ∈ Cp,q(A,M), for each p-simplex σ and for (a1, . . . , aq) ∈
A(Up)(Aq−1, Aq)⊗ · · · ⊗ A(Up)(A0, A1), then we have

(dHochφ)σ(a1, . . . , aq) =

q∑
i=0

(−1)i(diHochφ)σ(a1, . . . , aq)

where

(diHochφ)σ(a1, . . . , aq) =


σ∗(a1)φσ(a2, . . . , aq) if i = 0

φσ(a1, . . . , aiai+1, . . . , aq) if 1 ≤ i ≤ q − 1

φσ(aq−1, . . . , a1)σ](aq) if i = q.

We also write φσ(diHoch(aq, . . . , a1)) instead of (diHoch(φ))σ(aq, . . . , a1).

As a part of the simplicial structure of N (U), we have maps

∂i : Np+1(U) −→ Np(U) : σ 7−→ ∂iσ

for i = 0, 1, . . . , p + 1. For σ = ( U0 u1

// U1 u2

// . . .
up
// Up up+1

// Up+1 ), we

have

∂p+1σ = ( U0 u1

// U1 u2

// . . .
up−1

// Up−1 up
// Up )
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∂0σ = ( U1 u2

// U2 u3

// . . .
up
// Up up+1

// Up+1 )

and

∂iσ = ( U0 u1

// . . . // Ui−1 ui+1ui
// Ui+1

// . . .
up+1

// Up+1 )

for i = 1, . . . , p. Each ∂i gives rise to a map

disimp : Cp−1,q(A,M) −→ Cp,q(A,M)

given by

(disimp(φ))σ(a1, . . . , aq) :=


cσ,1,AqMu1φ∂0σ(a1, . . . , aq) if i = 0

φ∂iσ(a1, . . . , aq)ε
σ,i,A0 if 1 ≤ i ≤ p

cσ,p−1,Aqφ∂pσ(u∗pa1, . . . , u
∗
paq) if i = p.

Hence we obtain the horizontal maps

dsimp =

p∑
i=0

(−1)idisimp : Cp−1,q(A,M) −→ Cp,q(A,M).

We define the maps

dGS = dHoch + (−1)ndsimp : Cn−1(A,M) −→ Cn(A,M).

Now if cu,v = 1 for all u : V −→ U, v : W −→ V , then A is a presheaf of k-linear
categories. It is easy to check that d2

Hoch = d2
simp = dHochdsimp − dsimpdHoch = 0,

so d2
GS = 0. In analogy with [9], if k is a field one shows that (C•(A,M), dGS)

computes Ext groups of bimodules:

HHn
GS(A,M) = Hn(C•(A,M), dGS) = ExtnA−A(A,M).

Moreover, by analogous computations as in [3, §2.21], it is seen that the second
cohomology group HH2

GS(A) naturally controls the first order deformations of the
presheaf A as a prestack.

3.3. The new differential. When A is a prestack with non-trivial twists cu,v,
then for dGS defined as in the previous section, we have d2

GS 6= 0 because d2
simp 6= 0.

To fix this problem we add new components to dGS to obtain the new differential

(3.13) d = d0 + d1 + · · ·+ dn : Cn−1
GS (A,M) −→ Cn

GS(A,M)

where d0 = dHoch, d1 = (−1)ndsimp as above. The cohomology with respect to the
new differential is denoted

HHn
GS(A,M) = HnC•GS(A,M).

Let A be a prestack. Consider a simplex σ = (u1, . . . , un) ∈ Nn(U) with n ≥ 2.
For every u : V −→ U, v : W −→ V we have the natural isomorphism cu,v :
v∗u∗ −→ (uv)∗. From these isomorphisms we inductively construct a set

(3.14) P(u1, . . . , un) ⊆ Nn−1(Fun(A(Un),A(U0)))

of simplices r with source u∗1u
∗
2 · · ·u∗n and target (unun−1 · · ·u1)∗. Our standard

notation for a simplex r of natural transformations is

r = ( T0

rn−1 // T1

rn−2 // T2
// . . .

r1 // Tn−1 )

which is abbreviated to r = (r1, . . . , rn−1). Elements of P(u1, . . . , un) are called
paths from u∗1u

∗
2 · · ·u∗n to (unun−1 · · ·u1)∗. Further, we define a sign map

sign : P(u1, . . . , un) −→ {1,−1} : r 7−→ sign(r).

We start with n = 2. Consider cu1,u2 : u∗1u
∗
2 −→ (u2u1)∗. We put P(u1, u2) :=

{(cu1,u2)} and we set sign(cu1,u2) = −1.
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For n > 2, given σ = (u1, . . . , un), for each i = 1, . . . , n− 1, consider the natural
isomorphism εσ,i = u∗1 · · · cui,ui+1 · · ·u∗n as defined in (3.10) and put

sign(εi) = (−1)i.

For each path r = (r1, . . . , rn−2) ∈ P(u1, . . . , ui−1, ui+1ui, ui+2, . . . , un), the sim-
plex (r1, . . . , rn−2, εi) is called a path from u∗1u

∗
2 · · ·u∗n to (unun−1 · · ·u1)∗ and

P(u1, . . . , un) is defined to be the set of all such paths. Thus,

P(u1, . . . , un) =
{

(r1, . . . , rn−2, ε
σ,i) : 1 ≤ i ≤ n− 1 and r ∈ P(∂iσ)

}
.

For a path r = (r1, . . . , rn−1), we define

(−1)r ≡ sign(r) =

n−1∏
i=1

sign(ri).

For a permutation β ∈ Sn, we similarly denote (−1)β ≡ sign(β) for the standard
sign of permutations and denote (−1)r+β = (−1)r(−1)β .

There are (n − 1)! paths in P(u1, . . . , un), for each path r = (r1, r2 . . . , rn−1)
denote the isomorphism ||r|| = r1r2 · · · rn−1.

Example 3.5. Given σ = (u1, u2, u3), there are two paths from u∗1u
∗
2u
∗
3 to (u3u2u1)∗:

P = {r = (cu2u1,u3 , cu1,u2u∗3), s = (cu1,u3u2 , u∗1c
u2,u3)}

and sign(r) = 1, sign(s) = −1.

The set of paths P(u1, . . . , un) can be visualised in the following way. Let [2] =
{0, 1} be the poset with 0 < 1, and consider the (n− 1)-dimensional ordered cube
[2]n−1. Every element a = (ai)i ∈ [2]n−1 corresponds bijectively to a partition of
u1, . . . , un into a formal expression with parantheses

(3.15) a(u1, . . . , un) = (u1, . . . , ui1)(ui1+1, . . . , ui2) . . . (uik+1, . . . , un)

for ai1 = ai2 = · · · = aik = 1 and all other aj equal to zero. Hence, we can define a
function F : [2]n−1 −→ Fun(A(Un),A(U0)) given by

F (a) = (u1, . . . ui1)∗(ui1+1, . . . , ui2)∗ . . . (uik+1, . . . , un)∗

for a(u1, . . . , un) as in (3.15).

Example 3.6. For σ = (u1, u2, u3), the vertices (0, 0), (1, 0), (0, 1) and (1, 1) of the
cube [2]2 correspond to the functors (u3u2u1)∗, (u1)∗(u3u2)∗, (u2u1)∗u∗3 and u∗1u

∗
2u
∗
3

respectively.

For every two adjacent vertices in the cube [2]n−1, there is a unique natural
transformation between the corresponding functors under F that is induced from
the twists cu,v. Hence, we can visualise our paths as corresponding to composition
series, or, equivalently, non-degenerate (n− 1)-simplices in the poset [2]n−1.

The following lemma, which can alternatively be deduced from the universal
property of cartesian liftings, shows that the function F on objects can actually be
extended to a functor.

Lemma 3.7. Assume given an n-simplex σ = (u1, . . . , un). Let r = (r1, r2 . . . , rn−1)
and s = (s1, s2 . . . , sn−1) be two arbitrary paths in P(u1, . . . , un). Then ||r|| = ||s||.

Proof. By the coherence condition (2.1) our lemma is true for n = 3. For n > 3, we
assume that rn−1 = εσ,i and sn−1 = εσ,j for some i ≤ j. If i = j then rn−1 = sn−1,
by induction hypothesis we have ||r|| = ||s||. If i < j, it is sufficient to prove
that ||r|| = ||t|| for some path t = (t1, . . . , tn−1) in which tn−1 = εσ,i+1. Thus,
let h = (h1, . . . , hn−2) be a path in P(u1, . . . , ui+1ui, . . . , un) such that hn−2 =
u∗1 · · ·u∗i−1c

(ui+1ui,ui+2)u∗i+3 · · ·u∗n, by the induction hypothesis

h1 · · ·hn−2 = r1 · · · rn−2.
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Let tn−2 = u∗1 · · ·u∗i−1c
(ui,ui+2ui+1)u∗i+3 · · ·u∗n, again by (2.1) we have the commu-

tative diagram

u∗1 · · ·u∗i u∗i+1u
∗
i+2 · · ·u∗n

tn−1 //

rn−1

��

u∗1 · · ·u∗i (ui+2ui+1)∗u∗i+3 · · ·u∗n

tn−2

��
u∗1 · · ·u∗i−1(ui+1ui)

∗u∗i+2 · · ·u∗n
hn−2 // u∗1 · · ·u∗i−1(ui+2ui+1ui)

∗u∗i+3 · · ·u∗n

Choose t = (h1, . . . , hn−3, tn−2, tn−1), then ||t|| = ||(h, rn−1)|| = ||r||. �

Given a simplex σ = (u1, . . . , un), let r = (r1, . . . , rn−1) be a path in P(σ). For
each 1 ≤ k ≤ n − 2, assume that rk+1 = εγ,i for some simplex γ = (v1, . . . , vk+2)
and 1 ≤ i ≤ k + 1. Then rk = ε∂iγ,j for some 1 ≤ j ≤ k. We put[

r′k+1 = εγ,j and r′k = ε∂jγ,i−1 if i > j;
r′k+1 = εγ,j+1 and r′k = ε∂jγ,i if i ≤ j.

Denote by flip(r, k) the path (r1, . . . , rk−1, r
′
k, r
′
k+1, rk+2, . . . , rn−1) in P(σ). It

is easy to see that flip(flip(r, k), k) = r and

(3.16) sign(flip(r, k)) = −sign(r).

Due to Lemma 3.7, we have

(3.17) r′kr
′
k+1 = rkrk+1.

In the next lemma, which is easy to show, the shuffle product of natural trans-
formations is taken with respect to the composition of functors as in Example (3.4).

Lemma 3.8. Assume given an n-simplex σ = (u1, . . . , un). Then,

(1) Consider two paths r = (r1, . . . , rn−k−1) ∈ P(Rk(σ)), s = (s1, . . . , sk−1) ∈
P(Lk(σ)). For each β ∈ Sn−k−1,k−1, the simplex ω = (cσ,k, β(r, s)) is a
path in P(σ). Moreover

(−1)ω = (−1)n−k(−1)β(−1)r(−1)s.

(2) Consider a path ω = (ω1, . . . , ωn−1) in P(σ) in which ω1 = cσ,k. There
exist unique paths r = (r1, . . . , rn−k−1) ∈ P(Rk(σ)), s = (s1, . . . , sk−1) ∈
P(Lk(σ)) and β ∈ Sn−k−1,k−1 such that ω = (cσ,k, β(r, s)).

Now we are able to define the components dj(j ≥ 2) of the differential d from

(3.13) in formula (3.18) below with dj : Cp,q
GS(A,M) −→ Cp+j,q+1−j

GS (A,M).

Cp,q+1

Cp,q

d0

OO

d1 //
d2

**

dq+1

''

Cp+1,q

Cp+2,q−1

· · ·

Cp+q+1,0
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Consider φ ∈ Cp,q
GS(A,M). Let σ = (u1, . . . , up+j) be a (p + j)-simplex as in

(3.8). Given A0, . . . , At ∈ Ob(A(Up+j)) where t = q + 1 − j, let a = (a1, . . . , at)
where ai ∈ A(Up)(At−i, At−i+1) as in (3.11). We define

(3.18) (dj(φ))σ(a1, . . . , at) =
∑

r∈P(Rj(σ))
β∈St,j−1

(−1)r(−1)β(−1)tcσ,p,AtφLp(σ)(β(a, r))

where β(a, r) is the shuffle product by β of a = (a1, . . . , at) and r = (r1, . . . , rj−1),
with respect to the evaluation of functors (see Remark 3.1 and Example 3.2).

Theorem 3.9. d ◦ d = 0.

Proof. ForN ≥ 2, for each cochain φ ∈ Cp,q+N−2
GS (A,M), we show the component of

d(d(φ)) which lies in Cp+N,q
GS (A,M) is zero. Given a simplex σ = (u1, . . . , up+N ) ∈

Np+N (U) and objects A0, A1, . . . , Aq ∈ A(Up+N ). Let a = (a1, . . . , aq) where ai ∈
A(Up+N )(Aq−i, Aq−i+1) as in (3.11). We need to show that

(d(dφ))σ(a) =

N∑
i=0

(dN−i(diφ))σ(a) = 0.

This equation is equivalent to

(3.19) (dHochdNφ+dN−1d1φ+d1dN−1φ+

N−2∑
i=2

dN−idiφ)σ(a) = −(dNdHochφ)σ(a).

By definition we have

−(dNdHochφ)σ(a) =

q+N−1∑
i=0

∑
r∈P(Rp(σ)), β∈Sq,N−1

T (q, r, β, i)

where

T (a, r, β, i) = −(−1)q+i(−1)r(−1)βcσ,p,Aq (diHochφ)Lp(σ)(β(a, r)).

We prove the equation (3.19) in the following steps:

(1) For each term T1 occurring in the expression of dHochdNφ, there is a unique
term T (a, r, β, i) in −(dNdHochφ) such that T1 = T (a, r, β, i).

(2) For j = 2, . . . , (N − 2), for each term T2 occurring in dN−jdjφ, there is a
unique term T (a, r, β′, j′) in −(dNdHochφ) such that T2 = T (a, r, β′, j′).

(3) After cancellation, for each term T3 in dN−1d1 + d1dN−1, there is a unique
term T (a, r, β, i) in −(dNdHochφ) such that T3 = T (a, r, β, i).

(4) After the cancellation with the terms T1, T2, T3 as in step 1,2,3, denote X
the remaining terms in −(dNdHochφ), then we show that X = 0.

Step 1. We have

dHoch(dNφ)σ(a) =

q∑
i=0

∑
r∈P(Rp(σ), β∈Sq−1,N−1

T1(djHoch(a), β, r, j)

where

T1(djHoch(a), r, β, j) = (−1)j(−1)q−1(−1)r(−1)βcσ,p,AqφLpσ(β(djHoch(a), r)).

• Consider j = 1, . . . , q − 1. For each path r ∈ P(Rp(σ), each β ∈ Sq−1,N−1, we

write the formal sequence β(0)(djHoch(a), r) = (β1, . . . , βk, ajaj+1, βk+2 . . . βq+N−2)
for some k. There is a unique shuffle permutation β′ ∈ Sq,N−1 such that

β′(0)(a, r) = (β
1
, . . . , β

k
, aj , aj+1, βk+2

, . . . , β
q+N−2

).

Straightforward computations show that T1(djHoch(a), r, β, j) = T (a, r, β′, k+ 1).
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• Consider j = 0 or j = q. For j = 0, we have

T1(d0
Hoch(a), β, r, 0) = (−1)q−1(−1)r(−1)βσ∗(a1)cσ,p,Aq−1φLp(β(a2, . . . , aq; r)).

Upon writing the formal sequence β(0)(a2, . . . , aq; r) = (β
1
, . . . , β

N+q−2
), there is a

unique β′ ∈ Sq,N−1 such that β′(0)(a, r) = (a1, β1
, . . . , β

q+N−2
), and thus

T (a, r, β′, 0) = T1(d0
Hoch(a), β, r, 0).

For j = q, we have

T1(dqHoch(a), β, r, 0) = −(−1)r(−1)βcσ,p,AqφLp(β(a2, . . . , aq; r))σ
](aq).

Assume that β(0)(a1, . . . , aq−1; r) = (β
1
, . . . , β

N+q−2
), there is a unique β′ ∈ Sq,N−1

such that β′(0)(a, r) = (β
1
, . . . , β

q+N−2
, aq), so we get that T (a, r, β′, q + N) =

T1(dqHoch(a), β, r, q).

Step 2. We write

σ = (u1, . . . , up, . . . , up+N−j , . . . , up+N ).

Let ∆ = (u1, . . . , up, . . . , up+N−j) = Lp+N−j(σ). By definition, we have

(dj(dN−jφ))σ(a) =
∑

r∈P(Rp+N−j(σ))
β∈Sq,j−1

∑
s∈P(R(∆,p))

γ∈Sq+j−1,N−j−1

T2(a, r, β, s, γ)

where

T2(a, r, β, s, γ) = (−1)j−1(−1)r+s+β+γcσ,p+N−j,Aqc∆,p,(Rp+N−j(σ))∗AqφLp(∆)(γ(β(a, r), s)).

The shuffle product is associative, hence γ(β(a, r), s) = β(a, γ(r, s)). Let c0 =
cσ,p+1, by Lemma 3.8, we have ω = (c0, γ(r, s)) is a path in P(Rp(σ)). There
is a unique β′ ∈ Sq,N−1 such that β′(a, ω) = (c0(Aq), β(a, γ(r, s))). This implies
that T (a, ω, β′, 0) = T2(a, r, β, s, γ).

Step 3. By definition we have

(dN−1(d1φ))σ(a) =
∑

r∈P(Rp+1(σ)), β∈Sq,N−2

(
B(a, r, β) +

p∑
i=1

C(a, r, β, i) +D(a, r, β)
)

where

B(a, r, β) = (−1)p+N−1(−1)r+βcσ,p+1,AqcLp+1(σ),1,(Rp+1(σ))∗AqMu1
(

φ∂0(Lp+1(σ))(β(a, r))
)
;

C(a, r, β, i) = (−1)p+N+i−1(−1)r+βcσ,p+1,Aqφ∂iLp+1(σ)(β(a, r))εLp+1(σ),i,(Rp+1(σ))]A0 ;

D(a, r, β) = (−1)N (−1)r+βcσ,p+1,AqcLp+1(σ),p,(Rp+1(σ))∗Aq

φ∂p+1Lp+1(σ)(u∗p+1(β(a, r))).

On the other hand, we have

(d1(dN−1φ))σ(a) =
∑

r∈P(Rp+1(∂0σ))
β∈Sq,N−2

B′(a, r, β) +

p∑
i=1

∑
r∈P(Rp+1(∂iσ))

β∈Sq,N−2

C ′(a, r , β, i)

+

p+N−1∑
i=p+1

∑
r∈P(Rp(∂iσ))
β∈Sq,N−2

C ′′(a, r , β, i) +
∑

r∈P(Rp∂p+Nσ)
β∈Sq,N−2

D′(a, r, β)



THE GERSTENHABER-SCHACK COMPLEX FOR PRESTACKS 17

where

B′(a, r, β) = (−1)p+N (−1)r+βcσ,1,Aqu∗1(c∂0σ,p+1,Aq )Mu1

(
φLp+1(∂0σ)(β(a, r))

)
;

C ′(a, r, β, i) = (−1)p+N+i(−1)r+βc∂iσ,p+1,AqφLp+1(∂iσ)(β(a, r))εσ,i,A0 ;

C ′′(a, r, β, i) = (−1)p+N+i(−1)r+βc∂iσ,p,AqφLp(∂iσ)(β(a, r))εσ,i,A0 ;

D′(a, r, β) = (−1)r+βcσ,p+N−1,Aqc∂p+Nσ,p,AqφLp(∂p+Nσ)(β(u∗p+N (a), r)).

By computation, we get∑
r∈P(Rp+1(∂0σ)), β∈Sq,N−2

B′(a, r, β) +
∑

r∈P(Rp+1(σ)), β∈Sq,N−2

B(a, r, β) = 0

and
p∑
i=1

∑
r∈P(Rp+1(σ)), β∈Sq,N−2

C(a, r, β, i)+

p∑
i=1

∑
r∈P(Rp+1(∂iσ)), β∈Sq,N−2

C ′(a, r , β, i) = 0.

So we obtain

(dN−1(d1φ))σ(a) + (d1(dN−1φ))σ(a) =∑
r∈P(Rp+1(σ))
β∈Sq,N−2

D(a, r, β) +

p+N−1∑
i=p+1

∑
r∈P(Rp(∂iσ))
β∈Sq,N−2

C ′′(a, r β, i) +
∑

r∈P(Rp∂p+Nσ)
β∈Sq,N−2

D′(a, r, β).

We complete step 3 by showing that every term at the right hand side of this
equation is matched with a unique term in −(dNdHochφ)σ(a). First, consider the
term D(a, r, β) for r = (r1, . . . , rN−2) ∈ P(Rp+1(σ)) and β ∈ Sq,N−2. Let c0 =

cRp(σ),1, denote u∗p+1r = (u∗p+1r1, . . . , u
∗
p+1rN−2) then s = (c0, u

∗
p+1r) is a path in

P(Rpσ) and there is a unique β′ ∈ Sq,N−1 such that β′(a, s) = (c0(Aq), u
∗
p+1β(a, r)).

This implies that D(a, r, β) = T (a, s, β′, 0).
Consider the term C ′′(a, r, β, i) for r ∈ P(Rp∂iσ), β ∈ Sq,N−2 and p+1 ≤ i ≤ p+

N−1. Then s = (r, εσ,i) is a path in P(Rpσ), there is a unique β′ ∈ Sq,N−1 such that
β′(a, s) = (β(a, r), εσ,i,A0). Thus, we find that C ′′(a, r, β, i) = T (a, s, β′, q+N − 1).

Consider the term D′(a, r, β) where r = (r1, . . . , rN−2) ∈ P(Rp∂p+Nσ) and
β ∈ Sq,N−2. Let c0 = cRpσ,p+N−1, denote ru∗p+N = (r1u

∗
p+N , . . . , rN−2u

∗
p+N ),

then s = (c0, ru
∗
p+N ) is a path in P(Rpσ). There is a unique β′ ∈ Sq,N−1 such that

β′(a, s) = (c0(Aq), β(u∗p+N (a), r)). Hence, we obtain that T (a, s, β′, 0) = D′(a, r, β).

Step 4. For β ∈ Sq,N−1, r ∈ P(Rpσ), we write β(0)(a, r) = (β
1
, . . . , β

q+N−1
).

For each k = 1, . . . , (q + N − 2), denote by Skq,N−1 the set of all (q,N − 1)-shuffle

permutations β such that (β
k
, β

k+1
) 6= (ai, ai+1), ∀ i = 1, . . . , q − 1. After steps

1, 2, 3, now it is seen that

−(dNdHochφ)σ(a) = (dHochdNφ+ dN−1d1φ+ d1dN−1φ+

N−2∑
i=2

dN−idiφ)σ(a) +X

where

X =

q+N−2∑
k=1

∑
r∈P(Rp(σ)), β∈Skq,N−1

T (q, r, β, k).

Recall that

T (a, r, β, k) = (−1)q+1+k(−1)r+βcσ,p,Aq (dkHochφ)Lp(σ)(β(a, r)).

Let β ∈ Skq,N−1, r = (r1, . . . , rN−1) ∈ P(Rpσ). In the expression

β(0)(a, r) = (β
1
, . . . , β

k
, β

k+1
, . . . , β

q+N−1
)
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if (β
k
, β

k+1
) = (ai, rj) or (β

k
, β

k+1
) = (rj , ai) for some (i, j), then take β′ =

(k, k + 1) ◦ β, then
T (a, r, β, k) + T (a, r, β′, k) = 0.

Otherwise, (β
k
, β

k+1
) = (ri, ri+1) for some i. Then, by equations (3.17) and (3.16),

we get
T (a, r, β, k) + T (a,flip(r, k), β, k) = 0.

Hence X = 0, this completes our proof. �

3.4. Normalized reduced cochains. In this section, in analogy with [3, §2.4], we
study the subcomplex C̄′•GS(A,M) ⊆ C•GS(A,M) of normalized reduced cochains.
Let σ = (u1, . . . , up) be a p-simplex as in (3.8). The simplex σ is said to be right
k-degenerate if ui = 1Ui for some p−k+1 ≤ i ≤ p and σ is said to be degenerate if it
is right k-degenerate for k = p. For A = (A1, . . . , Aq) ∈ A(Up) and a = (a1, . . . , aq)
as in (3.11), a is said to be normal if ai = 1 for some i.

Given a cochain φ = (φσ)σ ∈ Cn
GS(A,M), φσ is said to be normalized if φσ(a) = 0

as soon as a is normal, and φ is said to be normalized if φσ is normalized for every
simplex σ. The normalized cochains form a subcomplex C̄•GS(A,M) of C•GS(A,M).
The cochain φ is said to be right k-reduced if φσ = 0 for every right k-degenerate
simplex σ and φ is said to be reduced if φσ = 0 for every degenerate simplex σ. The
normalized reduced cochains further form a subcomplex C̄′•GS(A,M) of C̄•GS(A,M).

Inspired by [3, §2.4], [8, §7], we first prove that the inclusion C̄•GS(A,M) ↪→
C•GS(A,M) is a quasi-isomorphism. It is more subtle to prove that C̄′•GS(A,M) ↪→
C̄•GS(A,M) is also a quasi-isomorphism. Due to the higher components of our new
differential, the spectral sequence argument does not apply as in [3, §2.4]. As a
single filtration is not sufficient, we use a double filtration instead.

Remark 3.10. If A is a presheaf of k-linear categories, then the new differential d
on C•GS(A,M) does not reduce to dGS from §3.2. However, on the quasi-isomorphic
subcomplex C̄′•GS(A,M) ⊆ C•GS(A,M) of normalized reduced cochains, d and dGS

do coincide in this case.

Lemma 3.11. Consider a cochain complex (D•, δ) with a subcomplex (D′•, δ) ⊆
(D•, δ). Assume that for all n, for every cochain f ∈ Dn with δ(f) ∈ D′n+1, there
exists h ∈ Dn−1 such that f − δ(h) ∈ D′n. Then the inclusion (D′•, δ) ↪→ (D•, δ)
is a quasi-isomorphism.

Proof. The condition spelled out is readily seen to be equivalent to the quotient
complex D•/D′

•
being acyclic. �

It is seen that for each simplex σ, Cσ,•
GS(A,M) is a cochain complex with the

differential dHoch. By similar computations as in [8, §7] we obtain

Lemma 3.12. Let f ∈ Cσ,n
GS (A,M) be a cochain. If dHoch(f) is normalized, then

there exists h ∈ Cσ,n−1
GS (A,M) such that f − dHoch(h) is normalized.

Equip C•GS(A,M) with a filtration

· · · ⊆ F pCn ⊆ F p−1Cn ⊆ · · · ⊆ F 0Cn ⊆ F−1Cn = Cn
GS(A,M)

by setting

F jCn = {φ = (φσ)σ ∈ Cn
GS(A,M) | φσ is normalzied if |σ| ≤ j }.

Since d(F jCp) ⊆ F jCp+1, F jC• is a complex. There is a sequence of complexes

(3.20) · · · ↪→ F jC• ↪→ F j−1C• ↪→ · · · ↪→ F 0C•.

Proposition 3.13. The following inclusions are quasi-isomorphisms:

(1) l : F jC• ↪→ F j−1C•;
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(2) C̄•GS(A,M) ↪→ C•GS(A,M).

Proof. It suffices to prove that (1) is a quasi-isomorphism. By Lemma 3.11 it is
sufficient to prove that for every cochain φ ∈ F j−1Cn, if d(φ) ∈ F jCn+1 then
there exists a cochain ψ ∈ F j−1Cn−1 such that φ − d(ψ) ∈ F jCn. Writing φ =
(φp,q)p+q=n, we assume that d(φ) ∈ F jCn+1. Let σ be a j-simplex and let a =
(a1, . . . , an+1−j) be normal, then (d(φ))σ(a) = 0. By definition, we have

(dφ)σ(a) =

j∑
i=0

(diφj−i,n−j+i)
σ(a).

Note that (diφj−i,n−j+i)
σ(a) = 0 for i > 0 as φ ∈ F j−1Cn. Hence we get

(dHochφj,n−j)
σ(a) = 0.

By Lemma 3.12, there exists hσ ∈ Cσ,n−j−1 such that φσj,n−j − dHoch(hσ) is nor-

malized. We define ψσ = hσ if |σ| = j and ψσ = 0 otherwise. Thus ψ ∈ F j−1Cn−1

and it is easy to see that φ− d(ψ) ∈ F jCn. �

Now equip C̄•GS(A,M) with a filtration

· · · ⊆ F ′pC̄n ⊆ F ′p−1C̄n ⊆ · · · ⊆ F ′0C̄n = C̄n
GS(A,M)

by setting, for each k ≥ 1,

F ′kC̄n = {φ = (φσ)σ ∈ C̄n
GS(A,M) | φσ(a) = 0 ∀a, if σ is right k-degenerate}.

By straightforward computations, we obtain the following lemma.

Lemma 3.14. d(F kC̄n) ⊆ F kC̄n+1.

By Lemma 3.14 we obtain a sequence of complexes

(3.21) · · · ↪→ F ′kC̄• ↪→ F ′k−1C̄• ↪→ · · · ↪→ F ′0C̄•.

Next, for each k ≥ 0, we equip F ′kC̄ with a further filtration

F ′k+1C̄n = Gn+1F ′k ⊆ C̄n · · · ⊆ Gl+1F ′kC̄n ⊆ GlF ′kC̄n ⊆ · · · ⊆ G0F ′kC̄n = F ′kC̄n

by setting

GlF ′kC̄n = {φ ∈ F ′kC̄n| φσ = 0 for |σ| ≥ n− l + 1 and σ is right (k + 1)-degenerate}.

By analogous computations as in Lemma 3.14, we get

d(GlF ′kC̄n) ⊆ GlF ′kC̄n+1.

Thus, for each k, we obtain a sequence of complexes

(3.22) · · · ↪→ Gl+1F ′kC̄• ↪→ GlF ′kC̄• ↪→ · · · ↪→ F ′kC̄•.

Lemma 3.15. Let φ be a right k-reduced cochain in C̄p,q
GS(A,M). If dsimpφ is a

right (k + 1)-reduced cochain in C̄p+1,q
GS (A,M), then there exists a right k-reduced

cochain ψ ∈ C̄p−1,q
GS (A,M) such that φ− dsimpψ is a right (k + 1)-reduced cochain.

Proposition 3.16. The following inclusions are quasi-isomorphism:

(1) Gl+1F ′kC̄• ↪→ GlF ′kC̄•;
(2) F ′k+1C̄• ↪→ F ′kC̄•;
(3) C̄′•GS(A,M) ↪→ C̄•GS(A,M).

Proof. For each n, the filtrations (3.21) and (3.22) are stationary, so we only need to
prove (1). By Lemma 3.11, it is sufficient to prove that for any cochain φ = (φp,q) ∈
GlF ′kC̄n which satisfies dφ ∈ Gl+1F ′kC̄n+1, there exists a cochain ψ ∈ GlF ′kC̄n−1

such that φ− dψ ∈ Gl+1F ′kC̄n.
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Set p = n− l+ 1 and let σ be (k+ 1)-right degenerate p-simplex. By definition,
we have φσp,n−p = 0. Assume that (dφ)σ = 0. This implies (dsimpφp−1,n−p+1)σ = 0.

Apply Lemma 3.15, there exists h ∈ F ′kC̄p−2,n−p+1 such that

(φp−1,n−p+1 − d1(h))σ
′

= 0

for every (k + 1)-right degenerate (p− 1)-simplex σ′.
We define ψσ = hσ if |σ| = p − 2 and ψσ = 0 elsewhere. It is seen that ψ ∈
GlF ′kC̄n−1 and φ− dψ ∈ Gl+1F ′kC̄n as desired. �

Combining Propositions 3.13 and 3.16, we now obtain the following isomor-
phisms.

Proposition 3.17. Let M be an A-bimodule. Then

HnC̄′•GS(A,M) ' HnC̄•GS(A,M) ' HnC•GS(A,M).

Remark 3.18. If A is a presheaf of k-linear categories, then the new differential
d does not reduce to the old d from §3.2. However, on the quasi-isomorphic sub-
complex C̄′•GS(A,M) ⊆ C•GS(A,M) of normalized reduced cochains defined in §3.4,
they do coincide in this case.

3.5. First-order deformations of prestacks. In this section, generalizing [3,
Thm 2.21], we prove that HH2

GS classifies first order deformations of prestacks.

Definition 3.19. (see Def 3.24 in [12]) Let (A,m, f, c) be a prestack over U .

(1) A first order deformation of A is given by a prestack

(Ā, m̄, f̄ , c̄) = (A[ε],m+m1ε, f + f1ε, c+ c1ε)

of k[ε]-categories where (m1, f1, c1) ∈ C0,2(A)⊕C1,1(A)⊕C2,0(A).
(2) For two deformations (Ā, m̄, f̄ , c̄) and (Ā′, m̄′, f̄ ′, c̄′) an equivalence of de-

formations is given by an isomorphism of the form (g, τ) = (1+g1ε, 1+τ1ε)
where (g1, τ1) ∈ C0,1(A)⊕C1,0(A).

Theorem 3.20. Let A = (A,m, f, c) be a prestack with GS complex (C•GS(A), d).
Then the second cohomology HH2

GS(A) classifies the first order deformations of A.
More precisely:

(1) For (m1, f1, c1) in C0,2(A)⊕C1,1(A)⊕C2,0(A), we have that (A[ε], m̄ =
m+m1ε, f̄ = f + f1ε, c̄ = c+ c1ε) is a first order deformation of A if
and only if (m1, f1, c1) ∈ C̄′2GS(A) and d(m1, f1, c1) = 0.

(2) For (m1, f1, c1) and (m′1, f
′
1, c
′
1) in Z2C̄′GS(A), and (g1,−τ1) ∈ C0,1(A)⊕

C1,0(A), we have that (g, τ) = (1 + g1ε, 1 + τ1ε) is an isomorphism be-
tween the corresponding deformed prestacks Ā and Ā′ if and only if
(g1,−τ1) ∈ C̄′1GS(A) and d(g1,−τ1) = (m1, f1, c1) − (m′1, f

′
1, c
′
1). We

have an isomorphism of sets

(3.23) H2C̄′GS(A) −→ Def(A).

Hence, the second cohomology group HH2(A)GS
∼= H2C̄′GS(A) classi-

fies first order deformations of A up to equivalence.

Proof. (1) For each U ∈ U , the composition m̄U of A(U) is associative if and
only if

(dHochm1)U = 0.

For each a ∈ A(U)(A,B), the unity condition m̄U (1B , a) = a = m̄U (a, 1A)
holds if and only if mU

1 (1B , a) = mU
1 (a, 1A) = 0.
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For each 1-simplex σ = (V
v−→ U) and (a, b) ∈ A(U)(A,B)×A(U)(B,C).

The condition m̄V (f̄(b), f̄(a)) = f̄(m̄U (b, a)) holds if and only if

(dHochf1)σ(b, a)− (dsimpm1)σ(b, a) = 0.

The condition f̄σ(1A) = 1f̄σ(A) is equivalent to fσ1 (1A) = 0. The condition

f̄1U = 1U holds if and only if f1U
1 = 0.

For each 2-simplex σ = (W
v−→ V

u−→ U) and a ∈ A(U)(A,B), the
condition m̄(c̄u,v,B , f̄v f̄u(a)) = m̄(f̄uv(a), c̄u,v,A) holds if and only if

(dHochc1)σ(a)− (dsimpf1)σ(a) + (d2m1)σ(a) = 0.

The condition that c̄σ = 1 when σ is degenerated holds if and only if cσ1 = 0
if σ is degenerated.

For each 3-simplex σ = (T
w−→ W

v−→ V
u−→ U), the compatibility of c̄

holds if and only if

−(dsimpc1)σ(A) + (d2f1)σ(A) + (d3m1)σ(A) = 0.

Recall that

d(m1, f1, c1) = (dHochm1, dHochf1 − dsimpm1, dHochc1 − dsimpf1 + d2m1,

− dsimpc1 + d2f1 + d2m1).

These facts yield that (m1, f1, c1) gives rise to a deformation of the prestack
A if and only if it is a normalized reduced cocycle.

(2) For each U ∈ U , we have that gU is a functor if and only if gU1 (1) = 0 and

dHoch(g1) = m1 −m′1.

For each 1-simplex σ = (V
u−→ U) and a ∈ A(U)(A,B), the condition

m′V (gV u∗(a), τu) = m′V (τu, u′∗gU (a)) holds if and only if

(dHochg1)σ(a) + (dsimp(−τ1))σ(a) = fσ1 (a)− f ′σ1 (a).

The condition m′U (τ1U , 1′U ) = gU (1U ) holds if and only if τ1U
1 = 0.

For each 2-simplex σ = (W
v−→ V

u−→ U) and A ∈ A(U), the condition
m′W (τuv, c′u,v) = m′W (gW (cu,v), τv, v′∗(τu)) holds if and only if

(dsimp(−τ1))σ(A) + (d2g1)σ(A) = cσ1 (A)− c′σ1 (A).

Hence (g, τ) = (1 + g1ε, 1 + τ1ε) is an isomorphism between A and A′ if
and only if (g1,−τ1) is a normalized reduced cochain and

d(g1,−τ1) =
(
dHochg1, dHoch(−τ1) + dsimpg1, dsimp(−τ1) + d2g1

)
= (m1, f1, c1)− (m′1, f

′
1, c
′
1).

�

4. Comparision of complexes

Let U be a small category, A a prestack on U , and M an A-bimodule. In this
section, we define cochain maps

F : C•GS(A,M) −→ C•U (Ã, M̃) and G : C•U (Ã, M̃) −→ C•GS(A,M)

between the GS complex C•GS(A,M) and the Hochschild complex C•U (Ã, M̃) as
defined in [12]. We prove that F and G are inverse quasi-isomorphisms. In combi-
nation with [12, Prop. 3.13] and the Cohomology Comparison Theorem [14, Thm.
1.1] it follows that - as in the case of presheaves - if k is a field then the cohomology
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of the complex C•GS(A,M) computes bimodule Ext groups. More precisely, in this
case we obtain

(4.1) HHn
GS(A,M) ∼= Hn(C•U (Ã, M̃)) ∼= ExtnÃ−Ã(Ã, M̃) ∼= ExtnA−A(A,M).

Due to the presence of the infinite family of components of the differential on
C•GS(A), the definition of F and G requires new combinatorial constructions. A
key element is the use of partitions combined with appropriate shuffle products.
Consider an n-simplex σ = (u1, . . . , un), objects Ai ∈ Ob(Ã(Ui)), and morphisms
ã = (ã1, . . . , ãn) where

ãi ∈ Ãun+1−i(An−i, An+1−i) = A(Un−i)(An−i, u
∗
n+1−iAn+1−i)

as follows:

A0
ãn // A1

ãn−1 // · · · ã2 // An−1
ã1 // An

U0 u1

// U1 u2

// . . .
un−1

// Un−1 un
// Un.

To each partition m̄ = (m1, . . . ,mk) of n, by induction on k, we associate the set
Seq(σ, ã, m̄) of special sequences of morphisms obtained from shuffle products of ã
and certain paths corresponding to m̄ (4.3). The sets Seq(σ, ã, m̄) are crucial in
defining the cochain map F (4.4). Further, we define the sets Seqq(σ, m̄) containing
conditioned shuffle product of certain paths corresponding to m̄ (4.9), these sets are
essentially used in defining the cochain map G (4.10).

The proof that F and G are inverse quasi-isomorphisms has two parts. The fact
that GF(φ) = φ for any normalized reduced cochain φ can be proved by direct
computation (Proposition 4.9). The hard part is Theorem 4.6, which relies on the
construction of a homotopy T : FG −→ 1. By induction, we define the family
(Ωn)n≥1 in (4.12) which is essentially used in defining the homotopy T . This
homotopy is new even in the presheaf case.

Theorem 4.6 has an important consequence, as by the Homotopy Transfer The-
orem [11, Theorem 10.3.9], we can transfer the dg Lie algebra structure present on

C•U (Ã) (see [12]) in order to obtain an L∞-structure on C•GS(A). This L∞-structure
determines the higher deformation theory of A as a prestack, which thus becomes
equivalent to the higher deformation theory of the U-graded category Ã described
in [12]. A more detailed elaboration of this L∞-structure, as well as a comparison
with the L∞ deformation complex described in the literature in an operadic context
[7], [5], [15] will appear in [4].

4.1. The cochain map F . Following [12] the Hochschild complex (C•U (Ã, M̃), δ)

of the U-graded category Ã is defined as

C•U (Ã, M̃) =
∏

u1,...,un
A0,A1,...,An

= Homk

(
⊗ni=1 Ãun+1−i(An−i, An+1−i), Ãun···u1(A0, An))

)
where δ is the usual Hochschild differential.

In order to define the cochain map

F : C•GS(A,M) −→ C•U (Ã, M̃)

we need to introduce the following notations. For each n ∈ N denote the set of all
partitions of n as

Part(n) = {m̄ = (mk, . . . ,m1)| mk + · · ·+m1 = n, k ≥ 1,mi ≥ 1}

We define (−1)m̄ = (−1)n−k for m̄ = (mk, . . . ,m1).
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Let σ = (u1, . . . , un) be a n-simplex as in (3.8), denote ||σ|| = un · · ·u1. For i ≤ k
denote by σ[mi] the mi-simplex (umk+···+mi+1+1, . . . , umk+···+mi). For example, we
have σ[mk] = (u1, . . . , umk) and σ[mk−1] = (umk+1, . . . , umk+mk−1

). Put cσ,m̄ =
||r|| for an arbitrary r ∈ P(||σ[mk]||, . . . , ||σ[m1]||).

Given Ai ∈ Ob(Ã(Ui)), consider ã = (ã1, . . . , ãn) where

ãi ∈ Ãun+1−i(An−i, An+1−i) = A(Un−i)(An−i, u
∗
n+1−iAn+1−i)

as follows:

(4.2) A0
ãn // A1

ãn−1 // · · · ã2 // An−1
ã1 // An

U0 u1

// U1 u2

// . . .
un−1

// Un−1 un
// Un.

For each i = 1, . . . , n, denote

ãi = u∗1 · · ·u∗n−iãi ∈ A(U0)(u∗1 · · ·u∗n−iAn−i, u∗1 · · ·u∗n+1−iAn+1−i);

ãi,...,n = ãi ◦ · · · ◦ ãn ∈ A(U0)(A0, u
∗
1 · · ·u∗n+1−iAn+1−i).

Given a partition m̄ = (mk, . . . ,m1) ∈ Part(n), denote

ã[mi] = ãmi−1+···+m1+1 ◦ · · · ◦ ãmi+···+m1
,

thus ã[m1] = ã1 ◦ · · · ◦ ãm1
and ã[mk] = ãn−mk+1,...,n.

For r = (r1, . . . , rn−1) ∈ P(σ), we obtain the following n-simplex in A(U0):

(r(An), ã1,...,n) ≡ (r1(An), . . . , rn−1(An), ã1,...,n).

Now for each partition m̄ = (mk, . . . ,m1) of n we define by induction a set

(4.3) Seq(σ, m̄) ≡ Seq(σ, ã, m̄) ⊆ Nn(A(U0))(A0, σ[mk]∗ · · ·σ[m1]∗An)

along with a sign map

Seq(σ, m̄) −→ {1,−1} : ξ 7−→ sign(ξ) ≡ (−1)ξ.

Simultaneously, for each sequence ξ ∈ Seq(σ, m̄) we define the formal sequence ξ of
ξ, then denote the set of all these formal sequences

Seq(σ, m̄) = {ξ| ξ ∈ Seq(σ, m̄)}.

• For k = 1, m̄ = (m1) where m1 = n, we define

Seq(σ, m̄) = {(r(An), ã1,...,n) | r ∈ P(σ)}.
For each element ξ = (r(An), ã1,...,n) ∈ Seq(σ, m̄) we define

sign(ξ) = (−1)r.

The formal sequence of ξ is defined to be

ξ = (r, ã1,...,n).

• For k ≥ 2, Rmkσ is an (n − mk)-simplex. Let ξ = (ξ1, . . . , ξn−mk) ∈
Seq(Rmkσ, (mk−1, . . . ,m1)) ⊆ Nn−mk(A(Umk))(Amk , σ[mk−1]∗ · · ·σ[m1]∗An).
Let ξ = (ξ

1
, . . . , ξ

n−mk
) be the formal sequence of ξ.

(i) Case mk = 1. Let u∗1ξ = (u∗1ξ1, . . . , u
∗
1ξn−mk), then we obtain the

concatenation

(u∗1ξ, ãn) ∈ Nn(A(U0))(A0, σ[mk]∗ · · ·σ[m1]∗An).

We define

Seq(σ, m̄) = {(u∗1ξ, ãn) | ξ ∈ Seq(Rmkσ, (mk−1, . . . ,m1))}.
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For each element ξ′ = (u∗1ξ, ãn) ∈ Seq(σ, m̄), we define

sign(ξ′) = sign(ξ).

Now we define the formal sequence of ξ′ to be

ξ′ = (ξ, ãn).

(ii) Case mk ≥ 2. For s ∈ P(Lmkσ) and β ∈ Sn−mk,mk−1, we obtain the
shuffle

ξ ∗
β
s ∈ Nn−1(A(U0))(σ[mk]]Amk , σ[mk]∗ · · ·σ[m1]∗An)

taken with respect to evaluation of functors. Concatenation with
ãn+1−mk,...,n ∈ A(U0)(A0, σ[mk]]Amk) yields an n-simplex

(ξ ∗
β
s, ãn+1−mk,...,n) ∈ Nn(A(U0))(A0, σ[mk]∗ · · ·σ[m1]∗An).

Put m′ = (mk−1, . . . ,m1). We define

Seq(σ, m̄) ={(ξ ∗
β
r, ãn+1−mk,...,n)| ξ ∈ Seq(Rmkσ,m

′), r ∈ P(Rmkσ),

β ∈ Sn−mk,mk−1}.
For each element ξ′ = (ξ ∗

β
r, ãn+1−mk,...,n) ∈ Seq(σ, m̄) we define

sign(ξ′) = (−1)r(−1)βsign(ξ).

Let β(ξ, r) be the formal shuffle product of ξ and r. The formal se-
quence of ξ′ is defined to be

ξ′ = (β(0)(ξ, r), ãn+1−mk,...,n).

Example 4.1. Consider a partition m = (m3,m2,m1) of n where mi ≥ 2. Each
element ξ ∈ Seq(σ, m̄) is of the form

ξ =

((
(r1, ã[m1]) ∗

β1

r2, ã[m2]
)
∗
β2

r3, ã[m3]

)
where r1 ∈ P(σ[m1]), r2 ∈ P(σ[m2]), r3 ∈ P(σ[m3]) and β1 ∈ Sm1,m2−1, β2 ∈
Sm1+m2,m3−1.

Now we are able to define the maps Fp : Cp,n−p
GS (A,M) −→ Cn(Ã, M̃). Let

σ = (u1, . . . , un) be an n-simplex and ã = (ã1, . . . , ãn) as in (4.2). For each cochain
φ = (φp,q) ∈ Cn

GS(A,M), we define
(4.4)

Fpφp,n−p)(ã) =
∑

m̄∈Part(n−p)

∑
ξ∈Seq(Rpσ,m̄)

(−1)m̄+ξFσ,m̄,Anp φ
Lpσ
p,n−p(ξ)ãn+1−p,...,n

where Fσ,m̄,Anp = cσ,p,An(Lpσ)∗cRpσ,m̄,An . The map F is as follows

F(φ) =
∑

p+q=n

Fp(φp,q).

Proposition 4.2. The map F commutes with differentials. More precisely, let
p+ q = n− 1, for φ ∈ Cp,q

GS(A,M), then F (dφ) = δ(Fφ).

Proof. Let σ = (u1, . . . , un) be a n-simplex as in (3.8), and let ã = (ã1, . . . , ãn) as

in (4.2). First, we prove that F(dφ) = δ(Fφ) for the case φ ∈ C0,n−1
GS (A,M).

The equation

(4.5)

n∑
i=0

(−1)iFdiHochφ+ (−1)nF(d0
simp − d1

simp)φ+

n∑
i=2

Fdiφ =

n∑
i=0

δnFφ

holds true if the following equations hold true:
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(i) −(−1)nFdnHochφ = (−1)n+1Fd1
simpφ+

∑n
i=2 Fdiφ;

(ii) Fd0
simpφ = δnFφ;

(iii) Fd0
Hochφ+

∑n−1
i=1 (−1)iFdiHochφ =

∑n−1
i=0 (−1)iδiFφ.

Step 1. We prove the equation (i). Note that L0σ = (U0) is a 0-simplex, by
definition, we have

(−1)n+1(FdnHochφ)σ(ã) =
∑

m̄∈Part(n)

∑
ξ∈Seq(σ,m̄)

T (m̄, ξ)

where T (m̄, ξ) = (−1)n+1(−1)m̄+ξcσ,m̄,An(dnHochφ)U0(ξ). On the right hand side,
we have

(−1)n+1(Fd1
simpφ)σ(ã) =

∑
m̄′∈Part(n−1)
ξ′∈Seq(R1σ,m̄

′)

(−1)n+1(−1)m̄
′+ξ′Fσ,m̄

′,An
1 (d1

simpφ)L1σ(ξ′)ãn

where (d1
simpφ)L1σ(ξ′)ãn = φU0(u∗1ξ

′)ãn.

For each m̄′ = (m′k, . . . ,m
′
1) ∈ Part(n − 1) and ξ′ ∈ Seq(R1σ, m̄

′), let m̄ =
(1,m′k, . . . ,m

′
1) ∈ Part(n). Then by definition, there exists a unique element ξ ∈

Seq(σ, m̄) such that ξ = (u∗1ξ
′, ãn). Hence, we get

T (ξ, m̄) = (−1)n+1(−1)m̄
′+ξ′Fσ,m̄

′,An
1 (d1

simpφ)L1σ(ξ′)ãn.

So all the terms occurring in (−1)n+1(Fd1
simpφ)σ(ã) are canceled.

For 2 ≤ i ≤ n, we have

(Fdiφ)σ(ã) =
∑

m̄′∈Part(n−i)
ξ′∈Seq(Riσ,m̄

′)

(−1)m̄
′+ξ′cσ,i,An(Liσ)∗cRiσ,m̄

′,An(diφ)Liσ(ξ′)ãn+1−i,...,n

where (diφ)Liσ(ξ′) =
∑

r∈P(Liσ), β∈Sn−i,i−1

(−1)n−i(−1)r+βφU0(ξ′ ∗
β
r). For each m̄′ ∈

Part(n − i), r ∈ P(Liσ) and β ∈ Sn−i,i−1, there exists a unique element ξ ∈
Seq(σ, m̄), where m̄ = (n− i, m̄′) ∈ Part(n), such that ξ = (ξ′ ∗

β
r, ãn+1−k,...,n). We

get T (ξ, m̄) = (−1)m̄
′+ξ′(−1)n−i(−1)r+βcσ,i,An(Liσ)∗cRiσ,m̄

′,AnφU0(ξ′∗
β
r)ãn+1−k,...,n.

So every term occurring in (Fdiφ)σ(ã) is cancelled.

Step 2. The equation (ii) is obvious. We prove the equation (iii). For i =
1, . . . , (n− 1), we have

(FdiHochφ)σ(ã) =
∑

m̄∈Part(n),ξ∈Seq(σ,m̄)

(−1)m̄+ξcσ,m̄,An(diHochφ)U0(ξ).

Let m̄ = (mk, . . . ,m1). Assume ξ = (ξ1, . . . , ξn) ∈ Seq(σ, m̄), we have

(diHochφ)U0 = φU0(ξ1, . . . , ξiξi+1, . . . , ξn).

Let ξ = (ξ
1
, . . . , ξ

n
) ∈ Seq(σ, m̄) be the formal sequence of ξ. Then (ξ

i
, ξ
i+1

) can

only be one of the following cases

(ξ
i
, ξ
i+1

) =


(rj , sl) or (sl, rj) for r ∈ P(σ[mt]), s ∈ P(σ[mt+1]);

(ã[mt], rj) or (rj , ã[mt]) for r ∈ P(σ[mt+1]);
(ã[mt], ã[mt+1]) for some t;
(rmt−1, ã[mt]) for r ∈ P(σ[mt]).

Case 1. Assume that (ξ
i
, ξ
i+1

) = (rj , sl) or (sl, rj), for some r = (r1, . . . , rmt−1) ∈
P(σ[mt]) and s = (s1, . . . , smt+1−1) ∈ P(σ[mt+1]). There exists a unique element
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ξ′ ∈ Seq(σ, m̄) such that its formal sequence satisfies ξ′ = (ξ
1
, . . . , ξ

i−1
, ξ
i+1

, ξ
i
, ξ
i+2

, . . . , ξ
n
).

Hence

(−1)m̄+ξcσ,m̄,An(diHochφ)U0(ξ) + (−1)m̄+ξ′cσ,m̄,An(diHochφ)U0(ξ′) = 0.

The same argument applies for the cases (ξ
i
, ξ
i+1

) = (ã[mt], rj) or (rj , ã[mt]).

Case 2. Assume (ξ
i
, ξ
i+1

) = (ã[mt], ã[mt+1]) for some 1 ≤ t ≤ k−1. Without loss

of generality we assume that ξ = (ξ
1
, . . . , ξ

j
, r, s, ã[mt], ã[mt+1], ξ

j+mt+mt+1+1
, . . . , ξ

n
)

for some paths r ∈ P(σ[mt]), s ∈ P(σ[mt+1]). Denote γ = σ[mt]tσ[mt+1] the con-
catenation of the simplices σ[mt+1] and σ[mt], then (cγ,mt+1 , r, s) is a path in P(γ).
We have

(Fd0
Hochφ)σ(ã) =

∑
m̄′∈Part(n)

∑
ξ′∈Seq(σ,m̄′)

(−1)m̄
′+ξ′cσ,m̄

′,An(d0
Hochφ)U0(ξ′).

Consider the partition m̄′ = (mk, . . . ,mt+1 + mt, . . . ,m1), there exists a unique
element ξ′ ∈ Seq(σ, m̄′) such that its formal sequence satisfies

ξ′ = (cγ,mt+1 , ξ
1
, . . . , ξ

j
, r, s, ã[mt], ã[mt+1], ξ

j+mt+mt+1+1
, . . . , ξ

n
)

= (cγ,mt+1 , ξ).

We obtain (−1)m̄
′+ξ′cσ,m̄

′,An(d0
Hochφ)U0(ξ′) + (−1)m̄+ξcσ,m̄,An(diHochφ)U0(ξ) = 0.

Case 3. Assume that (ξ
i
, ξ
i+1

) = (rmt−1, ã[mt]) for some r = (r1, . . . , rmt−1) ∈
P(σ[mt]). We have rmt−1 = εσ[mt],j for some 1 ≤ j ≤ mt − 1. Let j′ = n + 1 −
(mk + · · ·+mt+1 + j) = m1 + · · ·+mt + 1− j. In the right hand side of equation
(iii), we have

(−1)j
′
(δj′Fφ)σ(ã) = (−1)j

′
(Fφ)∂n−j′σ(∂j′ ã)

=
∑

m̄′∈Part(n−1)

∑
ξ′∈Seq(∂n−j′σ,m̄

′)

(−1)j
′
(−1)m̄

′+ξ′c∂n−j′σ,m̄
′,AnφU0(ξ′).

Choose m̄′ = (mk, . . . ,mt−1, . . . ,m1) ∈ Part(n−1). There exists a unique element
ξ′ ∈ Seq(∂n−j′σ, m̄

′) such that

(−1)j
′
(−1)m̄

′+ξ′c∂n−jσ,m̄
′,AnφU0(ξ′) = (−1)m̄+ξcσ,m̄,An(diHochφ)U0(ξ).

After considering all cases 1,2,3 as above, we find that all the terms occurring in∑n−1
i=1 (FdiHochφ)σ(ã) and

∑n−1
i=1 (δiFφ)σ(ã) are canceled. The remaining terms in

(Fd0
Hochφ)σ(ã) are only∑

m̄′=(m′k,...,m
′
2,1)∈Part(n)

∑
ξ′∈Seq(σ,m̄′)

(−1)m̄
′+ξ′cσ,m̄

′,An(d0
Hochφ)U0(ξ′)

which are in turn canceled by all the terms in (δ0Fφ)σ(ã). We conclude that the
equation (iii) holds.

In the general case, we consider φ ∈ Cp,n−1−p
GS (A,M) for p > 0. Applying the

same arguments as above, we can prove the following equations hold true:

(i’) −(−1)n−pFdn−pHochφ = (−1)n+1−pFdp+1
simpφ+

∑n−p
i=2 Fdiφ;

(ii’) Fdisimpφ = δn−iFφ for i = 0, . . . , p;

(iii”) Fd0
Hochφ+

∑n−p−1
i=1 (−1)iFdiHochφ =

∑n−p−1
i=0 (−1)iδiFφ.
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These equations yield

n∑
i=0

(−1)iFdiHochφ+ (−1)nF(

p+1∑
i=0

disimp)φ+

n∑
i=2

Fdiφ =

n∑
i=0

δnFφ,

which means F(dφ) = δ(Fφ). �

4.2. The cochain map G. In this section we define the cochain map

G : C•U (Ã, M̃) −→ C•GS(A,M).

Consider a p-simplex σ = (u1, . . . , up) ∈ Np(U) as follows

(4.6) σ = ( U0 u1

// U1 u2

// . . .
up−1

// Up−1 up
// Up )

and a q-simplex a = (a1, . . . , aq) ∈ N (A(Up))q as follows

(4.7) a = ( A0

aq // A1

aq−1 // · · · a2 // Aq−1
a1 // Aq ).

Using conditioned shuffles, we will describe several ways to build a (p+q)-simplex in

Np+q(Ã) from these data. Let m̄ = (mk, . . . ,m1) be a partition of p with mi ≥ 1 for
all i and let β ∈ S̄m̄ be a conditioned m̄-shuffle as defined in §3.1. For 1 ≤ i ≤ k, let
ri = (ri1, . . . , r

i
mi−1) ∈ P(σ[mi]) be a path and consider the associated mi-simplex

r̄i = (1σ[mi]∗ , r
i
1, . . . , r

i
mi−1) ∈ Nmi(Ci).(4.8)

where

Ci = Fun(A(Up−m1···−mi−1),A(Up−m1···−mi).

First, consider the formal shuffle by β of the associated tuples (r̄i)i as described in
(3.2). Assume that

β(0)((r̄i)i) = s = (s1, . . . , sp).

Since β is a conditioned shuffle, there are uniquely determined numbers γl ≥ 1,
1 ≤ l ≤ k such that s1 = 1σ[m1]∗ , sγ1+1 = 1σ[m2]∗ , . . . , s∑l

i=1 γi+1 = 1σ[l+1]∗ , . . . ,

s∑k−1
i=1 γi+1 = 1σ[mk]∗ and γk = p−

∑k−1
i=1 γi. Following the pattern explained at the

end of §3.1, we obtain the sequence

(ĉ1, . . . , ĉk) ∈
k∏
l=1

Nγl(
l∏
i=1

Ci).

Using the composition of functors as in Remark 3.3, we obtain the following se-
quence which we define as the shuffle product of (r̄i)i by β

β((r̄i)i) := (c̄1, . . . , c̄k) ∈
k∏
l=1

Nγl(Dl)

where

Dl = Fun(A(Up),A(Up−m1···−ml).

We denote by Seqq(σ, m̄) the set of all such conditioned shuffle products. Thus

(4.9) Seqq(σ, m̄) = {β((r̄i)i)| β ∈ S̄m̄, r̄i = (1σ[mi]∗ , r
i), ri ∈ P(σ[mi])}.

For each ζ = β((r̄i)i) ∈ Seqq(σ, m̄), we denote the formal sequence β(0)((r̄i)i) of ζ
by ζ, and denote the set of all such formal sequence as

Seqq(σ, m̄) = {ζ| ζ ∈ Seqq(σ, m̄)}.
We define

sign(ζ) = sign(β((r̄i)i)) = (−1)β
k∏
i=1

(−1)r
i
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and equip this shuffle product with a certain underlying simplex denoted by simp(β((r̄i)i)).
Writing

c̄l = (c̄l1, . . . , c̄
l
γl

)

we define

simp(c̄l1) = ( Up−m1···−ml
||σ[ml]||// Up−m1···−ml−1

);

simp(c̄lj) = ( Up−m1···−ml
1 // Up−m1···−ml ), j > 1.

The simplex simp(c̄l) is obtained by concatenation of (simp(c̄lj))j , the simplex

simp(β((r̄i)i)) ≡ simp(c̄1, . . . , c̄k) is obtained by concatenation of the simplices
(simp(c̄l))l.

Example 4.3. Consider the simplex σ = (U0 −→
u1

U1 −→
u2

U2 −→
u3

U3 −→
u1

U4) and

the partition m̄ = (m2,m1) = (2, 2). There are three conditioned formal shuffles
(1σ[m1]∗ , c

u3,u4 , 1σ[m2]∗ , c
u1,u2); (1σ[m1]∗ , 1σ[m2]∗ , c

u3,u4 , cu1,u2); (1σ[m1]∗ , 1σ[m2]∗ , c
u1,u2 , cu3,u4).

The set Seqq(σ, (m2,m1)) consists of following sequences: • cu1,u2u∗3u
∗
4−→ •

1σ[m2]∗u
∗
3u
∗
4−→ • cu3,u4−→ •

1σ[m1]∗−→ •
U0 −→

1
U0 −→

u2u1

U2 −→
1

U2 −→
u4u3

U4


 • cu1,u2u∗3u

∗
4−→ • (u2u1)∗cu3,u4−→ •

1σ[m2]∗ (u4u3)∗

−→ •
1σ[m1]∗−→ •

U0 −→
1

U0 −→
1

U0 −→
u2u1

U2 −→
u4u3

U4


 • u∗1u

∗
2c
u3,u4

−→ • cu1,u2 (u4u3)∗−→ •
1σ[m2]∗ (u4u3)∗

−→ •
1σ[m1]∗−→ •

U0 −→
1

U0 −→
1

U0 −→
u2u1

U2 −→
u4u3

U4

 .

Next consider a shuffle permutation ω ∈ Sp,q. We are now to define the shuffle
product of a and (c̄1, . . . , c̄k) by ω to be the element

(b̂0, b̂1, . . . , b̂k) ≡ a ∗
ω

(c̄1, . . . , c̄k) ∈ Np+q(Ã).

The formal shuffle product ω(0)(a, β(0)((r̄i)i)) is called the formal sequence of

(b̂0, b̂1, . . . , b̂k). First consider the formal shuffle

ω(0)(a; (c̄1, . . . , c̄k)) = (b1, . . . , bp+q).

Since ω is shuffle, there are unique numbers t1, . . . , tk+1 such that bt1+1 = c̄11,

bt1+t2+1 = c̄21 , . . . , b∑k
i=1 ti+1 = c̄k1 and tk+1 = p + q −

∑k
i=1 ti. Following the

procedure at the end of section 3.1, for 0 ≤ l ≤ k consider

al = (al1, . . . , a
l
jl

) = {b∑l
i=1 ti+1, . . . , b∑l+1

i=1 ti
} ∩ {a1, . . . , aq}.

Obviously a0 = (a1, . . . , at1). There is unique shuffle ωl ∈ Sjl,γl such that the
formal shuffle product of al and c̄l by ω is exactly

(b∑l
i=1 ti+1, . . . , b∑l+1

i=1 ti
).

Now we put b̂0 = a0. For l = 1 . . . k, take the shuffle product ωl(a
l, ĉl) with respect

to evaluation of functors as in Example 3.2, and put

b̂l = (b̂l1, . . . , b̂
l
jl+γl

) = ωl(a
l, ĉl).

Now we associate the underlying simplex to (b̂0, b̂1, . . . , b̂k) to show that

(b̂0, b̂1, . . . , b̂k) ∈ Np+q(Ã)(σ]A0, Aq).
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We have b̂l1 = σ[ml]
∗Tl−1(Aαl) for a certain Tl−1 ∈ Dl−1 and a certain Aαl ∈

{A0, . . . , Aq}. Thus it can be regarded as an element of N1(Ã) as follows:

σ[ml]
∗Tl−1Aαl

1 // Tl−1Aαl

Up−m1···−ml
||σ[ml]|| // Up−m1···−ml−1.

We consider b̂lj = AUp−m1···−ml
(B,B′) as an element of N1(Ã) as follows:

B
b̂lj // B′

Up−m1···−ml
1 // Up−m1···−ml.

Put

simp(b̂l1) = ( Up−m1···−ml
||σ[ml]||// Up−m1···−ml−1

), l ≥ 1;

simp(b̂lj) = ( Up−m1···−ml
1 // Up−m1···−ml ), j > 1;

simp(b̂0j ) = ( Up
1 // Up ), j ≥ 0.

By concatenation of all these 1-simplices we obtain the simplex simp(b̂0, b̂1, . . . , b̂k)

of (b̂0, b̂1, . . . , b̂k).

Example 4.4. Let σ = (U0 −→
u1

U1 −→
u2

U2) and a ∈ A(U2)(A0, A1). Let m̄ = (2),

then Seqq(σ, (2)) consist only of the sequence (1(u2u1)∗ , c
u1,u2):(

• cu1,u2−→ •
1(u2u1)∗−→ •

U0 −→
1

U0 −→
u2u1

U2

)
.

The following are shuffle products of a and (1u2u1
, cu1,u2):u∗1u∗2A0

cu1,u2,A0

−→ (u2u1)∗A0

1(u2u1)∗ (A0)
−→ A0

a−→ A1

U0 −→
1

U0 −→
u2u1

U2 −→
1

U2


u∗1u∗2A0

cu1,u2,A0

−→ (u2u1)∗A0
(u2u1)∗a−→ (u2u1)∗A1

1(u2u1)∗ (A1)
−→ A1

U0 −→
1

U0 −→
1

U0 −→
u2u1

U2


u∗1u∗2A0

u∗1u
∗
2a−→ u∗1u

∗
2A1

cu1,u2,A1

−→ (u2u1)∗A1

1(u2u1)∗ (A1)
−→ A1

U0 −→
1

U0 −→
1

U0 −→
u2u1

U2

 .

For each cochain ψ ∈ Cp+q
U (Ã, M̃), we now define

(4.10) G(ψ)σ(a) =
∑

m̄∈Part(n)
ζ∈Seqq(σ,m̄)

∑
β∈Sq,p

(−1)β(−1)ζψ
simp(a∗

β
ζ)

(a ∗
β
ζ).

Proposition 4.5. The map G commutes with differentials. Precisely, for ψ ∈
Cn−1
U (Ã, M̃), we have dG(ψ) = Gδ(ψ).



THE GERSTENHABER-SCHACK COMPLEX FOR PRESTACKS 30

Proof. Assume that p+ q = n. Let σ = (u1, . . . , up) be a p-simplex as in (4.6) and
a = (a1, . . . , aq) as in (4.7). We prove (dG(ψ))σ(a) = (Gδ(ψ))σ(a).
Put

LHS = (d0Gψ)σ(a) + (−1)n(dsimpGψ)σ(a) + (d2Gψ)σ(a)) + · · ·+ (dpGψ)σ(a);

RHS = (Gδ0ψ)σ(a)− (Gδ1ψ)σ(a) + · · ·+ (−1)n(Gδnψ)σ(a).

We have

(−1)i(Gδiψ)σ(a) =
∑

m̄∈Part(p), β∈Sq,p
ζ∈Seqq(σ,m̄)

(−1)i(−1)β(−1)ζ(δiψ)
simp(a∗

β
ζ)

(a ∗
β
ζ).

Denote

T (i, m̄, β, ζ) = (−1)i(−1)β(−1)ζ(δiψ)
simp(a∗

β
ζ)

(a ∗
β
ζ).

To prove that LHS = RHS, we show that each term T appearing in the expansion
of RHS is either matched with a unique term in the expansion of LHS or canceled
out with a term −T in RHS. Simultaneously, this process also shows that every
term in LHS is cancelled out.

Take a partition m̄ = (mk, . . . ,m1) ∈ Part(p). Fix β ∈ Sq,p and ζ ∈ Seqq(σ, m̄).
By definition, there are a unique γ ∈ S̄m̄, rmi = (rmi1 , . . . , rmimi−1) ∈ P(σ[mi]),
i = 1, . . . , k; such that ζ is the shuffle product

ζ = γ
(
(r̄mi)i=1,...,k

)
(4.11)

where r̄mi = (1σ[mi], r
mi) as in (4.8).

We denote the shuffle product

a ∗
β
ζ = α = (α1, . . . , αn)

and its formal sequence

α = (α1, . . . , αn).

Step 1. We consider the term T (0, m̄, β, ζ) in RHS. We have

(δ0ψ)
simp(a∗

β
ζ)

(a ∗
β
ζ) = µ(α1, ψ

simp(∂0α)(α2, . . . , αn))

where µ is the composition in the map-graded category Ã. There are only three
cases α1 = a1, α1 = 1up or α1 = 1σ[m1]∗ where m1 ≥ 2.

• Consider the case α1 = a1. We have simp(α1) = (Up −→
1
Up). In the LHS,

we consider

(d0
HochGψ)σ(a) =

∑
m̄′∈Part(p), β′∈Sq−1,p

ζ′∈Seqq(σ,m̄′)

(−1)β
′
(−1)ζ

′
σ∗(a1)ψ

simp(∂0a ∗
β′
ζ′)

(∂0a ∗
β′
ζ ′).

Choose m̄′ = m̄ and ζ ′ = ζ ∈ Seqq(σ, m̄′). Then there exists a unique
β′ ∈ Sq−1,p such that (a2, . . . , aq) ∗

β′
ζ ′ = (α2, . . . , αn). Hence

T (0, m̄, β, ζ) = (−1)β
′+ζ′σ∗(a1)ψ

simp(∂0a ∗
β′
ζ′)

(∂0a ∗
β′
ζ ′).

• Consider the case α1 = 1up . We have m1 = 1, simp(α1) = (Up−1 −→
up

Up),

and (δ0ψ)
simp(a∗

β
ζ)

(a ∗
β
ζ) = cσ,p−1,Aqψsimp(∂0α)(α2, . . . , αn). In the LHS, we

have

(−1)n+p(dpsimpGψ)σ(a) = (−1)n+pcσ,p−1,Aq (Gψ)∂pσ(u∗pa)
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=
∑

m̄′∈Part(p−1), β′∈Sq,p−1

ζ′∈Seqq(σ,m̄′)

(−1)n+p+β′+ζ′cσ,p−1,Aqψ
simp(u∗pa ∗

β′
ζ′)

(u∗pa ∗
β′
ζ ′).

Choose m̄′ = (mk, . . . ,m2) ∈ Part(p−1). There exist unique ζ ′ ∈ Seqq(∂pσ, m̄
′)

and β′ ∈ Sq,p−1 such that u∗pa ∗
β′
ζ ′ = (α2, . . . , αn). This implies

T (0, m̄, β, ζ) = (−1)n+p+β′+ζ′cσ,p−1,Aqψ
simp(u∗pa ∗

β′
ζ′)

(u∗pa ∗
β′
ζ ′).

• Consider the case α1 = 1σ[m1]∗ . We have simp(α1) = (Up−m1
−→

up···up−m1+1

Up), and (δ0ψ)
simp(a∗

β
ζ)

(a∗
β
ζ) = cσ,p−m1,Aqψsimp(∂0α)(α2, . . . , αn). We have,

in RHS, the terms

(dm1
Gψ)σ(a) =

∑
r∈P(σ[m1]), β′∈Sq,m1−1

(−1)q(−1)r(−1)β
′
cσ,p−m1,Aq (Gψ)Lp−m1σ(β′(a, r))

=
∑

r∈P(σ[m1]), β′∈Sq,m1−1, β
′′∈Sq+m1−1,p−m1

m̄′∈Part(p−m1), ζ′∈Seqq(Lp−m1
σ,m̄′)

(−1)q+r+β
′+β′′+ζ′×

cσ,p−m1,Aqψ
simp(β′(a,r) ∗

β′′
ζ′)

(β′(a, r) ∗
β′′
ζ ′).

Let m̄′ = (mk, . . . ,m2) ∈ Part(p − m1). We consider the element ζ ′

in Seqq(Lp−m1
σ, m̄′) of the form ζ ′ = γ1(r̄m2 , . . . , r̄mk) where γ1 ∈ S̄m̄′ .

Choose r = rm1 , there exist unique γ1 ∈ S̄m̄′ , β′ ∈ Sq,m1−1, β′′ ∈
Sq+m1−1,p−m1

S such that β′(a, r) ∗
β′′
ζ ′ = (α2, . . . , αn). Therefore

T (0, m̄, β, ζ) = (−1)q+r+β
′+β′′+ζ′cσ,p−m1,Aqψ

simp(β′(a,r) ∗
β′′
ζ′)

(β′(a, r) ∗
β′′
ζ ′).

Step 2. We consider the term T (n, m̄, β, ζ) in RHS. We have

(−1)n(δnψ)
simp(a∗

β
ζ)

(a ∗
β
ζ) = (−1)nµ(ψsimp(∂0α)(α1, . . . , αn−1), αn).

There are only three cases: αn = an, αn = 1u∗1 or αn = rmimi−1 where rmi =
(rmi1 , . . . , rmimi−1) ∈ P(σ[mi]).

• Consider the case αn = aq. Then simp(αn) = (U0 −→
1

U0). In LHS, we

have

(−1)q(dqHochGψ)σ(a) =
∑

m̄′∈Part(p),β′∈ Sq−1,p

ζ′∈Seqq(σ,m̄′)

(−1)q+β
′+ζ′ψ

simp(∂qa ∗
β′
ζ′)

(∂qa∗
β′
ζ ′)σ](aq).

Choose m̄′ = m̄ ∈ Part(p) and ζ ′ = ζ ∈ Seqq(σ, m̄′). There exists a unique
β′ ∈ Sq−1,p such that (a1, . . . , aq−1) ∗

β′
ζ ′ = (α1, . . . , αn−1). This implies

T (n, m̄, β, ζ) = (−1)q+β
′+ζ′ψ

simp(∂qa ∗
β′
ζ′)

(∂qa ∗
β′
ζ ′)σ](aq).

• Consider the case αn = (1u∗1 ). Then mk = 1 and simp(αn) = (U0 −→
1
U1),

so ζ = (η, 1u∗1 ) for some η ∈ Seqq(∂0σ, (mk−1, . . . ,m1)). We have

(δnψ)
simp(a∗

β
ζ)

(a ∗
β
ζ) = cσ,1,Aqu∗1ψ

simp(∂nα)(α1, . . . , αn−1).

In LHS we have

(−1)n(d0
simpGψ)σ(a) = (−1)ncσ,1,AqMu1(Gψ)∂0σ(a)
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=
∑

m̄′∈Part(p−1),β′∈Sq,p−1

ζ′∈Seqq(∂0σ,m̄
′)

(−1)n+β′+ζ′cσ,1,AqMu1ψ
simp(a ∗

β′
ζ′)

(a ∗
β′
ζ ′).

Take m̄′ = (mk−1, . . . ,m1) ∈ Part(p− 1) and ζ ′ = η, there exists a unique
β′ ∈ Sq,p−1 such that (a1, . . . , aq) ∗

β′
ζ ′ = (α1, . . . , αn−1). By computation,

we obtain T (n, m̄, β, ζ) = (−1)n+β′+ζ′cσ,1,AqMu1ψ
simp(a ∗

β′
ζ′)

(a ∗
β′
ζ ′).

• Consider the case αn = rmimi−1. Then αn = εσ,j0(A0) for some j0, simp(αn) =

(U0 −→
1
U0). We have (δnψ)

simp(a∗
β
ζ)

(a∗
β
ζ) = ψsimp(∂nα)(α1, . . . , αn−1)εσ,j0(A0).

In LHS we have

(−1)n+j0(dj0simpGψ)σ(a) =
∑

m̄′∈Part(p−1),β′∈Sq,p−1

ζ′∈Seqq(∂j0σ,m̄
′)

(−1)n+j0+β′+ζ′ψ
simp(a ∗

β′
ζ′)

(a∗
β′
ζ ′)εσ,j0(A0).

Take m̄′ = (mk, . . . ,mi+1,mi − 1,mi−1, . . . ,m1) ∈ Part(p − 1). There
exist unique ζ ′ ∈ Seqq(∂j0σ, m̄

′) and β ∈ Sq,p−1 such that (a1, . . . , aq) ∗
β′

ζ ′ = (α1, . . . , αn−1). We get T (n, m̄, β, ζ) = (−1)n+j0+β′+ζ′ψ
simp(a ∗

β′
ζ′)

(a ∗
β′

ζ ′)εσ,j0(A0).

Step 3. Considering the term T (i, m̄, β, ζ) in RHS for i = 1..(n− 1), we have

(δiψ)
simp(a∗

β
ζ)

(a ∗
β
ζ) = ψsimp(∂iα)(α1, . . . , αi−1, αiαi+1, αi+2, . . . , αn).

Denote

Γ = {1u∗i , 1σ[mj ]∗ , r
mt
l | r

mt = (rmt1 , . . . , rmtmt−1) ∈ P(σ[mt]), i, j, t, l ≥ 1}.

We consider the following case

(i) Assume that {αi, αi+1} ∩ {ã1, . . . , ãn} 6= ∅ then:

(a) If (αi, αi+1) = (aj , aj+1) for some j, we look at djHochGψ in LHS,

(−1)j(djHochGψ)σ(a) =
∑

m̄′∈Part(p),β′∈ Sq−1,p

ζ′∈Seqq(σ,m̄′)

(−1)j+β
′+ζ′ψ

simp(∂ja ∗
β′
ζ′)

(∂ja ∗
β′
ζ ′).

Choose m̄′ = m̄ and ζ ′ = ζ. There exists a unique β′ ∈ Sq−1,p such

that ∂ja∗
β′
ζ ′ = ∂iα.Hence, T (i, m̄, β, ζ) = (−1)j+β

′+ζ′ψ
simp(∂ja ∗

β′
ζ′)

(∂ja∗
β′

ζ ′).
(b) If {αi, αi+1} = {aj , b} for some b ∈ Γ, there exists a unique β′ ∈

Sq,p such that β′(0)(a, ζ) = (α1, . . . , αi−1, αi+1, αi, αi+2, . . . , αn). This
implies T (i, m̄, β, ζ) + T (i, m̄, β′, ζ) = 0.

(ii) Assume that {αi, αi+1} ⊆ Γ, then :
(a) If {αi, αi+1} = {rmtj , 1u∗l }, then we repeat the argument in (i”).

(b) If {αi, αi+1} = {rmtj , rmsl }, then if s 6= t we repeat the argument in (i”).

Else s = t so (αi, αi+1) = (rmtj , rmtl ), then l = j + 1. In the formula

(4.11) of ζ, we keep r̄mt′ when t′ 6= t and replace r̄mt = (1σ[mt]∗ , r
mt)

by (1σ[mt]∗ ,flip(rmt , j)) to obtain the new element η ∈ Seqq(σ, m̄).

Then (−1)η = −(−1)ζ and by (3.17) we get ∂i(a ∗
β
η) = ∂iα. This

implies T (i, m̄, β, η) + T (i, m̄, β, ζ) = 0.
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(c) If {αi, αi+1} = {1σ[mj ], r
mt
v } where rmj = (r

mj
1 , . . . , r

mj
mj−1) ∈ P(σ[mj ]),

then if j 6= t we again repeat the argument in (i”). If j = t then
(αi, αi+1) = (1σ[mj ], r

mj
1 ) . Assume that r

mj
1 = cσ[mj ],l for some l. Let

∆ = mj − l,∆′ = l. We decompose σ[mj ] = σ[∆′] t σ[∆] as concate-
nation of σ[∆′] and σ[∆′]. By Lemma (3.8) there exist paths r∆ ∈
P(σ[∆]), r∆′ ∈ P(σ[∆′]) and β0 ∈ S∆−1,∆′−1 such that (r

mj
1 , r∆ ∗

β0

r∆′) = rmj . Choose the new partition m̄′ = (mk, . . . ,mj+1,∆
′,∆,

mj−1, . . . ,m1) ∈ Part(p). There exists a unique conditioned shuffle
permutation γ ∈ S̄m̄ such that
γ(0)(r̄m1 , . . . , r̄mi−1, r̄∆, r̄∆′ , r̄mi+1 , . . . , r̄mk)
= (α1, . . . , αi−1, 1σ[∆], 1σ[∆′], αi+1, . . . , αn).

Let η = γ(0)(r̄m1 , . . . , r̄mi−1, r̄∆, r̄∆′ , r̄mi+1 , . . . , r̄mk) ∈ Seqq(σ, m̄′).
Since ∂i(a ∗

β
η) = ∂iα, we get T (i, m̄, β, ζ) + T (i, m̄′, β, η) = 0.

�

4.3. F and G are quasi-inverse. In this section we construct homotopy maps

{Tn+1 : Cn+1
U (Ã, M̃) −→ Cn

U (Ã, M̃)}
to show that FG ∼ 1, then we prove directly that GF(φ) = φ for any normalized
reduced cochain φ. Hence we conclude that both F and G are quasi-isomorphisms,
in particular, we have

HHn
GS(A,M) = HnC•GS(A,M) ∼= Hn(C•U (Ã, M̃)) = HHn

U (Ã, M̃).

For each n-simplex σ = (u1, . . . , un) as in (3.8), let A = (Ai)
n
i=0 where Ai ∈

Ã(Ui). Denote

Ãσ,A = Ãun(An−1, An)⊗ · · · ⊗ Ãu1(A0, A1).

Let
Λ = {x ∈ Ãσ,A| σ ∈ N (U), Ai ∈ A(σ(i))}.

Denote by 〈Λ〉 the free abelian group generated by Λ. Given Ψ ∈ Cn
U (Ã, M̃) and

x =
∑
σ,A xσ,A ∈ 〈Λ〉 where xσ,A ∈ Ãσ,A, then we set

Ψ(x) =
∑
σ,A

Ψ(xσ,A)

in which Ψ(xσ,A) = 0 if σ /∈ Nn(U).

Let σ = (u1, . . . , un) and γ = (v1, . . . , vm) be simplices as in (3.8). Let A =

(Ai)
n
i=0 where Ai ∈ Ã(Ui) and B = (Bi)

m
i=0 where Bi ∈ Ã(Vi). Given ã =

(ã1, . . . , ãn) ∈ Ãσ,A and b̃ = (b̃1, . . . , b̃m) ∈ Ãγ,B as in (4.2), we have

simp(ã) = σ; simp(b̃) = γ.

Assume An = B0 and Un = V0, we define the concatenation

b̃ t ã = (b̃1, . . . , b̃m, ã1, . . . , ãn);

simp(b̃ t ã) = simp(b̃) t simp(ã) = γ t σ.
We have simp(ãi) = (Un−i −→

un−i+1

Un−i+1), and so

simp(ã) = σ = simp(ã1) t · · · t simp(ãn).

We use the following notations

∂0(ã) = (ã2, . . . , ãn), simp(∂0(ã)) = ∂nσ;

∂i(ã) = (ã1, . . . , ãi−1, µ(ãi, ãi+1), ãi+2, . . . , ãn), simp(∂i(ã)) = ∂n−iσ;
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∂n(ã) = (ã1, . . . , ãn−1), simp(∂n(ã)) = ∂0σ;

Rpã = (ã1, . . . , ãn−p);

ān+1−p,...,n = ãn+1−p,...,n, simp(ān+1−p,...,n) = (U0
1−→ U0).

In the abelian group 〈Λ〉, we put

ωn,p(σ, ã) =
∑

m̄∈Part(n−p)
ξ∈Seq(Rpσ,Rpã,m̄)

∑
m̄′∈Part(p),β∈Sn−p,p
ζ∈Seqq(Lpσ,m̄

′)

(−1)m̄+ξ+ζ+βξ ∗
β
ζ t ān+1−p,...,n ;

ωn(σ, ã) =

n∑
p=1

ωn,p(σ, ã);

∆n(σ, ã) =
∑

m̄∈Part(n)
ξ∈Seq(σ,m̄)

(−1)m̄+ξξ − (ã1, . . . , ãn).

By induction, we define

(4.12) Ωn(σ, ã) = (−1)n+1ωn(σ, ã) + Ωn−1(∂0σ, ∂nã) t ãn, for n ≥ 2,

if n = 1 then (σ, ã) is represented as

(σ, ã) =

(
A0

ã−→ A1

U0 −→
u1

U1

)
and we set

Ω1(σ, ã) =

A0
ã−→ u∗1A1

1u∗1A1−→ A1

U0 −→
1U0

U0 −→
u1

U1

 .

Now we define the homotopy maps {Tn+1 : Cn+1
U (Ã, M̃) −→ Cn

U (Ã, M̃)} as
follows:

T1 = 0,

(Tn+1Ψ)σ(ã) = Ψ(Ωn(σ, ã)), n ≥ 1.

From now on, for simplicity we write Ωn(ã) and ωn(ã) instead of Ωn(σ, ã) and
ωn(σ, ã).

Theorem 4.6. The maps Tn constitute a homotopy T : FG −→ 1. More precisely,
given a cochain Ψ in Cn

U (Ã, M̃), we have

(4.13) FG(Ψ)−Ψ = δTnΨ + Tn+1δΨ.

Proof. We have

(FGΨ)σ(ã) = (F0GΨ)σ(ã) +

n∑
p=1

(FpGΨ)σ(ã)

= (F0GΨ)σ(ã) +
∑

m̄∈Part(n−p)
ξ∈Seq(Rpσ,Rpã,m̄)

∑
m̄′∈Part(p),β∈Sn−p,p
ζ∈Seqq(Lpσ,m̄

′)

(−1)ξ+ζ+βΨ(ξ ∗
β
ζ)ãn+1−p,...,n

= (F0GΨ)σ(ã) + δn+1Ψ(ωn(σ, ã)).

Moreover, we have

(−1)n+1(Tn+1δn+1Ψ)σ(ã) = δn+1Ψ(ωn(σ, ã)) + (−1)n+1δn+1Ψ(Ωn−1(∂0σ, ∂nã) t ãn)

= δn+1Ψ(ωn(σ, ã)) + (−1)n+1Ψ(Ωn−1(∂0σ, ∂nã))ãn
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and

(−1)n(δnTnΨ)σ(ã) = (−1)n(TnΨ)∂0σ(∂nã)ãn = (−1)nΨ(Ωn−1(∂0σ, ∂nã))ãn.

This implies

(−1)n+1(Tn+1δn+1Ψ)σ(ã) + (−1)n(δnTnΨ)σ(ã) = δn+1Ψ(ωn(σ, ã)).

So the equation (4.13) is equivalent to the equation

(F0GΨ)σ(ã)−Ψσ(ã) =

n∑
i=0

(−1)i(Tn+1δiΨ)σ(ã) +

n−1∑
i=0

(−1)i(δiTnΨ)σ(ã).

This equation holds true due to Lemma 4.7 right below. �

Lemma 4.7. Let σ = (u1, . . . , un) be a simplex and ã = (ã1, . . . , ãn) as in (4.2),
then the following equation holds true

n∑
i=0

(−1)i∂iΩn(ã1, . . . , ãn) +

n−1∑
i=0

(−1)iΩn−1(∂i(ã1, . . . , ãn)) = ∆n(ã).(4.14)

Proof. We prove this lemma by induction on n. The equation (4.14) is equivalent
to
n−1∑
i=0

(−1)iΩn−1(∂iã) =∆n(ã)−
n∑
i=0

(−1)i+n+1∂iωn(ã)−
n∑
i=0

(−1)i∂i(Ωn−1(ã1, . . . , ãn−1) t ãn).

Assume that the equation (4.14) holds true for n. We prove it holds true for n+ 1.
Assume ã = (ã1, . . . , ãn+1). Let

B =

n+1∑
i=0

(−1)i∂iΩn+1(ã1, . . . , ãn+1), and C =

n∑
i=0

(−1)iΩn(∂i(ã1, . . . , ãn+1)).

We need to prove

B + C = ∆(ã1, . . . , ãn+1).(4.15)

By definition, we have

B =

n+1∑
i=0

(−1)i+n+2∂iωn+1(ã1, . . . , ãn+1) +

n+1∑
i=0

(−1)i∂i(Ωn(ã1, . . . , ãn) t ãn+1)

=

n+1∑
i=0

(−1)i+n+2∂iωn+1(ã1, . . . , ãn+1) +B1 +B2

where

B1 =
n+1∑
i=0

(−1)i+n+1∂i(ωn(ã1, . . . , ãn) t ãn+1)

B2 =

n+1∑
i=0

(−1)i∂i(Ωn−1(ã1, . . . , ãn−1) t ãn t ãn+1).

We also have

C =

n∑
i=0

(−1)i+n+1ωn(∂i(ã1, . . . , ãn+1)) +

n−1∑
i=0

Ωn−1(∂i(ã1, . . . , ãn)) t ãn+1

+ (−1)nΩn−1(ã1, . . . , ãn−1) t ãn,n+1.

By induction hypothesis, we have

n−1∑
i=0

(−1)iΩn−1(∂i(ã1, . . . , ãn)) t ãn+1
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= ∆n(ã1, . . . , ãn) t ãn+1 −
n∑
i=0

(−1)i+n+1∂iωn(ã1, . . . , ãn) t ãn+1

−
n∑
i=0

(−1)i∂i(Ωn−1(ã1, . . . , ãn−1) t ãn) t ãn+1

= ∆n(ã1, . . . , ãn) t ãn+1 − (B1 − ∂n+1(ωn(ã1, . . . , ãn) t ãn+1))

− (B2 − (−1)n+1Ωn−1(ã1, . . . , ãn−1) t ãn,n+1).

This implies

B + C =

n+1∑
i=0

(−1)i+n+2∂iωn+1(ã1, . . . , ãn+1) +

n∑
i=0

(−1)i+n+1ωn(∂i(ã1, . . . , ãn+1))

+ ∂n+1(ωn(ã1, . . . , ãn) t ãn+1) + ∆n(ã1, . . . , ãn) t ãn+1.

Thus, by Lemma (4.8), we obtain the equation (4.15). �

Lemma 4.8. Let σ = (u1, . . . , un+1) be a simplex and ã = (ã1, . . . , ãn+1) as in
(4.2), then we have

n+1∑
i=0

(−1)i+n+2∂iωn+1(ã1, . . . , ãn+1) +

n∑
i=0

(−1)i+n+1ωn(∂i(ã1, . . . , ãn+1))

+ ∂n+1(ωn(ã1, . . . , ãn) t ãn+1) + ∆n(ã1, . . . , ãn) t ãn+1 −∆(ã1, . . . , ãn+1) = 0.

Proof. We denote

B =

n+1∑
i=0

(−1)i+n+2∂iωn+1(ã1, . . . , ãn+1); C =

n∑
i=0

(−1)i+n+1ωn(∂i(ã1, . . . , ãn+1));

D = ∂n+1(ωn(ã1, . . . , ãn) t ãn+1); E = ∆n(ã1, . . . , ãn) t ãn+1 −∆(ã1, . . . , ãn+1).

We prove that each of the terms appearing in the expansion of B is cancelled out
against a unique term in C,D, or E, and vice-versa. The cancellation is as follows:

B //

��   

Coo

D

OO

E

`` .

We write

Bp =

n+1∑
i=0

(−1)i+n+2∂iωn+1,p(ã)

=

n+1∑
i=0

∑
m̄∈Part(n+1−p)
ξ∈Seq(Rpσ,Rpã,m̄)

∑
m̄′∈Part(p),β∈Sn+1−p,p

ζ∈Seqq(Lpσ,m̄
′)

(−1)i+n+2(−1)m̄+ξ+ζ+β∂iBp(ã, ξ, ζ, β)

where Bp(ã, ξ, ζ, β) = ξ ∗
β
ζ t ān+2−p,...,n+1, and write

Cp =

n∑
i=0

(−1)i+n+1ωn,p(∂iã)

=

n∑
i=0

∑
m̄∈Part(n−p)

ξ∈Seq(Rp∂n+1−iσ,Rp∂iã,m̄)

∑
m̄′∈Part(p),β∈Sn−p,p
ζ∈Seqq(Lp∂n+1−iσ,m̄

′)

(−1)i+n+1(−1)m̄+ξ+ζ+βCp(∂iã, ξ, ζ, β)

where Cp(∂iã, ξ, ζ, β) = ξ ∗
β
ζ t (∂iã)n+1−p,...,n.
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We also write

E0 = −∆(ã1, . . . , ãn+1) =
∑

m̄∈Part(n+1)
ξ∈Seq(σ,m̄)

(−1)m̄+ξ+1ξ;

E1 = ∆(ã1, . . . , ãn) t ãn+1 =
∑

m̄∈Part(n)
ξ∈Seq(∂0σ,m̄)

(−1)m̄+ξξ t ãn+1.

and

Dp = ∂n+1ωn,p(ã1, . . . , ãn) t ãn+1

=
∑

m̄∈Part(n−p)
ξ∈Seq(Rp∂0σ,Rp∂n+1ã,m̄)

∑
m̄′∈Part(p),β∈Sn−p,p
ζ∈Seqq(Lp∂0σ,m̄

′)

(−1)m̄+ξ+ζ+β∂n+1Dp((ã1, . . . , ãn), ξ, ζ, β)

where Dp(∂n+1ã, ξ, ζ, β) = ξ ∗
β
ζ t ān+1−p,...,n t ãn+1.

Assume that m̄ = (ml, . . . ,m1) ∈ Part(n + 1 − p) and m̄′ = (m′k, . . . ,m
′
1) ∈

Part(p). Let ξ ∈ Seq(Rpσ, m̄), ζ ∈ Seqq(Lpσ, m̄
′) and β ∈ Sn+1−p,p. We denote

Bp(ã, ξ, ζ, β) = (b1, . . . , bn+2),

and denote (b1, . . . , bn+2) the formal sequence of Bp(ã, ξ, ζ, β).
Step 1. Consider the case i = 0, then ∂0(Bp(ã, ξ, ζ, β)) = (b2, . . . , bn+2). There

are only the following three cases:

b1 =

 ã1;
rmt1 where rmt = (rmt1 , . . . , rmtmt−1) ∈ P(σ[mt]);

1(Lpσ)[m′1]∗ .

(i) Assume b1 = ã1. Then m1 = 1, and we choose m̃ = (ml, . . . ,m2) ∈
Part(n − p). There exists a unique element ξ′ ∈ Seq(Rp(∂n+1σ), m̃) such
that b1 t ξ′ = ξ. There exists a unique β′ ∈ Sn−p,p such that

(b1 t ξ′) ∗
β′
ζ = ξ ∗

β
ζ.

We get

(−1)n+2(−1)m̄+ξ+ζ+β∂0Bp(ã, ξ, ζ, β)+(−1)n+1(−1)m̃+ξ′+ζ+β′Cp(∂0ã, ξ
′, ζ, β′) = 0.

(ii) Assume b1 = rmt1 for some t, where rmt = (rmt1 , . . . , rmtmt−1) ∈ P(σ[mt]).

Then rmt1 = c(Rpσ)[mt],j for some j. Set ∆ = j, ∆′ = mt − j. Using the
analogous argument as in Case 2 of Step 2 in the proof of Proposition 4.2,
considering the partition

m̃ = (ml, . . . ,mt+1,∆,∆
′,mt−1, . . . ,m1) ∈ Part(n+ 1− p)

we find unique ξ′ ∈ Seq(Rpσ, m̃) and 1 ≤ j0 ≤ n+ 1 such that

(−1)n+2(−1)m̄+ξ+ζ+β∂0Bp(ã, ξ, ζ, β)+(−1)j0+n+2(−1)m̃+ξ′+ζ+β∂j0Bp(ã, ξ, ζ, β) = 0.

(iii) Assume b1 = 1(Lpσ)[m′1]∗ .
Ifm′1 < p, choose m̃′ = (m′k, . . . ,m

′
2) ∈ Part(p−m′1) and m̃ = (m′1,ml, . . . ,m1) ∈

Part(n + 1 − p + m′1). There exists unique ξ′ ∈ Seq(Rp−m′1σ, m̃), ζ ′ ∈
Seqq(Lp−m′1σ, m̃

′) and β′ ∈ Sn+1−p+m′1,p−m′1 such that

ξ′ ∗
β′
ζ ′tān+2−p+m′1,...,n+1 = (b2, . . . , bn+1)tān+2−p,...,n+1−p+m′1tān+2−p+m′1,...,n+1.

So we get ∂n+1(ξ′ ∗
β′
ζ ′tān+2−p+m′1,...,n+1) = (b2, . . . , bn+2). Then, we obtain

(−1)n+2(−1)m̄+ξ+ζ+β∂0Bp(ã, ξ, ζ, β)−(−1)m̃+ξ′+ζ′+β′∂n+1Bp−m′1(ã, ξ′, ζ ′, β′) = 0.
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If m′1 = p, then m̄′ = (m′1) ∈ Part(p) and thus simp(bi) = (U0
1−→ U0) for

i = 2, . . . , (n+ 1). Let m̃ = (m′1,ml, . . . ,m1) ∈ Part(n+ 1). It is seen that
ξ′ = (b2, . . . , bn+1) ∈ Seq(σ, m̃) and

(−1)n+2(−1)m̄+ξ+ζ+β∂0Bp(ã, ξ, ζ, β) = (−1)m̃+ξ′ξ′.

Hence the term (−1)n+2(−1)m̄+ξ+ζ+β∂0Bp(ã, ξ, ζ, β) is killed by the term

(−1)1+m̃+ξ′ξ′ in E0. In this way, when p runs through {1, . . . , n + 1},
every term in E0 is eliminated except the term −(ã1, . . . , ãn+1) which is
eliminated by the term (ã1, . . . , ãn) t ãn+1 in E1.

Step 2. Consider the case 1 ≤ i ≤ n. We write ξ = (ξ1, . . . , ξn+1−p) and
ζ = (ζ1, . . . , ζp). We have

∂iBp(ã, ξ, ζ, β) = (b1, . . . , bi−1, µ(bi, bi+1), bi+2, . . . , bn+2).

There are only the following three cases: {bi, bi+1} = {ξj , ζj′} for some j, j′;
{bi, bi+1} ⊆ {ξ1, . . . , ξn+1−p};
{bi, bi+1} ⊆ {ζ1, . . . , ζp}.

• Assume {bi, bi+1} = {ξj , ζj′}. Choose β′ = (i, i+ 1) ◦ β then

(−1)i+n+2(−1)m̄+ξ+ζ+β∂iBp(ã, ξ, ζ, β)+(−1)i+n+2(−1)m̄+ξ+ζ+β′∂iBp(ã, ξ, ζ, β
′) = 0.

• Assume {bi, bi+1} ⊆ {ξ1, . . . , ξn+1−p}. We repeat the arguments of Step 2
in the Proposition 4.2.
• Assume {bi, bi+1} ⊆ {ζ1, . . . , ζp}. We repeat the arguments of Step 3 in the

Proposition 4.5.

Step 3. Consider the case i = n+ 1. We have

∂n+1Bp(ã, ξ, ζ, β) = ∂n+1((b1, . . . , bn+1) t ān+2−p,...,n+1)

= (b1, . . . , bn, µ(bn+1, ān+2−p,...,n+1)).

There are only the following three cases for bn+1:

bn+1 =

 ã[ml];

r
m′t
m′t−1 where rm

′
t = (r

m′t
1 , . . . , r

m′t
m′t−1) ∈ P(Lpσ[m′t]);

1(Lpσ)[m′k]∗ where m′k = 1 and m̄′ = (1,m′k−1, . . . ,m
′
1) ∈ Part(p).

• Assume bn+1 = ã[ml]. We apply the argument in (iii) of Step 1, then every
term of this form is killed.
• Assume bn+1 = r

m′t
m′t−1. We assume that r

m′t
m′t−1 = εLpσ[m′t],j for some j.

Then

µ(r
m′t
1 , ān+2−p,...,n+1) = (∂j ã)n+2−p,...,n+1.

In C we consider terms Cp(∂j ã, ξ
′, ζ ′, β′). There exists unique (ξ′, ζ ′, β′)

such that

−(−1)m̄+ξ+ζ+β∂n+1Bp(ã, ξ, ζ, β) + (−1)n+1+j(−1)m̃+ξ′+ζ′+β′Cp(∂j ã, ξ
′, ζ ′, β′) = 0

Combining with Step 2 and (i) in Step 1, we see that every term in C is
killed.

• Assume that bn+1 = 1(Lpσ)[m′k]∗ where m̄′ = (1,m′k−1, . . . ,m
′
1) ∈ Part(p).

Thus we have bn+1 = 1u∗1 and simp(bn+1) = (U0
u1−→ U1).

If p = 1, then we have m̄′ = (1), ζ = 1Lpσ[1]∗ = bn+1, β = 1 and

simp(bi) = (U1
1−→ U1) for i ≤ n. So ∂n+1B1(ã, ξ, ζ, β) = ξ t ãn+1.

We have (−1)m̄+ξξ t ãn+1 is a term in E1 and

−(−1)m̄+ξ+ζ+β∂n+1B1(ã, ξ, ζ, β) + (−1)m̄+ξξ t ãn+1 = 0.
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So we see that every term in E1 is killed.
If p > 1, recall that m̄ = (ml, . . . ,m1). We show that the term

−(−1)m̄+ξ+ζ+β∂n+1Bp(ã, ξ, ζ, β)

is killed by a term in D. Thus in the expression of Dp, we choose m̃′ =
(m′k−1, . . . ,m

′
1) ∈ Part(p − 1), m̃ = m̄ ∈ Part(n + 1 − p), ξ′ = ξ and

ζ ′ = (ζ1, . . . , ζp−1). There exists a unique β′ ∈ Sn+1−p,p−1 such that

−(−1)m̄+ξ+ζ+β∂n+1Bp(ã, ξ, ζ, β) + (−1)m̃+ξ′+ζ′+β′Dp−1(∂n+1ã, ξ
′, ζ ′, β′) = 0.

When p varies, we see that every term in D is killed.

�

Proposition 4.9. Let φ be a normalized reduced cochain in C̄′nGS(A,M) then we
have

GF(φ) = φ.

Proof. The computations are straightforward. �
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