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ABSTRACT. The aim of this work is to construct a complex which through
its higher structure directly controlls deformations of general prestacks, build-
ing on the work of Gerstenhaber and Schack for presheaves of algebras. In
defining a Gerstenhaber-Schack complex C¢,q(.A) for an arbitrary prestack .A,
we have to introduce a differential with an infinite sequence of components
instead of just two as in the presheaf case. If A denotes the Grothendieck con-
struction of A, which is a U-graded category, we explicitly construct inverse
quasi-isomorphisms F and G between C¢g(A) and the Hochschild complex

Cy(A), as well as a concrete homotopy T : FG — 1, which had not been
obtained even in the presheaf case. As a consequence, by applying the Homo-
topy Transfer Theorem, one can transfer the dg Lie structure present on the
Hochschild complex in order to obtain an Leo-structure on Cgg(A), which
controlls the higher deformation theory of the prestack .A. This answers the
open problem about the higher structure on the Gerstenhaber-Schack complex
at once in the general prestack case.

1. INTRODUCTION

Throughout the introduction, let &k be a field. In [8], [9], [10] Gerstenhaber and
Schack define the Hochschild cohomology of a presheaf A of k-algebras over a poset
U as an Ext of bimodules HH"(A) = Ext’y_ 4(A, A), in analogy with the case of
k-algebras. They construct a complex Cgg(A) which computes this cohomology,
obtained as the totalization of a double complex with horizontal Hochschild differ-
ential and vertical simplicial differential. From .4, they construct a single k-algebra
Al such that

(1.1) HH™(A) = HH"(A!)

for the standard Hochschild cohomology of A! on the right hand side. Further, the
authors construct two explicit cochain maps

(1.2) 7:Clg(A) — C*(Al)  and 7 :C*(Al) — Clg(A)

relating their complex Cg.¢(A) to the Hochschild complex C*®(A!), which they prove
to be inverse quasi-isomorphisms. They present two essentially different approaches
to (1.1), (1.2) and the relationship between the two:

(A1) In a first approach [8], [9], (1.1) follows from their (difficult) Special Co-
homology Comparison Theorem (SCCT) which compares more general bi-
module Ext groups. Both sides of (1.1) are particular cases of such Ext
groups, and a universal delta functor argument shows that the isomorphism
(1.1) is actually induced by the map 7 in (1.2), whence the latter is a quasi-
isomorphism.

(A2) In asecond approach [10], in case U is a finite poset, the authors focus on the
compositions 77 and 77. They prove directly that 77 = 1, and a comparison
of lifts of resolutions implies that 77 and the identity are homotopic. Thus,
in this case the isomorphism (1.1) follows without invoking the SCCT.
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Although deformation theory for presheaves of algebras was thoroughly studied
by Gerstenhaber and Schack, the following problems remained:

(P1) Unlike in the algebra case, first order deformations of A as a presheaf are
classified by the second cohomology group HH?Z(A) of the sub-complex
of C&g(A) containing simple cochains. In general, as we have HHZ2(A) #
HH?(A), this raises the question as to the precise role of the entire Gersten-
haber-Schack complex in deformation theory.

(P2) It is a fundamental principle of deformation theory in characteristic 0, due
to Deligne, that every deformation problem is governed by a dg Lie alge-
bra or, by extension, an L..-algebra. So it is natural to ask what higher
structure is present on the Gerstenhaber-Schack complex.

Concerning (P2), when the poset U is finite, Gerstenhaber and Schack’s argu-
ment in (A2) proves the existence of a homotopy 77 — 1, yet it is not construc-
tive. Thus the Homotopy Transfer Theorem (HTT) implies the existence of an
Lo-structure on Cg,q(A) transfered from the dg Lie algebra structure on C(A!),
yet it does not provide the tools to make this structure concrete. More recently,
using operadic methods Y. Frégier, M. Markl and D. Yau constructed an explicit
Lo-structure on the Gerstenhaber-Schack complex of a morphism of algebras [7],
which corresponds to the special case of a presheaf over a single arrow. However, the
general problem (P2) has remained open both as regards existence and construction
of the higher structure. One of the main results in our paper is the construction
of a concrete homotopy map (Theorem 4.13) in the general prestack case which
resolves this open problem.

Concerning (P1), in our recent joint work with L. Liu [3], the second cohomology
of C24(A) is shown to classify deformations of A as a twisted presheaf, as is seen
from direct inspection of the complex Cgg(A).

Another way to understand the occurence of twists is by viewing a presheaf of
algebras as a prestack, that is a pseudofunctor taking values in k-linear categories
(algebras are considered as one object categories). If A is a prestack over a small
category U, then A has an associated U-graded category A, obtained through a
k-linear version of the Grothendieck construction from [1]. If A is a presheaf over
a poset, then A and A! are closely related. In [12] it was shown based upon the
construction of A that the appropriate U-graded Hochschild complex CJ, (./Nl) of A
satisfies

(1.3) H"Cy(A) = Ext’y_ (A, A)

and controls deformations of A as a U-graded category (Defy(A)) and, equivalently,
deformations of A as a prestack (Defp,c(A)). Further, in [14], Lowen and Van den
Bergh prove a Cohomology Comparison Theorem (CCT) for prestacks A, If we
define HH"(A) = Exty_4(A, A) and HHjj(A) = Ext’;_;(A,A), it follows in
particular from the CCT that

(1.4) HH™(A) = HH](A),

that is, the analogue of (1.1) holds.

All of the above suggests that it is most natural to work at once in the context of
arbitrary prestacks A. In particular, it should be possible to define a Gerstenhaber-
Schack complex Cgq(.A) which is directly seen to control prestack deformations of
A, and such that we can define a new version of the inverse quasi-isomorphisms
(1.2) above in this setup. Realizing this is the main goal of this paper. In summary,
we have the following picture of the references in which various relations are studied
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for a prestack A, where [] stands for the present paper:

[*]

Fxt o a(A, A) O (A) Defro(A)
[11] [*] § [10]
EXtA_A(./i, A) ~~~~C}, (/i) Defy, (A)

[10] [10]

The content of the paper is as follows. After recalling basic terminology on
prestacks and map-graded categories in §2, the complex Cg¢(A) for a prestack A
on a small category U is defined in §3. As a graded module, according to (3.12),
Cs(A) is the totalization of a double object which is a modification of the one in
the presheaf case. Precisely, we put

CP(A) = [ [ Homy (A(Up)(Ag-1, Ag) ® - - - @ A(Uy) (Ao, A1), A(Up) (0% Ao, 07 Ay)).
Here, the product is taken over all p-simplices

(1.5) o= (U U

- e U Uy

in the nerve of U and all (¢+1)-tuples (Ao, ..., A,) of objects in A(U,). Further, if
we denote, for u : V. — U in U, the associated restriction functor by v* : A(U) —
A(V), then we put o* = (u,...ugu1)* and o = ujuj... uy.

The occurrence of the twists significantly complicates the definition of the dif-
ferential. Precisely, we have to introduce an infinite family of components (d;);>0
with ) )

dj : CBI(A) — CLLY T (4),
and for each n, we define
(1.6) d=dy+dy+ - +dy: Cig (A) — Clg(A).

We have dy = dgoen for the horizontal Hochschild differential dyoen and dy =
(—1)™dsimp for the vertical simplicial differential dgimp. The additional components
d; of d, given in (3.18), are necessary to make the differential square to zero, as is
shown in Theorem 3.9. Note that the algebraic structure of the prestack .4 naturally
corresponds to an element

(m, f,c) € C™*(A) & CH!(A) & C*9(A) = CEs(A)

with m encoding compositions, f encoding restrictions, and ¢ encoding twists. Our
definition of the components d; ensures the following desired result (Theorem 3.20),
of which the proof makes use of normalized reduced cochains as defined in §3.4:

Theorem 1.1. The second cohomology group H*Cgas(A) classifies first order de-
formations of A as a prestack.

The definition of the higher components d; is combinatorial in nature. It makes
essential use of the following ingredients:

e So called paths of natural transformations between of and o*, each path
building up a (p — 1)-simplex in the nerve of Fun(A(U,), A(Up)) by using
one twist isomorphism in each step (the precise definition is given in the
beginning of §3.3).

e The natural action of shuffle permutations on nerves of categories, as dis-
cussed in §3.1.

In §4 we go on to define cochain maps

(1.7) F:Clg(A) — C(A) and G :Ch(A) — Clg(A)

between Cg,q(A) and the U-graded Hochschild complex Cy,(.A) from [12].
Our main theorem is the following (see Proposition 4.9 and Theorem 4.6):
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Theorem 1.2. The maps F and G are inverse quasi-isomorphisms. More precisely

(1) GF(¢) = & for any normalized reduced cochain ¢;
(2) there is an explicit homotopy T : FG ~ 1.

In combination with (1.4) and (1.3), we thus obtain
Corollary 1.3. H"Cgs(A) = Ext’_ 4(A, A).

Note that, in contrast with [9], in our setup we do not give a direct proof of
Corollary 1.3, whence the approach (A1) is not available to us.

Although the existence of the maps F and G is inspired by the existence of the
maps in (1.1), due to our more complicated differential on Cgg(.A), the maps in
(1.7) are actually new and the development of the appropriate combinatorial tools
in order to prove Theorem 1.2 constitutes the technical heart of the paper.

Our construction of the homotopy T : FG ~ 1 in part (2) is new even in the
presheaf case and has the following important consequence. By the Homotopy
Transfer Theorem [11, Theorem 10.3.9], using T we can transfer the dg Lie alge-
bra structure present on Cfj(A) (see [12]) in order to obtain an Le-structure on
Cs(A). This Lo -structure determines the higher deformation theory of A as a
prestack, which thus becomes equivalent to the higher deformation theory of the
U-graded category A described in [12]. A more detailed elaboration of this Loo-
structure, as well as a comparison with the L., deformation complex described in
the literature in an operadic context [7], [5], [15] is work in progress [4].

In future work, we intend to extend the techniques and constructions in this
paper in order to shed new light on the difficulies arising in Shresta and Yetter’s
deformation theories of monoidal categories and pasting diagrams [16] [17] and
Elgueta’s deformation theory of monoidal bicategories [6]. In particular, in [16],
after introducing the components dy, d; of a desired differential on the Yetter com-
plex of monoidal categories, Shrestha describes the components ds, ds for cochains
of low degrees, and conjectures that there is an infinite family of components con-
stituting a differential on this complex. By applying shuffle products of morphisms
and natural transformations as described in Section 3.1, we succeeded in describing
the differentials ds, d3 on cochains of arbitrary higher degrees, and we found the
formula of the differential dy4. Details will appear in [2].

Acknowledgement. The second author is very grateful to Michel Van den Bergh
for many interesting discussions, and in particular for his proposal of map-graded
Hochschild cohomology which was originally made in the context of a local-to-
global spectral sequence [13]. Both authors are grateful to Jim Stasheff for valuable
comments on an earlier version of the paper, and thank both Jim Stasheff and
an anonymous referee for suggesting an illuminating interpretation of our paths,
currently explained after Example 3.5.

2. PRESTACKS AND MAP-GRADED CATEGORIES

Let k£ be a commutative ground ring. Except for certain Ext interpretations of
cohomologies, notably the ones occuring in (4.1), all our results hold true in this
generality.

In this section, we recall the notions of prestacks and map-graded categories,
thus fixing terminology and notations. As described explicitly in [12], prestacks
and map-graded categories constitute two different incarnations of mathematical
data that are equivalent in a suitable sense. A prestack is a pseudofunctor taking
values in k-linear categories. We use the same terminology as in [14], [3].

Let U be a small category.
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Definition 2.1. A prestack A = (A, m, f,c) on U consists of the following data:

e for every object U € U, a k-linear category (A(U), mY, 1Y) where mY is the
composition of morphisms in A(U) and 1Y encodes the identity morphisms
on A(U);

e for every morphism u: V. — U in U, a k-linear functor f* = u*: A(U) —
A(V). For u = 1y, we require that f1v = 1p.

e for every couple of morphisms v: W — V, u: V — U in U, a natural
isomorphism

Vvt — (uv)*.
For v = 1 or v = 1, we require that ¢*¥ = 1. Moreover the natural
isomorphisms have to satisfy the following coherence condition for every
triplew: T —W,v: W —V,u:V —U:

(2.1) cu,vw(cv,w ° u*) — cuv,w(w* o cu,v).

Remark 2.2. A presheaf of k-linear categories is considered as a prestack in which
cv=1foreveryv: W —V, u: V—U.

A prestack being a pseudofunctor, we obviously define a morphism of prestacks
to be a pseudonatural transformation.

Definition 2.3. Consider prestacks (A, m, f,¢) and (A, m/, f',¢') on U. A mor-
phism of prestacks (g,7): A — A’ consists of the following data:

e for each U € U, a functor gV : A(U) — A'(U);
o for each u: V.— U and A € A(U), an element

Th e A(V)(u"gY(4), 9" (u*A))

These data further satisfy the following conditions: for any v: W — V, u: V —
U and a € A(U)(A4, B),

(1) m"(g"u*(a), ™) = m" (1", u"*g"(a));

(2) ,n,L/VV(Tuv7 clu,v) — m/W(gW(cu,v)’Tv7U/*(Tu));

(3) mY(rtv, 1) = g% (1u).

Let Mod(k) be the category of k-modules and let Mod(k) be the constant prestack

on U with value Mod(k). We are mainly interested in modules and bimodules.

Definition 2.4. Let A be a prestack on . An A-module is a morphism of prestacks
M : A°? — Mod(k). More precisely, an A-module consists of the following data:
e for every U € U, an A(U)-module MY : A(U)°P — Mod(k);
e for every u : V — U, a morphism of A(U)-modules M* : MY —s MV u*;
such that the following coherence condition holds for every v : V — U, v :
W — V: the morphism M"“? equals the canonical composition

MW ()
_—

M M u*
MY = MVu* =2 MWy*u* MY (uv)* .

Definition 2.5. Let A, B be prestacks on 4. An A-B-bimodule is a module over
A°P ® B. More concretely, an A-B-bimodule M consists of abelian groups
MY(B, A)

for U € Ob(U), A € Ob(A(U)),B € Ob(B(U)), together with restriction mor-
phisms

M“(B,A): MY(B,A) — MV (u*B,u*A)
for w : V. — U in U satisfying the natural coherence condition obtained from
Definition 2.4.
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Next we turn to map-graded categories in the sense of [12], where “map” stands
for the maps in the underlying small category U.

Definition 2.6. A U-graded k-category a = (a, p,1d) consists of the following data:
e for every object U € U , we have a set of objects a(U);
e for every morphism v : V — U in U and objects A € a(V), B € a(U), we
have a k-module a, (A, B) of morphisms.

These data are further equipped with compositions and identity morphisms in the
following sense. The composition p on a consists of operations

Nu’U’A’B’C tay(B,C) ® ay(A, B) — auu(4,C)

satisfying the associativity condition

w,uv,A,C,D( u,v,A,B,C ®1 wu,v,A,B,D(l w,u,B,C,D).

m 0 0, (C,D)) = I a,(A,B) & [

The identity id on a consists of elements id” € a; (A, A) satistying the condition
p b AAB (1 ) ®1dY) =10, a8 = pt PP A" @ 1o, (4,5))-

The most natural type of modules to consider over a map-graded category turn
out to be a kind of bimodules:

Definition 2.7. Let a be a U-graded k-category. An a-bimodule M consists of
k-modules

M, (A, B)
foru:V — U, A €a(V),B € a(U) and compositions
p:a,(C,D)® M,(B,C)® ay(A, B) — My (A, D)
satisfying the following associativity and identity conditions:
(1) plp@1lep) =p(lep®1);
(2) p(id®1®id) = 1.

Let (A, m, f,c) be prestack on Y. The associated U-graded category (K,,u,id)
is defined as a k-linear version of the Grothendieck construction from [1], more
precisely:

e for each object U € U, we put A(U) = Ob(A(U));
e for every morphism u : V — U and objects A € A(V), B € A(U), we put

Ay (A, B) = A(U)(A,u*B).
The composition operations
p1: Ay(B,C) @ Ay(A, B) — Ayuy(A, C)
are defined by setting u(b,a) = m(c“"C,v*b,a) for every a € JZU(A,B),b €
A, (B,C) and the identities are given by id* = 1V4 € A(U)(A, 4) = A, (A, A)
for A e A(U).

There is a natural functor

(=) : Bimod(A) — Bimod(A) : M — M
defined by
M, (A, B) := MV (A,u*B)
for every u: V — U, A € A(V), B € A(U). In [14], inspired by Gerstenhaber and

Schack’s Cohomology Comparison Theorem [9], this functor is shown to induce a
fully faithful functor on the level of the derived categories. In particular:
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Theorem 2.8. [14, Theorem 1.1] For any M, N € Bimod(A), we have
Exty_4(M,N) 2= Ext"_ (M, N)

for all n.

3. THE GERSTENHABER-SCHACK COMPLEX FOR PRESTACKS

If A is a presheaf of k-categories, then in analogy with the case of presheaves
of k-algebras treated in [9, §21] and [8], one defines the Gerstenhaber-Schack (GS)
complex (Cgg(A, M),dgs) for an A-bimodule M as the total complex of a double
complex with das = dHoch + dsimp for the horizontal Hochschild differential dgroch
and the vertical simplicial differential dgimp. The cohomology of this complex is
called Gerstenhaber-Schack (GS) cohomology and denoted

HHgs(A, M) = H"Cgg (A, M).

We denote Cgg(A) = Cg(A, A) and HH(A) = H"Cgg(A).

In analogy with [3, §2] one sees that the second cohomology group HHZq(A)
naturally classifies the first order deformations of A as a prestack. Even though
many prestacks of interest are in fact presheaves - for instance (restricted) structure
sheaves of schemes as treated in [3] - the fact that prestacks turn up naturally as
deformations suggests that it is really prestacks of which one should understand
Gerstenhaber-Schack cohomology and deformations in the first place.

Our main aim in this section is to define a Gerstenhaber-Schack (GS) complex
Cs(A, M) for an arbitrary prestack A. Contrary to what one may at first expect,
the change from the presheaf case to the prestack case is a major one. Indeed, if A
is non-trivially twisted (¢*¥ # 1), with the natural definitions of dpocn and dgimp
we now in general have dzimp # 0 so we do not obtain a double complex. Instead,
we construct a more complicated differential on the total double object Cg,q(A, M)
by adding more components to the formula. After introducing the double object
Cls(A, M) in §3.2 as a slight modification of the object associated to a presheaf,
in §3.3 we introduce the infinite family of components (d;);>¢ in (3.18), with

dj : CBI(A, M) — CBITIT (A, M),
and we define the total differential
(3.1) d=dy+di+ - +d,: Chg' (A, M) — CEg(A, M).

We have dy = duocn and di = (—1)"dsimp. The new differential d is shown to square
to zero in Theorem 3.9. The definition of the higher components d; is combina-
torial in nature. It makes essential use of certain paths of natural transformations
introduced in §3.3 and of the natural action of shuffle permutations on nerves of
categories, as discussed in §3.1.

In order to properly relate the GS cohomology to deformation theory, we have
to turn to the complex of normalized reduced cochains, which is introduced in §3.4
as a subcomplex of the GS complex and shown to be quasi-isomorphic to the latter
in Propositions 3.13, 3.17. Finally, in §3.5 generalizing [3, Thm 2.21], in Theorem
3.20 we prove that H HZq classifies first order deformations of A as a prestack.

3.1. Shuffle products. In this section, we discuss the natural action of shuffle per-
mutations on nerves of categories. Let S,, be the symmetric group of permutations
of {1,...,n}. For n; > 0 with Zle n; = n, a permutation S € S, is an (n;);-
shuffle if the following holds: for 1 <4 < k and Z;;ll nj+l1<z<y< Z;zl n;
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we have f(z) < B(y). The permutation is a conditioned (n;);-shuffle if moreover
we have

-1 l
BO ni+1)<BO ni+1)
=1 =1

forall 1 <1 < k—1. Let S, € S, be the subset of all (n;);-shuffles and
S(m)i C S(n,), the subset of conditioned (n;);-shuffles. For any set X, S,, obviously
has an action of X™. For § € S,, and (z1,...,2,) € X", we define

ﬁ(o)(l‘l, R ,xn) = (Jtﬂ(l), e ,xﬁ(n)).
When working with (n;);-shuffles, we will often consider different sets X; for 1 < i <

k and elements 2 = (2,...2% ) € (X;)™ for 1 < i < k. Thus, for a permutation

B, we obtain the formal shuffle by 8 of (z°);:

(3.2) BO((zh, .. 2t )i) = B0, ay, .ok, k) e (T X0
For instance, for k =2, 8 € Sppny € = (1,...2m) € XM and y = (y1,...yn) € Y7,
we denote the formal shuffle by g of (x,y) by:

mZ(O) Y= ,6(0)(l',y) = ﬂ(O)(l‘la ey Tmy Y1y - e ayn)

In the remainder of this section, we discuss the action of shuffle permutations on
nerves of categories. Consider categories A; for 1 < ¢ < k. We now refine action
(3.2) to obtain a shuffle action

k k
(3.3) Stnoy * [N (A) — N (T T AW
i=1 i=1
Consider 8 € S(,,), and

at = () —= A} Ay = AL ) € No (A,
Note that it may occur that n; = 0 and a* = A} € No(A;) = Ob(A;). For the
associated elements a’ = (a},aj,...,a, _;,al ) € Mor(A;)™, we obtain the formal

shuffle b = B ((a’);) = (by,...,b,). We now inductively associate to b an element

k
b=p((a"):) € Nu(TT A
i=1
with source Hle Al and target Hle A; Then b is called the shuffle product by
B of (a');, and b is called the formal sequence of b. ' .
Since 8 is a shuffle permutation, we have b; = a] : Aflj_l — AJ  for some

J

1<j <k Weput Bn:HleAfw Bn_1=A} x--- XAZ'Lrl X .- x A¥ and
by = <1A;1,...,a{,...,1A§;k) :B,.1 — B,.
Now suppose
b b b b i
A 1—1
bl = ( Bn—l HL Bn—l+1 o - Bn—l : Bn ) € M(H -Az)
i=1
has been defined with B,,_; = Hle B, and}BfL_l = Al _,, where o; = max{t | af €
{by,...,b;}}. It then follows that b, = a;,, 1 for some 1 < j < k and we put
anlfl = A}ufoq X 0o X Agzjfozjfl X oo X Aﬁk*ak and
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(34) bl+1 = (1A}11 s ,aij+1, ceey ].Agk) :B,_1-1 — B,_;.
We thus arrive at the element
k
b=B((a");) = b = (b1,....bn) € Nu(J [ 4)
i=1

which concludes the definition of (3.3).

Remark 3.1. Suppose A is a category and ¢ : Hle A; — A is a functor. We
naturally obtain an induced map N, ([T, A;) — N, (A) which upon composition
with (3.3) gives rise to a ¢-shuffle action

k
(3.5) Stnoye X [T Vs (Ai) — Na(A) = (B, (a');) — B ((a),).
i=1
Obviously, taking ¢ = 11—11_;1 A,» we recover the shuffle action (3.3). If ¢ is under-
stood from the context, it will be omitted from the notation.

Ezample 3.2. Let a and b be small categories and put A; = Fun(a,b), A2 = a,
A =0 and

¢ : Fun(a,b) xa — b: (F, A) — F(A).
Consider a = (ay : A; — Ag) € Ni(a) and

e=(Ty—>Ty —>T, ) € Na(Fun(a,b)).

The three elements in Sy ; correspond to the following three formal shuffles of
e and a: (a,e€1,€2),(€1,a,€e2) and (e1,€2,a). The three corresponding shuffles in
N5 (Fun(a, b) x a) according to (3.3) are given by:

e2X1a, e1X1lag 1, Xa
T()XAOHTl XAOHTQXAOHTQXAl;

62><1AO 1T1><a 61><1A1
T()XAOHTl XAOHT1XA1HT2XA1;

1T0><a 62><1A1 61><1A1
T()XAOHT()XAlHTlXAlHTgXAl .

The three corresponding ¢-shuffles in N3(b) according to (3.7) are given by:
ea(A €1 (A a
To(Ao) 2% 7y(40) 29 1y (49) 2L 1y(4,) -

e2(A e1(Aq
To(Ao) g TI(AO) M Tl(Al) L>) Tg(Al) ;

To(a) e2(A1) e1(A1)
TO(AO) I TO(A1) — Tl(A1) — T2(A1) .

Remark 3.3. Consider small categories by, ..., by and put A; = Fun(bg_;, br—;11).
Applying the natural composition of functors to each element ;1 in (3.4), we
obtain

/ _ gl J k ./ 1
(36) 1+1 *Aal O”'Oaa]‘Jrlo.”OAak . Bn—l—l Bn—l
/ _ 71 J k :
where B, _, | = A, , o---0 Anr%f1 o---0Ar . . Concatenating these

morphisms, we obtain the simplex
b, = (b, ..., b,) € Nu(Fun(bo, by)).
Ezxample 3.4. Consider

€= ( To i>T1 GHITQ ) ENg(Fun(bo, []1))
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and
€ = ( Sy —== S ) € Ni(Fun(by, by)).

The shuffle products of £ and e with respect to composition of functors correspond-
ing to the formal sequences (€e1,€2), (€1,&, €2), (€1, €2, &) are

SoTo % SoTh Socl SoTs b S1T5 ;
SoTo Soc SoTh h S1Th e S115 ;
SoTo —2 8Ty 2% g1y 220 5175,

Now suppose 8 € S(m)i is a conditioned shuffle. In this case it is possible to
adapt the inductive procedure we just described in order to arrive at the datum,
for (a'); as before, of a sequence

(3.7) (é1,...,6) € HNW(,H A;i)

where the numbers ; are determined by S and satisfy Zf:l v =n. Weput ¢ =1
and suppress it in the notations (the adaptation to arbitrary ¢ is easily made and
will be used in the paper). Since f is a conditioned shuffle, there are uniquely
determined numbers ; such that b, = al, b1 = a?, ..., QE§=17i+1 =a; ", ...,

bzkflryv_"_l = a’f and v, =n — Zi.:ll v;. For 1 <1 < k we now have that for every
i=1 K

Zi;i Y+1<p< 22:1 7; there exists 1 < j <[ and ¢ with b, = a{. Moreover,
for fixed j, there exists

such that the morphisms a? occuring in a’!

coincide precisely with the elements
occurripg as b, for Zi;i Yi+1<p § 22:1 v;. Here we make the conventipn that
if no a’ occurs as such b,, we put altl € No(A;) equal to the domain of a1 or
equal to a’!~1 in case a’!'~1 € Ny(A;). We have 22:1 m! = ~,. As a consequence,

L=
there is a unique 5; € S(ml,)- such that
573
o ,
61( )((ijl)j) - (bp)zi;}%'ﬁ-lﬁpﬁziﬂ v
In (3.7) we now put & = Bi((a?!);) € ./\/ln(l_[é:1 Aj).

3.2. The Gerstenhaber-Schack complex. Let U be a small category, A a prestack
on U and M a bimodule over A. Let M (U) denote the simplicial nerve of the small
category U. Our standard notation for a p-simplex o € N'(U), is

(3.8) o= (U U

w Up—1 Tu, Up ).

U2 P Up_1

If confusion can arise, we write U; = U7 and u; = uj instead. We also write
o = (u1,...,up) for short.
For o € N,(U), we obtain a functor

0" = (up...ugu1)"* : A(Up) — A(Up)
and a functor

of =iy .. ouk s AU,) — A(Uy).

p
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For each 1 < k < p — 1, denote by L(c) and Ry(c) the following simplices
Lk(O'):(Uo U1 Uk,1 Uk )

u2 Tt Up—1 Uk
Ryi(0) = ( Uk Up—1 Up)

U1

U e
Uk+1 k+2 Uk 42 Up—1 Up

We consider the following natural isomorphisms:

(3.9) TR = WU et (Lio)*(Rpo)* — o™
(3.10) eF =l U C R o ot —» uy e (Upprug)” g,

For A € Ob(A(U,)), we write c?*4 = ¢k (A) and k4 = 7k (A).
For the category A(U), U € U, we use the following standard notation for a
g-simplex a € N(A(U)),:

(3.11) a=(Ayg—2= A 2o A,
We also write a = (as,...,aq) for short.
Let

C7 (A, M) = Homy (A(U,)(Ag—1, Ag) ® - -+ ® A(U,) (Ao, A1), MY (6% Ag, 0" Ay)).
and put

coiA M) = [ criam),
ACA(U,)a+1
CPY(A, M) = H CoA,M).
cEN,(U)
Then we obtain the double object
(3.12) Gs(A M) = J[ c»(A,M)
ptg=n

The usual Hochschild differential defines vertical maps

dioch 1 CP47H(A) — CPI(A).
Precisely, given (¢7), € CP9(A, M), for each p-simplex o and for (ai,...,aq) €
AUp)(Ag=1,44) ® - - @ A(Up)(Ag, A1), then we have

q

(dHoch¢)a<a17 s >aq) = Z(_l)l( iioch‘é)a(alv s )aq)

i=0
where
0*(a1)¢ (az, ..., aq) ifi=0
(ditoen®)? (a1, ... aq) =% ¢7 (a1, ..., aiai41,...,ay) if1<i<g—1
¢ (ag—1,-..,a1)0%(ay) ifi=q.

We also write ¢7 (diy, ., (ags - - -, a1)) instead of (diy,.,(0))7 (ag, - - -, a1).
As a part of the simplicial structure of N (i), we have maps
i : Np1(U) — Np(U) : 0 — Oio
Uy

fori =0,1,...,p+ 1. For o = (U ™ rraak e Up quUpH),we

have

8p+10' = ( Uo U1

_ e Uy
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800’ = ( U1 e U2 s T, Up Upt1 Up+1 )
and
0,0 = ( Uop ™ Ui_1 Wig1tis Ui+1 Upt1 Up+1 )
fori=1,...,p. Each 9; gives rise to a map
déimp : CP*lyq (A7 M) — CP,(I(A’ M)

given by

CU,LAqM“l(;SaO"(ah...,aq) if i=0
(i (8)° (@1, 1g) = { 697 (an, .., a)evsoo if 1<i<p

LA (uzay, . ugag) i i =p.

Hence we obtain the horizontal maps
P

yimp = »_(—1) iy : CP1(A, M) — CPI(A, M),

simp
=0

We define the maps
dGS = dHOCh + (_1)ndsimp : Cn_l(A7 M) — CH(A, M)

Now if ¢®* =1forallu:V — U,v: W — V|, then A is a presheaf of k-linear
categories. It is easy to check that d%och = dgimp = dHochdsimp — dsimpdHoch = 0,
so d4g = 0. In analogy with [9], if k is a field one shows that (C*(A, M), dgs)
computes Ext groups of bimodules:

HHGg(A, M) =H"(C*(A,M),dags) = Ext’y_ 4(A, M).

Moreover, by analogous computations as in [3, §2.21], it is seen that the second
cohomology group H HZq(A) naturally controls the first order deformations of the
presheaf A as a prestack.

3.3. The new differential. When A is a prestack with non-trivial twists ¢*?,
then for dgg defined as in the previous section, we have dg # 0 because dZ,,,, # 0.
To fix this problem we add new components to dgg to obtain the new differential
(3.13) d:d0+d1+---+dn:ngl(A,M)—>CE’;S(.A,M)
where dy = duocn, d1 = (—1)"dsimp as above. The cohomology with respect to the
new differential is denoted

HHgg(A, M) = H"Cg(A, M).

Let A be a prestack. Consider a simplex o = (ug,...,u,) € N,(U) with n > 2.
For every v : V. — U, v : W — V we have the natural isomorphism c¢*" :
v*u* — (uv)*. From these isomorphisms we inductively construct a set

(3.14) P(ui, ..., u,) CN,y_1(Fun(A(U,), A(Up)))
of simplices r with source ujuj---u) and target (upup—1---u1)*. Our standard
notation for a simplex r of natural transformations is

Tn—1 Tn—2 T

T = ( TO T1 T2

Tn—l )

which is abbreviated to r = (rq,...,7,—1). Elements of P(uy,...,u,) are called
paths from ujud - u’ to (uptp—q---up)*. Further, we define a sign map

sign : P(ug, ..., un) — {1, =1} : r — sign(r).

We start with n = 2. Consider ¢““2 : ufuy — (ugu1)*. We put P(ui,ug) :=
{(c*¥2)} and we set sign(c#t2) = —1.
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For n > 2, given o = (uy,...,u,), for each i = 1,...,n — 1, consider the natural
isomorphism €”" = uj - - c*»%i+1 ... ¥ as defined in (3.10) and put
sign(e;) = (—1)"
For each path r = (r1,...,7—2) € P(u1,...,Uj—1, Uit+1U;, Uit2, .. ., Uy), the sim-
plex (ri,...,r—2,€) is called a path from wiui---u’ to (upup—1---u1)* and
P(u1,...,uy,) is defined to be the set of all such paths. Thus,
Plu,...,un) ={(r1,...,7n—2,""): 1<i<n—1andrePo0)}

For a path r = (r1,...,7,—1), we define
n—1
(=1)" =sign(r) = H sign(r;).
i=1

For a permutation 3 € S,,, we similarly denote (—1)% = sign(3) for the standard
sign of permutations and denote (—1)"*# = (—1)"(-1)".
There are (n — 1)! paths in P(uq,...,uy), for each path r = (ry,ra...,rp_1)
denote the isomorphism ||r|| = rirg - rp_1.
Ezample 3.5. Given o = (uq, uz, us), there are two paths from ujulu} to (usuguy)*:
P = {7" — (Cuzuhua)cuhurzu;)) s = (cuhusufz’u’{cuzyua)}
and sign(r) = 1, sign(s) = —1.

The set of paths P(uq,...,u,) can be visualised in the following way. Let [2] =
{0,1} be the poset with 0 < 1, and consider the (n — 1)-dimensional ordered cube
[2]"~1. Every element a = (a;); € [2]"~! corresponds bijectively to a partition of

U, ..., U, into a formal expression with parantheses
(3.15) a(tg, .oy tn) = (U, e oy Wig ) Wiy g1y e s Wig) e oo (UipqlyeeesUn)
for a;, = a;, = --- = a;, = 1 and all other a; equal to zero. Hence, we can define a
function F : [2]"~1 — Fun(A(U,.), A(Uy)) given by
Fla) = (w1, iy ) (Wig g1y o5 Uip) oo (Wi 1y - -5 Un) "

for a(uq,...,u,) as in (3.15).

Ezample 3.6. For o0 = (u1, us,u3), the vertices (0,0),(1,0),(0,1) and (1,1) of the
cube [2]? correspond to the functors (uzuguy)*, (u1)*(usuz)*, (ugur)*uj and ujuiu}
respectively.

For every two adjacent vertices in the cube [2]"~! there is a unique natural

transformation between the corresponding functors under F' that is induced from
the twists ¢*-¥. Hence, we can visualise our paths as corresponding to composition
series, or, equivalently, non-degenerate (n — 1)-simplices in the poset [2]"~1.

The following lemma, which can alternatively be deduced from the universal
property of cartesian liftings, shows that the function F' on objects can actually be
extended to a functor.

Lemma 3.7. Assume given ann-simplex o = (u,...,uy,). Letr = (r1,ra ..., rp_1)
and s = (81,82...,8n—1) be two arbitrary paths in P(u1,...,u,). Then ||r|| = ||s||.

Proof. By the coherence condition (2.1) our lemma is true for n = 3. For n > 3, we
assume that r,_; = €”* and s,_; = €% for some i < j. If i = j then r,,_; = s,_1,
by induction hypothesis we have ||r|| = ||s||. If ¢ < j, it is sufficient to prove
that ||r|| = ||t|| for some path t = (t1,...,t,_1) in which t, ; = €71, Thus,
let h = (h1,...,hp—2) be a path in P(uq,...,ujp1;,...,u,) such that h,_o =

-710(“i+1“i’“’?+2)uf+3 -+~ uy, by the induction hypothesis

u’{...ul

hy--hp—o=r1-rp_2.
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ok * Ui, Uiy 2UsG * *
Let tn72 — ul .. .ui—lc( i,Ui42 z+1)ui+3 BT

*, again by (2.1) we have the commu-
tative diagram

tn—1
* %,k * * * * %,k
UL U U Uy U uf - ud (UigaUipr) Ul g u

n
irnl ltn2
* * hnff.’

* *, ok * * *, % *
ul e wl g (Ui ug) uf gy —— Ut ug g (iU ) U g Uy,

*
n

Choose t = (h1,...,hp—3,tn—2,tn_1), then ||t|]| = ||(h, rn-1)|| = ||7]]. O
Given a simplex o = (uq,...,uy,), let 7 = (r1,...,7,—1) be a path in P(c). For
each 1 < k < n — 2, assume that rp11 = €"? for some simplex v = (V1,. .., Vkt2)

and 1 <i < k—+1. Then r; = %77 for some 1 < 7 < k. We put
Thp1 =€ and 7, = €% if § > g
Fhyq =€t and 7] = €%V if 4 < j.

Denote by flip(r, k) the path (ry,...,76—1,7%, 741, Tht2, -+, Tno1) in P(o). It
is easy to see that flip(flip(r, k), k) = r and

(3.16) sign(flip(r, k)) = —sign(r).
Due to Lemma 3.7, we have

(3.17) Telha1 = ThTh41-

In the next lemma, which is easy to show, the shuffle product of natural trans-
formations is taken with respect to the composition of functors as in Example (3.4).

Lemma 3.8. Assume given an n-simplex o = (uy,...,uy). Then,
(1) Consider two paths r = (r1,...,"n—k—1) € P(Ri(0)), s
P(Li(o)). For each p € Sp_k—1,-1, the simplex w =

path in P(o). Moreover

(-1)* = (=D)" (=17 (-1)"(-1)".
(2) Consider a path w = (wy,...,wn_1) in P(o) in which wy = c¢™*. There

exist unique paths v = (r1,...,"—k—1) € P(Ri(0)), s = (s1,...,8k-1) €
P(Li(0)) and B € Sp_j—1,-1 such that w = (c7* B(r,s)).

(515 .. 'ask—l) €

:(c"’k, B(r,s)) is a

Now we are able to define the components d;(j > 2) of the differential d from
(3.13) in formula (3.18) below with d; : C%Z(A, M) — CEE 9T (A, M).

Cp.a+1

doT
dy

Ccre " 5 Crtlg
da

Cpr+taet+1,0
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Consider ¢ € CEE(A, M). Let 0 = (u1,...,upt;) be a (p + j)-simplex as in
(3.8). Given Ay,..., A € Ob(A(Up4,)) where t = ¢+ 1 —j, let a = (a1,...,a)
where a; € A(U,)(Ai—i, Ai—it1) as in (3.11). We define

(3.18)  (d(6))7(ar,-rar) = 3. (=1 (=) (=)'l (B(a, 1))
A

where B(a,r) is the shuffle product by 8 of a = (a1,...,a;) and r = (rq,...,7;-1),
with respect to the evaluation of functors (see Remark 3.1 and Example 3.2).
Theorem 3.9. dod = 0.

Proof. For N > 2, for each cochain ¢ € C%g+N_2(A, M), we show the component of
d(d(¢)) which lies in CHENY(A, M) is zero. Given a simplex o = (uy, ..., upsn) €
Npin(U) and objects Ag, Ay, ..., Ay € A(Uptn). Let a = (a1,...,a,) where a; €
AUp+n)(Ag—i, Ag—it1) as in (3.11). We need to show that

N

(d(d6))7(a) = Y _(dn—i(di))" (a) = 0.
i=0

This equation is equivalent to

N-2
(3.19) (dHochdnd+dn_1d1d+drdy_16+ Y dn_idi$) (a) = —(dndrocnd) (a).

i=2
By definition we have

g+N-—1
—(dndaocn®)(a) = > > T(q,r,B,1)

i=0  reP(Rp(0)), BESe N1
where
T(a,r, B,i) = —(=1)"" (=1)" (= 1) P (djyo,8) " (B(a, 7).
We prove the equation (3.19) in the following steps:

(1) For each term T occurring in the expression of dyochdn @, there is a unique
term T'(a,r, 8,1) in —(dndpoeh) such that Ty = T'(a,r, 8, 1).

(2) For j =2,...,(IN —2), for each term T5 occurring in dy_;d;¢, there is a
unique term T'(a,r, 8, 7") in —(dyduocn@) such that Ty, = T(a,r, 5, 5’).

(3) After cancellation, for each term T3 in dy_1dy + didn_1, there is a unique
term T'(a,r, 8,1) in —(dndpoch) such that T3 = T'(a,r, 8,1).

(4) After the cancellation with the terms 77,75, 73 as in step 1,2,3, denote X
the remaining terms in —(dydygoch®), then we show that X = 0.

Step 1. We have

dHoch(de))o(a) = Z Z Tl (d{-loch (a‘)7 /Ba Taj)

=0 reP(Rp(o), BESq—1,N-1
where
Ti (Hroen (@), 7, 8,7) = (1) (=1)7H(=1)7 (=1) P Aa P07 (B(d]y o, (@), 7))
e Consider j =1,...,¢ — 1. For each path r € P(Ry(0), cach B € Sq_1,n_1, We
write the formal sequence ﬂ(o)(dﬁoch(a), r) = (B, Br, @011, Beg2 - - . BgrN—2)

for some k. There is a unique shuffle permutation 8’ € S, y_1 such that

0 —
5/( )(CL,T) = (ﬁl,...,ﬁk,aj,aj+17ﬁk+2,...,§q+N_2).

Straightforward computations show that T (d;, ., (@), 7, 8,7) = T(a,r, B’ k+1).
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e Consider j =0 or j = q. For j =0, we have
Ti(dhoen (@), B, 7,0) = (=) (=1)"(=1) 0" (a1) 7P a1 ¢Fr (B(as, - .., ag 7).
Upon writing the formal sequence 5 (ay, ..., a,;7) = (B,

unique ' € S, y_1 such that 'O (a,r) = (al,gl, ..

.. ,QN_H]_Q), there is a

.,@quN_z), and thus
T(a,r,p',0) = (dHoch( ), B,7,0).
For j = q, we have
Ty (dfy (@), B,7,0) = —(=1)"(=1)P P gL (B(ay, . . ., aq; r))oﬁ(aq).
Assume that 80 (ay,...,a,_1;7) = By
such that 8'©(a,r) = (B
T (d Hoch( a),B,r,q).

Step 2. We write

’§N+q72)’ there is a unique 8’ € Sy y_1

17~-~7§q+N72,aq), so we get that T(a,7,8,q + N) =

g = (ul,...,up,...,up+N_j,...,up+N).
Let A= (u1,...,Up, ..., UpyN—j) = Lprn_;(0). By definition, we have
(dj(dn-;9)) (a) = > > Tx(a,r,B,5,7)

reP(RpyN—j(0)) sEP(R(A,p))
BESq -1 YESq4i—1,N—j—1

where
To(a,r, Bys,7) = (=1) 71 (=1) o000 ot N =0 Aa BBy en =5 (@) AagEr () (7 (B (a, 7), 5)).
The shuffle product is associative, hence v(8(a,r),s) = B(a,¥(r,s)). Let ¢ =
c”PT1 by Lemma 3.8, we have w = (cg,(r, ) a path in P(R,(0)). There

is a pa
is a unique B’ € S, n—1 such that §'(a,w) = (co(A4y), B(a,v(r,s))). This implies
that T'(a,w, 5',0) = Ta(a,r, 5, s,7).

Step 3. By definition we have

P
(dv-1(d19))" (a) = > (B(a,r,8)+>_Cla,r, i) + D(a,r, §))
r€P(Rp41(0)), BESy, N-2 i=1
where
B(a, r, ﬂ) — (71)p+N71(71)'r+ﬁca,p+1,AqCLerl(U),l,(RP+1(U))*Aun1 (
e (5(a,1);
Cla,r,B,i) = (—1)PHN+I=L(_q)r+BoptlAg ¢3iLT’+1(U)(ﬁ(a, r))eLp+1(0),i,(Rp+1(0))”Ao;
D(a,r,) = (_1)N(_1)7‘+ﬂ Pt Aq (Lpt1(0)p,(Rpt1(0))" Aq

¢0p+1Lp+1(0)( +1(5(a7,a)))_
On the other hand, we have

(di(dy-10))7(a)= > Blarpf)+y. Y. Clar,Bi)

r€P(Rp41(000)) i=1 reP(Rp41(di0))

€8¢, N-2 €Sq,N—2

p+N—-1
+ Y Y Carsia+r Y Diarp)
i=p+1 reP(R,(0i0)) r€P(RpdptrNT)

BESy N-2 BESy N-2
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where
BlarB) = (-7 (1) et A (@orr A (g8 %) (5(a,r) ) ;
C'lar,Bri) = (~LPFVH () oedop g () (5(a, r))e Ao,
C"(ar Bi) = (SN P Aighe (i) (5 a, r))enin o,
D/<a’7a’ﬁ) = (-1 T8 7p+N 1, Aq :Opt+Nosp, A q¢L (8P+N”)(ﬁ(u;+N(a),r)).

By computation, we get

Z B'(a,r,B) + Z B(a,r,3) =0

r€P(Rp+1(900)), BESy,N-2 reP(Rpy1(0)), BESy N2
and
p p
Z Z C’(a,r,ﬁ,i)—i—z Z C'(a,r,B,i1) =0
1=1 r€P(Rp+1(0)), BESe, N2 1=1 r€P(Rp+1(9i0)), BESq N2

So we obtain

(dy-1(d19))7(a) + (di(dN-19))7(a) =

p+N-—1
Z (a,r,8) + Z Z C"(a,r B,i) + Z D'(a,r,B).
reP(Rpy1(0)) i=p+1 reP(R,(9:0)) rEP(Ry0ps N o)
BESy N-2 BESy N-2 BESy N—2

We complete step 3 by showing that every term at the right hand side of this
equation is matched with a unique term in —(dydugoch®)? (a). First, consider the
term D(a,r,3) for r = (r1,...,7n—2) € P(Rpt1(0)) and 8 € Sy n—2. Let ¢y =
cFr(@) 1 denote w7 = (u},q71,. .., ul 1 TN—2) then s = (co,u},,7) is a path in
P(R,0) and there is a unique 8’ € Sy y—1 such that 5'(a, s) = (co(Aq), u;418(a,7)).
This implies that D(a,r,8) = T(a,s, 5,0).

Consider the term C”(a,r, ,1) for r € P(R,0;0),5 € Sqn—2 and p+1 < i < p+
N—1. Then s = (r,e”?) is a path in P(R,0), there is a unique 3’ € S, y—1 such that
B'(a,s) = (B(a,r),e”»40). Thus, we find that C”(a,r, 3,i) = T(a,s,,q+ N —1).

Consider the term D’(a,r,() where r = (r1,...,rnv_2) € P(RpOptno) and
B € Syn-2. Let cg = c»oPtN=1" denote Tuy = (T s TN—2U ),
then s = (co, 7y, i) is a path in P(R,0). There is a unique 5’ € Sy x—1 such that
B'(a,s) = (co(Ay), B(uy, n(a),r)). Hence, we obtain that T'(a, s, 8, 0) = D'(a,r, B).

Step 4. For B € Syn—1, 7 € P(Ry0), we write 3 (a,r) = (ﬁl""’querl)'
For each k =1,...,(¢ + N — 2), denote by S;N_l the set of all (¢, N — 1)-shuffle
permutations 3 such that (ﬁk,ﬁkﬂ) # (a;,a;41), Vi=1,...,9— 1. After steps
1,2, 3, now it is seen that

N—2
—(dnduocn®)? (a) = (dHochdN + dn_1d19 + didn_10 + Z dy—id;i9)? (a) + X

i=2
where

X: Z Z T(q7r7ﬂ7k)'

k=1 re€P(Ry(0)), 5€S§,N*1
Recall that

T(a,r, B, k) = (=) (=)0 (dio,0) 7 (B(a, 7).
Let € SFy_y, r=(r1,...,7n-1) € P(Rp0). In the expression

6(0)(a,r) = (glw"aékvgk+1""’§q+N—1)
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if (gk,ﬁkH) = (a;,rj) or (ék,ﬁkﬂ) = (rj,a;) for some (i,7), then take g’ =
(k,k+1)0 B, then
T(a,r,B,k)+T(a,r, B3 k) =0.
Otherwise, (ﬁk,ﬁkH) = (r;,741) for some i. Then, by equations (3.17) and (3.16),
we get
T(a,r,B,k) + T(a,fip(r, k), 3,k) = 0.
Hence X = 0, this completes our proof. O

3.4. Normalized reduced cochains. In this section, in analogy with [3, §2.4], we
study the subcomplex Cgg(A, M) C C&g(A, M) of normalized reduced cochains.
Let 0 = (u1,...,up) be a p-simplex as in (3.8). The simplex o is said to be right
k-degenerate if u; = 1y, for some p—k+1 < i < p and o is said to be degenerate if it
is right k-degenerate for k = p. For A = (A1,...,4,) € A(U,) and a = (a1,...,aq)
as in (3.11), a is said to be normal if a; = 1 for some i.

Given a cochain ¢ = (¢7), € Cgg(A, M), ¢7 is said to be normalized if ¢ (a) = 0
as soon as a is normal, and ¢ is said to be normalized if ¢° is normalized for every
simplex . The normalized cochains form a subcomplex C&q (A, M) of C&g(A, M).
The cochain ¢ is said to be right k-reduced if ¢° = 0 for every right k-degenerate
simplex o and ¢ is said to be reduced if ¢° = 0 for every degenerate simplex o. The
normalized reduced cochains further form a subcomplex C3g(A, M) of C&g(A, M).

Inspired by [3, §2.4], [8, §7], we first prove that the inclusion C&g(A, M) <
C2s(A, M) is a quasi-isomorphism. It is more subtle to prove that C{g(A, M) —
CE;S(A, M) is also a quasi-isomorphism. Due to the higher components of our new
differential, the spectral sequence argument does not apply as in [3, §2.4]. As a
single filtration is not sufficient, we use a double filtration instead.

Remark 3.10. If A is a presheaf of k-linear categories, then the new differential d
on Cg(A, M) does not reduce to dgg from §3.2. However, on the quasi-isomorphic
subcomplex Cg(A, M) C C2q(A, M) of normalized reduced cochains, d and dgs
do coincide in this case.

Lemma 3.11. Consider a cochain complex (D*®, ) with a subcomplex (D'®,d) C
(D*,6). Assume that for all n, for every cochain f € D™ with 6(f) € D', there
exists h € D"~ such that f — 6(h) € D'™. Then the inclusion (D'®,8) < (D*,9)
18 a quasi-isomorphism.

Proof. The condition spelled out is readily seen to be equivalent to the quotient
complex D*®/D'® being acyclic. O

It is seen that for each simplex o, CZ§(A, M) is a cochain complex with the
differential dpoen. By similar computations as in [8, §7] we obtain

Lemma 3.12. Let f € CZ{(A, M) be a cochain. If duoen(f) is normalized, then
there exists h € Cg’g*l(/l, M) such that f — duocn(h) is normalized.

Equip C24(A, M) with a filtration
... CFPC"C FPIC"C ... C F'C" C F7IC" = C}s(A, M)
by setting
FIiC" = {¢ = (¢")s, € Cls(A, M) | ¢° is normalzied if |o| < j }.
Since d(F7CP) C FICPT! FIC® is a complex. There is a sequence of complexes
(3.20) i FIC® — FITIC® — ... FOC°.

Proposition 3.13. The following inclusions are quasi-isomorphisms:
(1) I: FIC® — Fi~1C*;
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(2) Ceg(A, M) — Cgg(A, M).

Proof. Tt suffices to prove that (1) is a quasi-isomorphism. By Lemma 3.11 it is
sufficient to prove that for every cochain ¢ € F/=1C", if d(¢) € F/C"T! then
there exists a cochain ¢ € F/=1C"~! such that ¢ — d(v)) € F/C". Writing ¢ =
(p.q)p+g=n, We assume that d(¢) € FIC""!. Let o be a j-simplex and let a =
(@1,...,ant1—;) be normal, then (d(¢))?(a) = 0. By definition, we have

J
(d)7 (a) = Y (di¢j—in—+i)" ().
i=0
Note that (d;@;j—in—j+i)°(a) =0 for i >0 as ¢ € FI~1C". Hence we get
(doch@jn—5)7 (a) = 0.

By Lemma 3.12, there exists h® € C°" 7~ such that B i — dHoch (h?) is nor-
malized. We define 7 = h° if |o| = j and ¢7 = 0 otherwise. Thus ¢ € Fi—tgn-l
and it is easy to see that ¢ — d(y)) € FIC™. O

Now equip C&g(A, M) with a filtration

. CF?PC"C FPIC"C... C F°C" = Clg(A, M)

by setting, for each k > 1,

F*C" = {¢ = (¢7)s € Clg(A, M) | ¢°(a) = 0 Va, if o is right k-degenerate}.
By straightforward computations, we obtain the following lemma.
Lemma 3.14. d(F*C") C FFCH1L.

By Lemma 3.14 we obtain a sequence of complexes
(3.21) oo F'RC® s FRTIC® .. FIOCS.
Next, for each k > 0, we equip F’*C with a further filtration
FAICr =gttt Cc e C G RPC C GIFRC C - C GOFRCT = FIRC
by setting
G'F'*C" = {¢p € F'*C"| ¢° = 0 for |o| >n — 1+ 1 and o is right (k + 1)-degenerate}.
By analogous computations as in Lemma 3.14, we get

d(G'F'*C") C G'F'*Cn L

Thus, for each k, we obtain a sequence of complexes
(3.22) oo GUFRC®  GUFRC® - FIRCS.
Lemma 3.15. Let ¢ be a right k-reduced cochain in CHI(A, M). If dsmp is a

right (k + 1)-reduced cochain in Cégl’q(A, M), then there exists a right k-reduced
cochain ¢ € Clg" (A, M) such that ¢ — dgimpt) is a right (k + 1)-reduced cochain.

Proposition 3.16. The following inclusions are quasi-isomorphism:
(1) GHIFkE® < GLEMCe,
(2) Elk—HC' N F/kpo;
(3) CEs(A, M) — Cgg(A, M).

Proof. For each n, the filtrations (3.21) and (3.22) are stationary, so we only need to
prove (1). By Lemma 3.11, it is sufficient to prove that for any cochain ¢ = (¢, ) €
G'F'*C™ which satisfies d¢ € GT1F’*C"*+! | there exists a cochain ) € G'F'*Cn—!
such that ¢ — dyp € G EF'FCn.
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Set p=n—1+1 and let o be (k+ 1)-right degenerate p-simplex. By definition,
we have ¢7 = 0. Assume that (d¢)” = 0. This implies (dsimpPp—1,n—p+1)7 = 0.
Apply Lemma 3.15, there exists h € F’*CP~27~P+1 guch that

(bp—1mps1—di(R)7 =0

for every (k + 1)-right degenerate (p — 1)-simplex o’.
We define ¢ = h? if |o| = p — 2 and 97 = 0 elsewhere. It is seen that ¢ €
G'F'*C" ! and ¢ — dp € G'T1F'*C" as desired. O

Combining Propositions 3.13 and 3.16, we now obtain the following isomor-
phisms.

Proposition 3.17. Let M be an A-bimodule. Then
H"C&s(A, M) = H"Cgg(A, M) = H"Cgg(A, M).

Remark 3.18. If A is a presheaf of k-linear categories, then the new differential
d does not reduce to the old d from §3.2. However, on the quasi-isomorphic sub-
complex C&g(A, M) C C&g(A, M) of normalized reduced cochains defined in §3.4,
they do coincide in this case.

3.5. First-order deformations of prestacks. In this section, generalizing [3,
Thm 2.21], we prove that HHgq classifies first order deformations of prestacks.

Definition 3.19. (see Def 3.24 in [12]) Let (A, m, f,c) be a prestack over U.
(1) A first order deformation of A is given by a prestack

(levmmf_aé) = (A[e],ermle,f + fleac+ 016)

of k[e]-categories where (my, f1,¢1) € C%2(A) & CH(A) & C2Y(A).

(2) For two deformations (A,m, f,é) and (A’,m’, f’,&) an equivalence of de-
formations is given by an isomorphism of the form (g,7) = (1+g1€, 1+ 71€)
where (g1,71) € C%(A) ® CHO(A).

Theorem 3.20. Let A= (A, m, f,c) be a prestack with GS complex (Cgg(A),d).
Then the second cohomology HHZg(A) classifies the first order deformations of A.
More precisely:

(1) For (my, f1,c1) in CO2(A)eCH (A)@C?0(A), we have that (Ale], m =
m+mue, f = f + fie,¢ = c+ ci€) is a first order deformation of A if
and only if (m1, f1,¢1) € CEg(A) and d(mq, f1,¢1) = 0.

(2) For (m1, f1,¢1) and (m4, f1,c}) in Z2Cgg(A), and (g1, —71) € COH(A)®
CLO0(A), we have that (g,7) = (14 gi€, 1 +71€) is an isomorphism be-
tween the corresponding deformed prestacks A and A’ if and only if
(91,—71) € Cdg(A) and d(g1,—71) = (ma, fi,c1) — (m, fi, ;). We
have an isomorphism of sets

(3.23) H?Chg(A) — Def(A).
Hence, the second cohomology group HH?(A)gs = H?>Cls(A) classi-
fies first order deformations of A up to equivalence.
Proof. (1) For each U € U, the composition mY of A(U) is associative if and
only if
(dHochml)U =0.

For each a € A(U)(A, B), the unity condition mY (1p,a) = a = mY(a,14)
holds if and only if m{ (15,a) = mY{(a,14) = 0.
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For each 1-simplex o = (V — U) and (a,b) € A(U)(A, B)x A(U)(B,C).

The condition m" (f(b), f(a)) = f(mY(b,a)) holds if and only if
(dHochfl)g(bv a) - (dsimpml)a(ba a) =0.

The condition f7(14) = 1704y is equivalent to f7(14) = 0. The condition
f'v =1y holds if and only if fllU =0.

For each 2-simplex 0 = (W — V — and a € A(U)(A, B), the
condition m(¢“V B, ¥ fu(a)) = m(f*(a),e>"4) holds if and only if

(dioenc1)” (@) = (dsimp f1)7 (a) + (d2m1)? (a) = 0.

The condition that ¢7 = 1 when o is degenerated holds if and only if ¢ = 0
if o is degenerated.

For each 3-simplex ¢ = (T -2 W - V % U), the compatibility of ¢
holds if and only if

—(dsimpe1)7 (A) + (d2f1)7 (A) + (dzm1)7(A) = 0.
Recall that
d(ma, f1,¢1) = (daochMm1, dHochf1 — dsimpMi, dHochC1 — dsimp f1 + dam,
— dsimpc1 + da f1 + doamy).

These facts yield that (my, f1, c1) gives rise to a deformation of the prestack
A if and only if it is a normalized reduced cocycle.
(2) For each U € U, we have that gV is a functor if and only if g¥ (1) = 0 and

duocn(g1) = My —mj.
For each 1-simplex 0 = (V —% U) and a € A(U)(A, B), the condition
m'V(gVu*(a), ") = m'V (7%, u*gY (a)) holds if and only if
(doeng1)” (a) + (dsimp(—71))7 (a) = f{ (a) = f17 (a).
The condition m'V (71, 1;;) = gV (1) holds if and only if 7V = 0.
For each 2-simplex o = (W -V —% U) and A € A(U), the condition
m'W (7w, V) = m'W (gW (), 7, 0™ (%)) holds if and only if
(dsimp(—71))7 (A) + (d2g1)7 (4) = ] (A) — ¢ (A).
Hence (g,7) = (1 + ¢g1€,1 4 7€) is an isomorphism between 4 and A’ if
and only if (g1, —71) is a normalized reduced cochain and
d(gla _Tl) == (dHochgly dHoch(_Tl) + dsimpgla dsimp(_Tl) + d291)

= (mu, f1,c1) — (mlpf{,ci)-

4. COMPARISION OF COMPLEXES

Let U be a small category, A a prestack on U, and M an A-bimodule. In this
section, we define cochain maps

F:Cls(A, M) — Cl(A M) and G :Cp(A M) — Cs(A, M)

between the GS complex Cgg(A, M) and the Hochschild complex C,(A, M) as
defined in [12]. We prove that F and G are inverse quasi-isomorphisms. In combi-
nation with [12, Prop. 3.13] and the Cohomology Comparison Theorem [14, Thm.
1.1] it follows that - as in the case of presheaves - if & is a field then the cohomology
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of the complex Cg¢(A, M) computes bimodule Ext groups. More precisely, in this
case we obtain

(4.1)  HH{g(A, M) = H"(Cy(A,M)) = Ext” (A, M) 2 Exty_ (A, M).

Due to the presence of the infinite family of components of the differential on
&s(A), the definition of F and G requires new combinatorial constructions. A
key element is the use of partitions combined with appropriate shuffle products.

Consider an n-simplex o = (uy,...,u,), objects A; € Ob(A(U;)), and morphisms
a=(ay,...,a,) where

ai S Aun+1,,y(An—ia An+1—i) = -A(Un—i)(An—ia U:H-l—iAn—&-l—z’)

as follows:
AO an Al An—1 as An_l ay An
Up—> U1 —> ... = Up1 /Uy
To each partition m = (mq,...,my) of n, by induction on k, we associate the set

Seq(o, a,m) of special sequences of morphisms obtained from shuffle products of a
and certain paths corresponding to m (4.3). The sets Seq(o,a,m) are crucial in
defining the cochain map F (4.4). Further, we define the sets Seqq(o, m) containing
conditioned shuffle product of certain paths corresponding to m (4.9), these sets are
essentially used in defining the cochain map G (4.10).

The proof that F and G are inverse quasi-isomorphisms has two parts. The fact
that GF(¢) = ¢ for any normalized reduced cochain ¢ can be proved by direct
computation (Proposition 4.9). The hard part is Theorem 4.6, which relies on the
construction of a homotopy T : FG — 1. By induction, we define the family
(Qn)n>1 in (4.12) which is essentially used in defining the homotopy 7. This
homotopy is new even in the presheaf case.

Theorem 4.6 has an important consequence, as by the Homotopy Transfer The-
orem [11, Theorem 10.3.9], we can transfer the dg Lie algebra structure present on
Cs,(A) (see [12]) in order to obtain an Le-structure on Cg(,A). This La-structure
determines the higher deformation theory of A as a prestack, which thus becomes
equivalent to the higher deformation theory of the U-graded category A described
n [12]. A more detailed elaboration of this L..-structure, as well as a comparison
with the L., deformation complex described in the literature in an operadic context
[7], [5], [15] will appear in [4].

4.1. The cochain map F. Following [12] the Hochschild complex (Cg,(A, M), )
of the U-graded category A is defined as

Cu (./Nl, M) = H = Homk( ®i1 Aun#»lfi (An—i, Ant1-4), Aum~~u1 (Ao, An)))

Ao, A1, A

where ¢ is the usual Hochschild differential.
In order to define the cochain map

F: Clg(A, M) — Cy(A, 1)

we need to introduce the following notations. For each n € N denote the set of all
partitions of n as

Part(n) = {m = (mg,...,m1)| mg+---+my=n, k>1,m; > 1}
We define (—1)™ = (=1)"7% for m = (mg,...,m1).
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Let o = (uq,...,uy) be an-simplex as in (3.8), denote ||o|| = up - - uy. Fori <k
denote by o[m;] the m;-simplex (U, +...4misi 415 - - - s Uy +-..4m,; ). For example, we
have o[my] = (u1,...,Uum,) and o[mr—1] = (Ump+1s -+, Umptmy_, ). Put ¢@™ =
[|r|| for an arbitrary r € P(||o[m]ll, ..., ||o[ma]l]).

Given A; € Ob(A(U;)), consider a = (ay, .. .,a,) where
i € A,y s (An—iy Apsi—i) = AUn—i) (An—is 1 Anti—i)

as follows:

(4.2) Ap Ay A1 A,
U() U1 Ul Us Un—1 Unfl Un Un
For each 1 = 1,...,n, denote
a; =y up ;0 € A(Uo)(uf - gy Ap—iyul - gy Ang1-i);

@i,..n =a; 00, € AUo)(Ag,ui - Uiy _;Ant1-i).
Given a partition m = (mg, ..., m1) € Part(n), denote
d[ml] = Qmi71+"'+m1+1 -0 Qmi+--~+m17

thus afm;] =a,0---0a

m, and almy] = @n_my41,...n-

For r = (r1,...,7n—1) € P(0), we obtain the following n-simplex in A(Up):
(r(An),a1,..n) = (r1(An), ..., rn—1(An), @1,...n)-
Now for each partition m = (my,...,m1) of n we define by induction a set
(4.3) Seq(o,m) = Seq(o, @, m) C N, (A(Up))(Ag, o[my]* -+ o[mi]*Ap)
along with a sign map
Seq(o,m) — {1, -1} : & — sign(¢) = (—1)°.

Simultaneously, for each sequence £ € Seq(o,m) we define the formal sequence & of
&, then denote the set of all these formal sequences

Seq(a,m) = {¢] € € Seq(o.m)}.
e For k =1, m = (m1) where my = n, we define
Sea(s,m) = {(r(Ay),d1,..) | 7 € P(2)}.
For each element & = (r(4,),a1,...n) € Seq(o,m) we define
sign(€) = (—1)".
The formal sequence of £ is defined to be
E=(ra1,..n)

e For k > 2, Ry, 0 is an (n — my)-simplex. Let £ = (&1,...,&n—m,) €
Seq(Rm, 0, (Mg—1,...,m1)) C Nop—im, (A(Un,)) (A, o[mi—1]* -+ - o[m1]* A4,).
Let { = (§1, e ,§n_mk) be the formal sequence of &.

(i) Case my = 1. Let ui€ = (uféy,...,ui&—m,), then we obtain the
concatenation
(ui&, an) € Nu(A(U0)) (Ao, o[mg]* - - - o[mq]* Ay).
We define

SeQ(Ua m) = {(u»{&dn) | g€ Seq(Rka', (mkfla ce- 7m1>)}-
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For each element ¢’ = (u{€, a,) € Seq(o,m), we define
sign(€’) = sign(¢).
Now we define the formal sequence of £’ to be
é/ = (§7 dn)'

(ii) Case my > 2. For s € P(Ly,,0) and 8 € Sp_m, m,—1, We obtain the
shuffle

§xs€ No—1 (AU0)) (o [ma] Ay, o [m ] - - o[ ]* An)
taken with respect to evaluation of functors. Concatenation with
Ant1-my,...n € AUo) (Ao, o[my]F A, ) yields an n-simplex
(5 ; S, dn-‘rl—nLk,.A.,n) S Nn(A(UO))(A07 U[mk]* e U[ml]*ATL)'

Put m’ = (mg—1,...,m1). We define

ﬁ € Sn—mk,mk—l}-

For each element &' = (¢ z Ty Gnt1—my,...n) € Seq(o, m) we define

sign(¢’) = (=1)"(=1) sign(¢).
Let B(£,7) be the formal shuffle product of £ and 7. The formal se-
quence of £ is defined to be

é/ = (6(0) (éa T)7 dn+lfmk,...,n)~

Ezample 4.1. Cousider a partition m = (mgs, mg,m1) of n where m; > 2. Each
element £ € Seq(o,m) is of the form

= ((rssabun) g ro.alons)  raafa])

where r1 € P(o[m4]), re € P(o[ma]), rs € P(o[ms]) and 81 € Spmyma—1,02 €

S’m1+m27m3—1'

Now we are able to define the maps F, : C&a (A, M) — C"(A, M). Let

o = (ui,...,u,) be an n-simplex and @ = (a1, ..., d,) as in (4.2). For each cochain
¢ = (¢p,q) € Clg(A, M), we define
(4.4)
5 m o,m, A, 1 Lpo ~
Fobpnp)@) = 37 Y. TR (©dnsi—p,.n

mePart(n—p) £€Seq(Rypo,m)

where FgmAn = @A (L,o)*cFromAn The map F is as follows

F(¢) = Z Fp(Pp,q)-

ptg=n
Proposition 4.2. The map F commutes with differentials. More precisely, let
p+qg=n—1, for p € CLL(A, M), then F(dp) = 6(F).
Proof. Let o = (uq,...,u,) be a n-simplex as in (3.8), and let a = (ai,...,a,) as
in (4.2). First, we prove that F(d¢) = 6(F¢) for the case ¢ € C%gil(A, M).
The equation

(45) Z(_l)i‘/_:dilochq5 + (_1)nf(d(s)imp - d;imp)d) + Zfdld) = Z 5n~7:¢
i=0 i=2 i=0
holds true if the following equations hold true:
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(1) =(=1)"Ffjoen® = (=1)" " Fdgip ¢ + 3570 Felid
(i) Fdfpp® = onFo;

(i) Fdfoend + 30y (1) Filjgoend = i (~1)'6:.F 0.
Step 1. We prove the equation (i). Note that Loo = (Up) is a 0-simplex, by
definition, we have

()" (Fdfond)” (@ = Y Y. T

mePart(n) E€Seq(o,m)
where T'(m, &) = (=1)"+H(=1)m+ecomAn (gn - $)Y0(€). On the right hand side,
we have
()" (Fdhp®)” (@) = Y ()M ()T A (00 (€)an

m’€Part(n—1)
¢’ eSeq(Rio,m")

where (d};,,¢)"7 (€)an = ¢V (ui€)an.

For each m/ = (m},...,m}) € Part(n — 1) and & € Seq(Ryo,m'), let m =
(1,m},...,m}) € Part(n). Then by definition, there exists a unique element & €
Seq(o,m) such that £ = (ui¢’,a,). Hence, we get

T(&,m) = (=1)" (=)™ FP A (dl,8) 77 (€ )an.

So all the terms occurring in (—1)"**(Fdk,, ¢)7(a) are canceled.
For 2 < i <n, we have

(]:dz(ﬁ)o(&) — Z (_l)m’—k{/ca,i,An(Lia)*cRia,m’,An (di¢)Ljo(§/)an+l—i7...,n
m’ €Part(n—i)
¢’ eSeq(Rio,m’)

where (d;¢)L° (&) = Z (=1)""H(=1)"TPpY (¢ x 7). For each m/ €
re€P(Lio), BESh—i,i—1 A

Part(n — i), r € P(L;o) and 8 € S,_;;—1, there exists a unique element ¢ €

Seq(o,m), where m = (n —i,m’) € Part(n), such that & = (¢’ E T nt1—k,..n). We

get T(§,m) = (_1)m/+f/ (_1>n—i<_1)r+ﬁco,i,An (Lia)*cRio’m/’A“ ¢U0 (E/Er)dnJrlfk,...,n-

So every term occurring in (Fd;¢)%(a) is cancelled.

Step 2. The equation (ii) is obvious. We prove the equation (iii). For ¢ =
1,...,(n—1), we have

(Fdigoan®)” (@) = > (1) A (g0, 0) 0 (€).
mePart(n),£€Seq(o,m)
Let m = (myg,...,my). Assume & = (&1,...,&,) € Seq(o,m), we have
( %{ochqﬁ)Uo = ¢U0 (£17 s 7£i£i+1a R ,gn)

Let £ = (§,,---,€,) € Seq(o,m) be the formal sequence of {. Then (§i,§i+l) can
only be one of the following cases

(rj,s1) or (si,rj) for r € P(o[my]), s € P(o[mit1]);
_ | (a[my],rj) or (rj,almy])  for r € P(o[mis1]);
240 2417 almy], almesq for some t;
Cobir) =17 @lmd. alme' )
(i, —1,almy)) for r € P(a[m]).
Case 1. Assume that (gi,gm) = (rj,s1) or (s;,7;), forsomer = (ry,...,7m,—1) €

P(o[my]) and s = (s1,...,8m,—1) € P(0[my41]). There exists a unique element
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¢’ € Seq(o,m) such that its formal sequence satisfies {’ = (§1’ ... ,§i71,§i+1,§i,§i+2, ...

Hence

(_1)m+§ o An ( och¢) (5) ( 1)m+§ a'mA,,( och(b)Uo(g ) = 0.

The same argument applies for the cases (¢, ) = (a[my],r;) or (rj,alm]).

t], a[myy1]) for some 1 < ¢t < k—1. Without loss

[m

§poee 7§_ r, 8, almy), &[mt+1}’§j+mt+mt+1+1’ c€)
for some paths r € P(o[m ]), € Plo [mt+1D Denote v = o[m] Uo[m41] the con-
catenation of the simplices o[m41] and o[my], then (¢?V™t+1 1 s) is a path in P ().
We have

(Fdion®)7 (@ = Y Yoo YT A (@, 8) ().

m’€Part(n) £’ €Seq(o,m’)

Case 2. Assume (¢, §l+1) (a
of generality we assume that £ = (

Consider the partition m’ = (my,...,myp1 + my,...,my), there exists a unique
element &’ € Seq(o,m’) such that its formal sequence satisfies

é’ — (cw,mt+1’§1, .. ,éj, r, 8, almy), d[mt+1]’§j+mt+mt+1+1’ € )

We obtain (—1)™ +¢ cmmAn (d 4 )V0(E7) 4 (—1)™HEemmAn (dly o 6)V0(€) =

Case 3. Assume that (§i7§i+1) = (rm,—1,a[my]) for some r = (r1,...,7m,—1) €

P(olm ]) We have 7,,, 1 = €’™]J for some 1 < j < m; —1. Let j' =n+1—
(mg+--+myr1+5)=myg+---+my+1—j. In the right hand side of equation
(iii), we have
(=

1) (8, F)7 (@) = (=1)7 (Fg) P77 (90

m’€Part(n—1) §'€Seq(9,,_ ;s o,m’)

Choose m’ = (myg,...,m¢—1,...,mq) € Part(n—1). There exists a unique element
& € Seq(0y—;r0,m') such that

(—1)7 (=) e An g () = (~ )T (g ,0) 7 (6)-
After considering all cases 1,2,3 as above, we find that all the terms occurring in
S N (Fdiyy o, )7 (@) and 327 (8, F )7 (@) are canceled. The remaining terms in
(FdYo,@)° (@) are only

> ST (e Al g,0) P ()

m/=(mj,...,mj5,1)EPart(n) £’ €Seq(o,m’)

which are in turn canceled by all the terms in (doF¢)?(@). We conclude that the
equation (iii) holds.

In the general case, we consider ¢ € CHa ' P(A, M) for p > 0. Applying the
same arguments as above, we can prove the following equations hold true:

(i) —(-1)" P Fdiih¢ = (-1 PFdGLL6 + S5 Fdidy

(ii") Fd: =0p_iFopfori=0,...,p;

51mp¢

(iii") Fdhoenod + Sr P (—1)Fdig 6 = Sl (—1)10:F¢.

> DD G VO e A A (9]

£,
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These equations yield

n p+1 n n
Y (D' Fdigoend + (1" FO_ disp)o + Y Fdid =Y _ 6,F0,
=0 i=0 i=2 =0
which means F(d¢) = §(F¢). O

4.2. The cochain map G. In this section we define the cochain map
G: Cy(A M) — Ctg(A, M).
Consider a p-simplex o = (uy,...,u,) € Np(U) as follows

(4.6) o= (U U

- T U = Up)

and a g-simplex a = (a1, ..., aq) € N(A(U,)), as follows

(4.7) a=(Ap e Ay A A,

Using conditioned shuffles, we will describe several ways to build a (p+¢)-simplex in
Np+q(A) from these data. Let m = (my, ..., m;) be a partition of p with m; > 1 for
all i and let 8 € Sy, be a conditioned m-shuffle as defined in §3.1. For 1 < i < k, let

rt=(rf,...,rh,. 1) € P(o[m;]) be a path and consider the associated m;-simplex
(48) 7= (1U[mi]*7ri7""r:711—1) EJ\/mq(Cz)
where

Ci =Fun(AWUp—my-mm;_y )y AlUp—my o imm;)-
First, consider the formal shuffle by 3 of the associated tuples (7); as described in
(3.2). Assume that

BO(F)) = s = (s1,.-..5,)-

Since (8 is a conditioned shuffle, there are uniquely determined numbers v; > 1,
1 S l S k such that S1 = 1U[m1]*a §71+1 = 10[1712]*7 ey §Zi‘:1 yit1 = 10[l+1]*7 ey
Sske1 g = Lopmy)» and v = p— Zf;ll ~;. Following the pattern explained at the

i=1
end of §3.1, we obtain the sequence

k 1
@.....é" e[V (¢
=1 =1

Using the composition of functors as in Remark 3.3, we obtain the following se-
quence which we define as the shuffle product of (7*); by 8

6((f2)2) = (élv R Ek) € HN’W (Dl)

=1

~

where

Dy = Fun(AUp), A(Up—my-c—m,)-
We denote by Seqq(o,m) the set of all such conditioned shuffle products. Thus
(4.9) Seqq(o,m) = {5((7’)2)| B e Sy, = (10[,,Li]*,ri), rie Ploms])}.

For each ¢ = 3((7);) € Seqq(c,m), we denote the formal sequence 5 ((7);) of ¢
by ¢, and denote the set of all such formal sequence as

Seqq(o. ) = {¢] ¢ € Seaa(o,m)}.
We define

sign(¢) = sign(B((7);))

I
—
\
—_
~—
IS
—
\
—_
~—
RS
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and equip this shuffle product with a certain underlying simplex denoted by simp(3((7*);)).
Writing

we define

llo[ma]ll

simp(¢}) = ( Up—my-mmy Up—my-—mi_y )i

. 1 .
sunp(cé) = (Up—mymmy — = Up—myimm, ), J > 1

The simplex simp(¢') is obtained by concatenation of (simp(c}));, the simplex

R
simp(B((7%);)) = simp(e!,...,c") is obtained by concatenation of the simplices

(simp(é"));.
Ezample 4.3. Consider the simplex ¢ = (Uy — U; — Uy — Us — Uy) and
w1l U us U1

the partition m = (mg, m1) = (2,2). There are three conditioned formal shuffles
(la[ml]* ’ cug,u4, 10[m2]" ; Culﬂm); (1U[m1]*a la[mz]* ) CU37U47 CUI1U2); (1U[m1]*a lo[mz]* ) chnuz ) Cusﬂu)'

The set Seqq(o, (m2, m1)) consists of following sequences:

UL U g% g% Lo mo]* Usus ug,ug Lo(mq]*
° 3Uy ° o[mg]* U3ty . c N almy] N
Uy — Uy — U, — U, — U,
1 U2U1 1 uqugz
cUt2 gyl uguy ) ct3v4 1, * (uqug)” 1, *
o sug 0 (waw) o [ma] o [m ] o
Uy — Uy — Uy — U, — Uy
1 1 U2U1 uqu3
ujuyct3 4 12 (ugug)”™ 1 « (uqug)™ 1 *
o 1U2 o (uaus) o o[ms3] o olmi] o
Uo — Uo — Uo — U, — U,
1 1 U2U1 uqugz

Next consider a shuffle permutation w € S, ;. We are now to define the shuffle
product of a and (¢!,...,¢") by w to be the element

(B0, b4, ... %) = ax (@,...,3) e Npyq(A).

The formal shuffle product w(© (a, 3 ((7);)) is called the formal sequence of
(b9,b1, ..., b%). First consider the formal shuffle

wO(a; (@,...,8) = (b1, .., bpiq)-
Since w is shuffle, there are unique numbers ty,...,tx 1 such that b, 1 = ¢},
beyttatl = Co ) onn bE’f:ltﬁl =cfand tpyy = p+q— Zle t;. Following the
procedure at the end of section 3.1, for 0 < [ < k consider
al = (a},... ,az-l) = {bEﬁzlti-H’ e ’bZiE N {an, .. aqh.
Obviously a® = (ay,...,as,). There is unique shuffle w; € Sj, ., such that the
formal shuffle product of a! and & by w is exactly

(bzé:1 tit1r ,bzl‘+1 t')'

=1 "7

Now we put W =a Forl=1... k, take the shuffle product w;(a', &) with respect
to evaluation of functors as in Example 3.2, and put

b= (B, ... B L) = wildhéh.

Now we associate the underlying simplex to (50, 51, ceey l;k) to show that

(60, 61, ey I;k) S Nerq(j)(O'ﬁAmAq).
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We have b} = o[my]*Ti_1(Aq,) for a certain Tj_; € D;_; and a certain A,, €
{Ao,...,Ay}. Thus it can be regarded as an element of N7 (A) as follows:

O—[ml]*ﬂ—lAO&l % E—lAal

U llo[md]]| U
p—my--—my — > Up—mq-mmy_q.

We consider lA)g = Ay (B, B’) as an element of N7(A) as follows:

p—my--—my

bL

B— > p
1
Up—m1~~~—ml — Up—m1~~—7m.

Put

. 5 llofma]ll

simp(b7) = ( Up—my-.—m, Up—myeomemiy ), 121,

. . 1 .

snnp(b;) =(Up—myommy — = Up—mymmy )y > 1

simp(B) = (U, ——=Up ), j>0.
By concatenation of all these 1-simplices we obtain the simplex Simp(lA)O, 51, ceey l;k)

of (b0, b, ... b%).
Ezample 4.4. Let 0 = (Uy — Uy —> Us) and a € A(Uz2)(Ag, A1). Let m = (2),
Ul (15)
then Seqq(c, (2)) consist only of the sequence (1(y,u,)+,c""?):
< . CE;Z N 1("%)* o )

Uy T> Uy — U,

U2U1

The following are shuffle products of a and (14,4, c*"2):

uy,ug,Ag L(uguy)* (Ao)
wiuzdy ¢ — (uguq)* Ao Gt Ay =5 A
Uo — Uo — U2 — U2
1 ugu1 1
u1,ug,Ag usuy)*a Luguq)* (A1)
UTU;AO ¢ — (u2u1)*AO ( 2412 (u2u1)*A1 = A1
Uo — Uo — U() — U2
1 1 U2U1
uiuia uy,ug, Al Liuguqy* (A1)
’U,TU;AO ﬁ UTU;Al ¢ — (uzul)*Al 21—> A1
U() — UO — U() — U,y
1 1 U2U71

For each cochain ¢ € C/T4(A, M), we now define

@10 Gwr@= > Y D0 a0,
mePart(n) BESqp
(€Seqq(o,m)

Proposition 4.5. The map G commutes with differentials. Precisely, for ¢ €
C; (A, M), we have dG(1) = GS(1).
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Proof. Assume that p+ ¢ =n. Let 0 = (u1,...,up) be a p-simplex as in (4.6) and
%: (a1,...,aq) asin (4.7). We prove (dG(¢))? (a) = (G§(¥))? (a).
ut
LHS = (doGv)’(a) + (=1)"(dsimpG¥)° (a) + (d2G¥) (a)) + - - + (dpG¥)7 (a);
RHS = (Gooy)?(a) — (G614)7(a) + -+ + (=1)"(Gdn¥)" (a).
We have
(=1)"(Goip)7 (a) = > (=) (=1 (=1)*(8:)

mePart(p), BESy p
¢€Seqq(a,m)

simp(ag()

(a;;C)-

Denote
simp(@g( )

T(i,m, 8,¢) = (=1)"(=1)° (=1)*(d:9) (a%0).
To prove that LHS = RHS, we show that each term T appearing in the expansion
of RHS is either matched with a unique term in the expansion of LHS or canceled
out with a term —7 in RHS. Simultaneously, this process also shows that every
term in LHS is cancelled out.
Take a partition m = (my,...,m1) € Part(p). Fix § € S, , and ¢ € Seqq(c, m)

By definition, there are a unique v € Sy, 7™ = (r{",...,r" 1) € P(a[mi]),
i=1,...,k; such that ( is the shuffle product
(4.11) ¢ = 'y((??mi)i:Lm,k)

where 7 = (15,1, 7™) as in (4.8).
We denote the shuffle product

a;(za:(al,...,an)

and its formal sequence
a=(a,...,q,).
Step 1. We consider the term T'(0,m, 3,¢) in RHS. We have

simp(a*() simp(Joa
(50711) " (G‘EC) ::Ll‘(alaq/} p(d )(0523"'70577.))

where p is the composition in the map-graded category A. There are only three
cases @ = a1, @y = 1y, Or @y = 15[, where m; > 2.
e Consider the case a; = a;. We have simp(ay) = (U, - Up). In the LHS,

we consider
’ ’ SiInI)(8 a*cl)
(Ao G)7 (@) = > 07 () @)y
m'ePart(p), B €Sq-1,p
¢’ €Seqq(o,m’)

(80& ,ék’ CI)

Choose m' = m and ¢’ = ¢ € Seqq(o,m’). Then there exists a unique
B' € Sq—1,p such that (as,...,aq) ; ¢ = (ag,...,ap). Hence

simp(doa * ¢')
6/

T(07 m, 67 g) = (_1)'8/+C/0*(a1)¢ (60a ;’ C/)

e Consider the case a; = 1,,. We have m; = 1, simp(a;) = (Up—1 — Up),
Up

simp(a;()

and (0gt))
have
(_1)n+p<d§impgw)a(a) — (_1)n+pca,p—1,Aq (g,t/])ap0'<u;k)a)

(a};() = Ca,p—l,Aqwsimp(aoa) (0427 . ,an). In the LHS, we
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simp(u;a;(')

— Z (_1)n+p+ﬁ/+clcg,p—1,Aqw (u;a 5*/ CI)

m'€Part(p—1), B'€Sq,p-1
¢’ €Seqq(o,m’)
Choose m/ = (my, ..., ma) € Part(p—1). There exist unique ¢’ € Seqq(d,o, m’)
and 3" € S, -1 such that uya % ¢’ = (ag,...,a,). This implies
simp(upa *,g’) .
a5 ).

e Consider the case a; = 1,[m,1-. We have simp(a1) = (Up—m, —
Up "Up—mq+1

T(0,m, 8,¢) = (=1)" 7 Cenrtday

Up), and (50w)31mp(azo(a?;§) = TP Aqysmp(@00) (). We have,

in RHS, the terms
(dm,G1)° (a) = Z (71)q(71)r(71)B/CU7P*m1,Aq (gw)Lpfmla(ﬂl(a’T))
re€P(almi]), B'€Sq,m; -1
- Z (—1)atr B +B T+
TEP(J[ml])a ﬁlesq,ml—lv B”esq+m,1—1,p—m1
m’ePart(p—m1), ¢'€Seqq(Lp_m,o,m’)
ity (0, ) ),

Let m' = (mg,...,ma) € Part(p —my). We consider the element ('
in Seqq(Lp—m,0,m’) of the form (" = 41 (72,...,7™*) where 71 € Sp.
Choose r = 7™, there exist unique v1 € Sms, 8 € Sgm,-1, B €
Sg+mi—1,p—m, S such that 5'(a,r) & ¢ = (ag,...,ay). Therefore

simp (6’ (a,r) % ¢')
B

T(0,m, 3,¢) = (—1)q+T+5/+5”+</c”’p_m1’Aqw (8 (a,r) ;?, o).

Step 2. We consider the term T'(n,m, 8,¢) in RHS. We have

n simp(axC) n sim «

(=1)"@ny) 7 (axC) = (=1)"u(® PO (ay, . o), an).
There are only three cases: a,, = an, @, = Ly or o, = 7" | where 7 =
(" _y) € P(ami]).

e Consider the case a,, = a4. Then simp(ay,) = (Up T) Up). In LHS, we
have
1 simp(dqa */CI)

R O D D e A T

m' €Part(p),8'€ Sq—1,p
¢'€Seqq(o,m’)

Choose m’' = m € Part(p) and ¢’ = ¢ € Seqq(o,m’). There exists a unique
B’ € Sq—1,p such that (ai,...,aq-1) f,k, ¢"=(a1,...,an—1). This implies

, . ., sim ((%a*(')
T(n,m, 8.) = (-0 P+ 9,0 1 (o ay).
e Consider the case a,, = (1y:). Then my = 1 and simp(a,,) = (Up - U1),

s0 ¢ = (1, 1uy) for some n € Seqq(doo, (My—1,...,m1)). We have
(6n0)

In LHS we have
(~D)"(dmpG¥)7(a) = (=1)"c7H A M (G)*7 (a)

simp

+ ( C .
simp(ax )(a 2 () = ca,l,Aquiwslmp(ana)(ah ey Q).
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_ Z (_1)”4‘5/4‘(/CU,l,AunL(/)Simp(a;'C )(a */ CI)
m'€Part(p—1),8 €5, p—1 b
¢'€Seqq(doo,m’)
Take m' = (mg_1,...,m1) € Part(p — 1) and ¢’ = 5, there exists a unique

6" € Sy p—1 such that (a1,...,a,) ;/ ¢" = (aq,...,an_1). By computation,

o simp(a * (")
we obtain T'(n,m, 3, () = (—1)"HF ¢ cobAd Mgy P (a % ¢h.
e Consider the case a,, =, ;. Then a,, = €799 (Ap) for some jo, simp(ay,) =
im *(C . .
(U0 —> Vo). Werhave (6,)""" "5 (@50) = @) .. an1)e? 5 (Ao)

In LHS we have

. . . ;. simp(a *,C') o
(_1)n+Jo(dg?mpgw)a(a) — Z (_1)n+Jo+B +¢ P 8 (ag,é’)e J0(Ag).
m’ €Part(p—1),8'€Sq,p—1
¢’ €Seqq(8;,0.m)
Take m' = (mg,...,mip1,m; — 1,m;_1,...,mq) € Part(p — 1). There
exist unique ¢’ € Seqq(9j,0,m') and S € Sy p—1 such that (ai,...,aq) Ek'
X , ., simp(ax*(’)
</ = (ah R an—l)' We get T(n7m7ﬂa C) = (71)n+]0+5 +e d) ’ o (a [;k/

()70 (Ao).
Step 3. Considering the term T'(i,m, 3,¢) in RHS for i = 1..(n — 1), we have

simp(ax()

(0:%)

(a ?; C) = ws1mp(8ia)(a1, ey O, OGO, O, ,an).

Denote

D= {Lur, Lo, | r™ = (r™, oot y) € Plomy]), 4,4,t,1 > 1}

yime—1
We consider the following case
(i) Assume that {a;, o; 1} N{@1,...,an} # 0 then:
(a) If (o iy 1) = (aj,a;41) for some j, we look at df;, G in LHS,

. . - . Y simp(aja*,C/)
(—1) (dioe,G¥)7 (a) = > (1) ’
m'€Part(p),8 € Sq—1,p

¢’ €Seqq(o,m’)

(33'@;;, ¢).

Choose m' = m and (' = . There exists a unique ' € S;_1,, such
simp(9;a % ")

that @a;(’ = dya. Hence, T(i,m, §,¢) = (—1)it8'+¢ (@a;
¢')-

(b) If {a;,0; 11} = {a;,b} for some b € I', there exists a unique ' €
Sq,p SuCh that /8/(0) (a7 C) = (le e 7gi—13gi+lvg’iagi+27 e agn)' ThlS

implies T'(i,m, 3,¢) + T(i,m,5',¢) = 0.
(i) Assume that {o;,a;, 1} C T, then :
(a) If {a;; ;1 } = {r]", 1u: }, then we repeat the argument in (i”).
(b) If{a; a1} = {r]"", 7"}, thenif s # t we repeat the argument in (i”).

Else s =t so (a;, ;1) = (7", r;"™), then | = j 4+ 1. In the formula

J
(4.11) of ¢, we keep 7™ when t' # t and replace 7t = (L[], 7""*)
by (Lgfm,)+, flip(r™¢, j)) to obtain the new element 7 € Seqq(o,m).

Then (—1)" = —(=1)¢ and by (3.17) we get 81-(@277) = ;. This
implies T'(i,m, 8,m) + T(i,m, B,¢) = 0.
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(C) If {Qi’QH»l} = {1U{mj]’r17]nt} where r™7 = (T71nj7' T ) € P(O’[mjb,

yim,—1
then if j # t we again repeat the argument in (i”).J If j = t then
(s 1) = (Lo 71 ”) - Assume that 7)™ = ¢?I™1! for some 1. Let
A =mj; —[,A" = 1. We decompose o[m;] = o[A’] L g[A] as concate-
nation of ¢[A’] and ¢[A’]. By Lemma (3.8) there exist paths r® €

P(o[A]), 2" € P(o[A]) and By € Sa_1.a/—1 such that (r;"j,rA;

[¢]

TA,) = r™J. Choose the new partition m' = (mg,...,m;11, A", A,
mj_1,...,m1) € Part(p). There exists a unique conditioned shuffle
permutation v € Sy, such that

O (Fma il pA EA i

= (gl, e Oy, 1U[A]7 10’[A']5Qi+15 .. ,Qn).

Let n = O (Fma, . 7mi=l fA FA Fmivs ) € Seqq(a,m’).

Since 8i(a§77) = 0;«r, we get T'(i,m, 3,() + T(i,m',5,n) =0.

4.3. F and G are quasi-inverse. In this section we construct homotopy maps
{Tn+1 : CZJFI(“LL M) — CZT/LI(“LL M)}
to show that FG ~ 1, then we prove directly that GF(¢) = ¢ for any normalized
reduced cochain ¢. Hence we conclude that both F and G are quasi-isomorphisms,
in particular, we have
HHEg(A, M) = H"Ces(A, M) = H"(C} (A, M)) = HHj(A, M).

For each n-simplex 0 = (uy,...,u,) as in (3.8), let A = (A;), where A; €

A(U;). Denote

leoA = Aun (An—hAn) - Q Aul (A07A1)-

Let

A={zc A, 4l 0 e NU), A; € Alo(i))}.
Denote by (A) the free abelian group generated by A. Given ¥ € C}},(A, M) and
T = ZU)A Zo,4 € (A) where z, 4 € Ay 4, then we set

U(z) = U(zya)
o, A

in which U(z, 4) =0if o ¢ N, (U).

Let o = (u1,...,un) and v = (v1,...,0;m) be simplices as in (3.8). Let A

(Ai)iy where A; € A(U;) and B = (B;)j%, where B; € A(V;). Given a
(@1,...,an) € Ay a and b= (by,...,by) € A, p as in (4.2), we have

simp(a) = o; simp(b) = 7.

Assume A,, = By and U,, =V, we define the concatenation
b= (by,...,by,d1,---,dn);

simp(b U @) = simp(b) U simp(a) = v U o.

We have simp(a;) = (Up—; — Up—it1), and so

Up —i41
simp(a) = o = simp(a;) U - - - U simp(ay, ).
We use the following notations
8O(a) = (d27 s 7dn)7 snnp(@o(&)) = 6710-7

Oi(a) = (@1,...,8;-1,1(qi,0i41), Aig2,- -, 0n), SIMP(0;(@)) = Op—;0;
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on(a) = (a1,...,an-1), simp(0,(a)) = dyo;
Ry = (a1, .,dn_p);
_ ~ . _ 1
Gn4+1—p,....n. — QAn+4l—p,....n>» Slmp(an+17p,.“,n) = (UO — UO)

In the abelian group (A), we put
W7L,P(U7 ZL) = Z Z (_1)m+§+<+5§ E C U ELn-l—l—p,.“,n ;

mecPart(n—p) m’'ePart(p),B€Sn—p,p
§€8eq(Rpo,Rpd,m)  ¢€Seqq(Lyo,m’)

n
wp(o,a) = Z wn,p(0, a);
p=1

An(U,d) = Z (—1>m+§€— (dla-~-7dn)~
mePart(n)
£e€Seq(o,m)

By induction, we define
(4.12) Qn(0,a) = (=1)"w,(0,a) + Q,_1(000, 0pa@) U @y, for n > 2,

if n = 1 then (o, a) is represented as
(Ao s A
(O’, a) o Uyg — Uy
and we set

_ lyra
Ag S utA; 25 A
UO — UQ — U1

1U0 Ul

Ql(O', d) =

Now we define the homotopy maps {Ty,41 : Cp" (A, M) — Cp(A, M)} as
follows:
T =0,
(Toir 0)° (@) = W(Qu(0,)), 7> 1.

From now on, for simplicity we write Q,(a) and w,(a) instead of Q,(c,a) and
wn(o,a).

Theorem 4.6. The maps T), constitute a homotopy T : FG — 1. More precisely,
given a cochain ¥ in CJ,(A, M), we have
(4.13) FG(U) = U = 6T, ¥ + T} 160
Proof. We have
n

(FGU)7(a) = (FoG¥)(a) + »_(FpG¥)’ (a)

p=1

= (FoG¥)7(a) + > > (—=1)sFrPu(e x Q)ant1-p,..n
mePart(n—p)  m’'€Part(p),BESn—p,p
§€8eq(Rpo,Rpd,m)  ¢eSeqq(Lyo,m’)

= (FoG0)7 (@) + 81 ¥(wn(o,@)).
Moreover, we have
(_1)n+1(Tn+15n+1\Ij)U(d) — 6n+1\11(wn(0‘7 d)) + (—1)"+1(5n+1\p(9n71(800'; 6»@&) [ dn)
= G 1 W (wn(0,@)) + (=1)" T (01 (900, 9nd) )i
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and
(—D)™(6,T,V)7 (a) = (—1)"(Tn\11)30"(8nd)dn = (=1)"¥(Q,—1(0o0, 0na))an,.
This implies
(=)™ N (T4100419)7 (@) + (= 1)"(0a T V)7 (@) = Gnr1 ¥ (wa(o, a@)).

So the equation (4.13) is equivalent to the equation

n n—1
(Fog®)7(@) — 7@ = > (=1 (Tus18:9)7(@) + Y _(=1)"(6:T %) (@)
i=0 1=0
This equation holds true due to Lemma 4.7 right below. (]
Lemma 4.7. Let 0 = (uq,...,u,) be a simplex and a = (ay,...,a,) as in (4.2),

then the following equation holds true

n

(4.14)) “(-1)'0:Qn(an, ..., +Z di(a,...,an)) = Apn(a).

1=0

Proof. We prove this lemma by induction on n. The equation (4.14) is equivalent
to

z_:(—l)iﬁn_l(aia) =A,(a) — Z(—l)””“@iwn(&) — Z(—miai((zn_l(al, 1) Udy,).
=0 =0 1=0

Assume that the equation (4.14) holds true for n. We prove it holds true for n + 1.
Assume @ = (ay,...,an+1). Let

n+1 n
B= Z )'0i Qg1 (@, ., ang), and C =Y (=1)'Qu(0i(@n, .. ., @ns1)).
i=0
We need to prove
(4.15) B+ C=A(a1,...,0n+1)
By definition, we have
n+1 n+1
B = Z(_1)1+n+28iwn+l(&la oy lng1) + Z n(@1y .0 n) U angr)
i=0
n+1 .
= Z(_l)z+n+2aiwn+1(ala cooylng1) + Br + B
i=0
where
n+1 )
By =Y (1) 10;(wn (a1, - ., Gn) U dng)
i=0
n+1 )
By = Z(_l)lai(gn—l(&lv ey Apo1) Uy Uding).
i=0
We also have
n—1
O Z ””Hwn 8 (&1, ey &n-l-l)) =+ Z Qn_l(ai(dl, . ,dn)) L dn+1
i=0

+ (*1)”(2"_1(0,1, ey an_l) L &n7n+1.
By induction hypothesis, we have

n—1

> (1)1 (B(a, - - ) Ui

=0
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n

= Ap(, .., an) Udngr — Y (=) 0w (a, . ., Gin) Unga
=0

= (1) 0i( Qi (@1, .y 1) Uan) Udna
i=0
= An(dly ERE dn) U anJrl - (Bl - an+1(wn(dla R &n) U C~Ln+1))
- (BZ - (_1)n+1Qn—1(&17 s 7dn—1) U ELn,n-&-l)-
This implies

n+1 n
B+C =Y (=1)"0wni1(a1, .. dngr) + (1) w, (0(a, - ., ding1))
1=0 1=0

+ an+1(wn(a17 s ,an) U &n-‘rl) + An(&la s 7[7%) U an—i—l-

Thus, by Lemma (4.8), we obtain the equation (4.15). O
Lemma 4.8. Let 0 = (u1,...,Unt1) be a simplex and a = (a1,...,4n+1) as in
(4.2), then we have

n+1

Z(_l)i+n+2aiwn+1 (@1, lng) + Z(_l)i+n+lwn(8i(&ly ooy ling1))
i=0 i=0

+ 8n+1(wn(d1, ce ,dn) (] dn—i—l) + An(dla ey dn) U dn-{-l — A(dl, ceey dn-i—l) =0.
Proof. We denote
n+1 n
B=) (=120 wni1(a1, ... dng1); C = (1) w,(05(ar,. .., ani1));
=0 i=0
D = 8n+1(wn(d1, “ee ;dn) U dn+1)§ E= An(dla RN 7C~Ln> (] dTLJrl - A(dl, ey dn+1)-

We prove that each of the terms appearing in the expansion of B is cancelled out
against a unique term in C, D, or E, and vice-versa. The cancellation is as follows:

B<~—C.
D FE
We write
n+1 )
By =Y (1) 20011 (@)
i=0
n+1

=> > > (—1)7 (1) AP, B (6, €, C, B)

i=0 mePart(nt+1—p) m' €Part(p),B€Sn+1-p,p
¢€Seq(Ryo, Rpd,m)  ¢eSeqq(Lyo,m’)

where Bp(da 67 Ca 5) = 5 Z C U an+2—p,...,n+1a and write

Cp = S (=1) T, (95)
=0

|

~
Il
=]

> > (—1)HHL (1) HEHFE O (950, €, ¢, B)

mePart(n—p) m'ePart(p),BESn—p,p
£€Seq(RpOny1-i0,Rp0;a,m) ¢€Seqq(LpOnt1—iom’)

where Cp(a’i&a 57 Ca ﬂ) = f zk_] C U (aza)

n+l—p,...,n°
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We also write

Eg=—A(dr,.. ant1) = (=17
mePart(n+1)
£€8Seq(o,m)
By =A(@,....4n) Udngr = > (D)™ €U ap.
mePart(n)
§€Seq(doo,m)
and
Dp = n+1wn,p(d1a s a’n) U ZI’?’L-i-l
— Z Z (_1)m+§+<+66n+1Dp((dla-~-7dn)a§7<a6)
ﬁ‘LGPaI‘t(’rpr) m/epﬂrt(p)vﬁesn—p,p

£€8eq(Rp000, RpOn41G,m)  (¢€Seqq(Lydoo,m’)

where Dp,(0y,416,€,¢,8) =€ ; CUbnt1—p,...n Uanyr.

Assume that m = (my,...,m1) € Part(n +1 —p) and m’ = (mj,...,m}) €
Part(p). Let & € Seq(R,0,m), ¢ € Seqq(Lyo,m') and 8 € Spt+1-p,p. We denote

Bp(é7£a<7ﬂ) = (b17 .. '7bn+2)7

and denote (by,...,b, ) the formal sequence of B,(a,&, ¢, 3).
Step 1. Consider the case i = 0, then 0g(B,(a,&, ¢, B8)) = (ba,...,bny2). There
are only the following three cases:

ar;
b, = rit where 7™t = (7", ... 7t ) € P(o[my]);
Ly imy)--
(i) Assume b; = a;. Then m; = 1, and we choose m = (my,...,mq) €

Part(n — p). There exists a unique element § € Seq(R,(0n410),m) such
that by LI = €. There exists a unique 8’ € S,,_, , such that

(MUSU;C=£;C

We get
(_1)n+2(_1)m+£+C+BaOBP(&757 Caﬁ)+(_1)n+l(_1)m+5/+ﬁ+ﬁ/cp(80da5/747 BI) =0.
(ii) Assume b; = r{** for some ¢, where r™t = (r{™,... .7 ;) € P(o[my]).

Then r}* = (o) for some j. Set A = j, A’ = m; — j. Using the
analogous argument as in Case 2 of Step 2 in the proof of Proposition 4.2,
considering the partition

m=(my,...,mi1, A, A my_q,...,my) € Part(n + 1 —p)
we find unique &’ € Seq(R,0,m) and 1 < jo < n + 1 such that
(_1)n+2(_1)771-&-5-1-(-&-/3803]9(&757 ¢, 5)+(_1)jo+n+2(_1)ﬁz+£’+4+63j03p(&’ £,¢,8) =0.

(111) Assume bl = 1(Lpa)[m/1]*'
If m} < p, choose ' = (m},...,ms) € Part(p—m]) and m = (m},my,...,m1) €
Part(n + 1 — p + m}). There exists unique &' € Seq(R, . 0,m), ¢ €
Seqq(Ly—m;o,m') and 8 € Spi1_pym; p—m; such that

!/ ! —= — —
5 B*/C LIa’n+2—p-i—7n’1,.4.,n-|-1 = (b27 s 7bn+1) ua'n-i-Q—p,“.,n—i-l—p-i-’rn'l l—lan-‘rQ—p-‘rm’l,...,n-‘rL

So we get 8n+1(§’;C’I_Idn+2_p+m/l7,.,,n+1) = (ba,...,bp+2). Then, we obtain

(_1)n+2(_1)m+£+g+ﬁ803p(6/7 €a C7 B) - (_1)7h+£/+<,+ﬁ,8n+1Bp7m’l (d7 5/7 C/7 B/) = O
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If m{ = p, then m' = (m)) € Part(p) and thus simp(b;) = (Up L Uy) for
i=2,...,(n+1). Let m = (mf,my,...,my) € Part(n+ 1). It is seen that
§ = (b2,...,bn+1) € Seq(o,m) and
(=)™ (=) By (0, €,¢, B) = (~1)™E

Hence the term (—1)"+2(—1)"++¢+89, B, (a, &, ¢, B) is killed by the term
(_1)1+m+5’§/ in Ey. In this way, when p runs through {1,...,n + 1},
every term in Ej is eliminated except the term —(aq,...,dp+1) which is
eliminated by the term (a1, ...,a,) U aps1 in Ej.

Step 2. Consider the case 1 < i < n. We write £ = (&1,...,&+1-p) and
¢=1(¢1y---,¢p). We have
ain(&7£7 Caﬁ) = (bla RN} bi—la /uf(bi,bi+1)> bi+27 DN} bn+2)~
There are only the following three cases:
{bi7bi+1} = {gjaCJ/} fOI' some .]7.]/5
{0 bin 1} S {1, &nr1p)s
{bisbia} SH{G, -5 G}

e Assume {b;,b; 1} = {&,(}. Choose 3’ = (i,i+ 1) o 3 then
(~D)FF R ()Y, B, (@,6, ¢, B)+ (1) T ()M 9,B, (a,€,¢, 8) = 0.
o Assume {b;,0; 1} € {&1,-. . &ny1-p}. We repeat the arguments of Step 2
in the Proposition 4.2.

o Assume {b;,b;;1} € {C1,-..,(p}. We repeat the arguments of Step 3 in the
Proposition 4.5.

Step 3. Consider the case i = n + 1. We have
a’ﬂJrpr(da €a <> B) = anJrl((bl, ceey bn+1) U &n+27p,...,n+1)
= (blv ERE) bn: /’L(bn"rl? an+2—p7~-,n+1))'

There are only the following three cases for b, ,;:

afmil;
byy1 = T:Z—l where ™ = (r", ... J{Zi‘_l) € P(Lyo[mj));
LL,o)my]-  Where my =1 and m’ = (1,m}_,,...,m}) € Part(p).

e Assume b, ; = a[my]. We apply the argument in (iii) of Step 1, then every
term of this form is killed. )

e Assume b, | = r::f_l. We assume that rzz_l =€
Then

o .
Lpalmilsi for some j.

#(TTt,@nH—p,.,.,nH) = (ajd)n+2—p7,,,)n+1’
In C' we consider terms Cp(9;a,¢’,¢’,8"). There exists unique (¢',¢’,3)
such that
7(71)m+€+c+58n+1Bp(&7 57 Cv B) + (71)n+1+j(71)rh+§'+4'+,6"cp(aj&,é-/, Clv B/) =0

Combining with Step 2 and (i) in Step 1, we see that every term in C is
killed.

e Assume that b,y = 1(,0)[m;]- Where m' = (1,m}_,,...,m}) € Part(p).
Thus we have b, ,; = L,: and simp(bp41) = (Up — Uy).
If p = 1, then we have m’ = (1), ( = 1o+ = bny1, B = 1 and
simp(b;) = (Uy — Uy) for i < n. S0 9,41B1(3,€,C,8) = €U npr.
We have (—1)™%¢¢ U @y is a term in By and

_(_1)m+f+<+68’ﬂ+1Bl (6/7€a C7 ﬂ) + (_1)m+££ u a/1’7,4»1 =0.
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So we see that every term in E is killed.
If p > 1, recall that m = (my, ..., m1). We show that the term

7(71)m+€+<+68n+1Bp(&7 57 C? /B)

is killed by a term in D. Thus in the expression of D,,, we choose m/ =
(m},_q,...,m}) € Part(p — 1), m = m € Part(n + 1 — p), & = € and
¢"=(C1,...,G—1). There exists a unique " € Sy,41_p -1 such that

—(~1)HEEEBY, 1 By (@, €, B) + (1) D, (9416, B) = 0.

When p varies, we see that every term in D is killed.
O

Proposition 4.9. Let ¢ be a normalized reduced cochain in Cgg(A, M) then we
have

GF(¢) = ¢.

Proof. The computations are straightforward. O
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