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Abstract

Spotify delivers on-demand audio over HTTPS/TCP using HTTP range requests against CDN-hosted
track files. Clients fetch fixed-size byte ranges (512 kB) and manage their own buffering, prefetch, and
caching; they don’t use the segment/manifest model of MPEG-DASH or HLS. This paper sketches
Spotify’s control/data plane, codecs, transport choices, caching/evolution (e.g., the P2P era), and
contrasts that with DASH/HLS. We also outline what packet-level features are observable to a passive
network analyst, without describing any DRM bypass techniques, and point to representative research
on traffic analysis.

Data plane: what actually moves on the wire

e Objects & addressing. Each track is stored as an encoded file on Spotify CDNs. During playback
the client issues HTTP GET with Range: headers to fetch chunks from a nearby edge. Successful
responses are HTTP 206 Partial Content. Typical chunk size is ~512 kB.

Transport. Plain TCP over TLS (HTTPS). Spotify has publicly documented experiments with
Google’s BBR congestion control to reduce stalls (ho QUIC requirement).

CDN. Spotify standardized on Fastly for many edge workloads; range-request handling at the
CDN/access-point boundary is operationally important (e.g., ensuring Accept-Ranges so 206, not 200,
is returned).

Chunking vs codec frames. While codecs produce frames on the order of tens of milliseconds, Spotify
aggregates many frames per HTTP range fetch (hundreds of kilobytes). The app’s buffer and prefetch
policy (e.g., when to fetch the next 512 kB) drives smoothness and seeks latency.

Caching implications. Because tracks are stored as large static files, they cache very effectively at the
CDN layer. Popular songs see very high cache-hit ratios, which helps Spotify scale to hundreds of
millions of active users with predictable CDN economics.

Control plane: auth, prefetch, cache

Prefetching. Spotify’s commercial hardware SDK docs include explicit prefetch states/errors,
reflecting a control layer that schedules next-chunk fetches and offline downloads.

Local cache. Desktop/mobile clients maintain a sizable on-disk cache to reduce startup latency and
network usage; users can clear it in-app. (Offline media remains encrypted at rest.)

Then & now: P2P retired. Early desktop clients also sourced audio via P2P. Spotify discontinued P2P in
2014 as CDNs scaled.


https://engineering.atspotify.com/2018/08/smoother-streaming-with-bbr?utm_source=chatgpt.com
https://engineering.atspotify.com/2018/08/smoother-streaming-with-bbr?utm_source=chatgpt.com

Formats, bitrates, and encryption

Codecs/bitrates. Spotify documents quality tiers roughly 24, 96,160, 320 kb/s on native apps;
the web player uses AAC 128/256 kb/s. (Exact codec can vary by platform.)

Mastering/Ingest. For creators/labels, Spotify prefers FLAC ingest and notes ongoing lossless
testing for eligible listeners (distribution format is independent of ingest).

DRM at a glance. Tracks retrieved from the CDN are encrypted; clients obtain decryption keys via
authenticated control flows. We avoid details, see open-source clients for high-level architecture only.

How this differs from DASH/HLS

DASH/HLS deliver media as time-based segments (often 2-6 s) with a manifest (MPD for DASH,;
M3U8 for HLS) and perform per-segment ABR (adaptive bitrate) across multiple representations.
Spotify instead treats each track as a single file and does byte-range fetching—no public
MPD/M3U8, no time-indexed segment cadence. Bitrate selection is coarse (quality levels) rather
than continuous ABR across a ladder during one song.

Packet-level observables (without breaking encryption)

Even with TLS, a passive observer can often see:

Flow structure: TLS handshake to a CDN host (e.g., *.scdn.co/*.akamaized.net depending on region),
followed by a bursty pattern of ~512 kB downloads (range fetches).

Timing & sizes: Range-request cadence, stall/retry behavior, and seek-driven discontinuities (more,
smaller ranges around seeks). These are the kinds of side channels used in traffic-analysis research on
the Spotify web player (classification from packet sizes/timings—not payload).

HTTP semantics: Presence of 206 Partial Content for ranges vs. 200 if the CDN mis-configures
Accept-Ranges.

Practical Implications for Engineers

Latency & resiliency. The size of HTTP range requests and the logic of Spotify’s
prefetch policy directly shape playback performance. Larger ranges reduce protocol
overhead but can increase recovery time when a packet is lost or retransmission
occurs. Conversely, smaller ranges yield faster recovery at the expense of more
frequent requests and higher control-plane load. Spotify has reported measurable
improvements in stall reduction and playback smoothness by adopting Google’s BBR
congestion control, which optimizes congestion windows to keep buffers filled without
creating excessive queuing delays.

Edge correctness. Correct CDN behavior is fundamental to Spotify’s design. Clients
depend on 206 Partial Content responses for both seeking and efficient buffering. If a
CDN node fails to honor Accept-Ranges and instead serves a 200 OK (full file).


https://tech-blog.sonos.com/posts/happy-music-streaming-with-mpeg-dash/?utm_source=chatgpt.com
https://engineering.atspotify.com/2018/08/smoother-streaming-with-bbr?utm_source=chatgpt.com
https://support.spotify.com/us/article/audio-quality/?utm_source=chatgpt.com
https://support.spotify.com/us/article/audio-quality/?utm_source=chatgpt.com
https://support.spotify.com/us/artists/article/audio-file-formats/?utm_source=chatgpt.com

Research & security notes (hon-circumvention)
Traffic analysis. Academic/teaching work shows that song identity can sometimes be inferred from

encrypted traffic timing/size patterns on the web player. Mitigations include padding, jitter, and cache
behavior tuning.

DRM. While open-source clients describe high-level flows, bypassing encryption or redistributing
decrypted audio violates terms of service and, in many jurisdictions, the law. This paper deliberately
avoids any circumvention details.

Flowchart Comparison

Below is a conceptual flowchart contrasting Spotify’s range-based model with DASH/HLS’s
manifest + segment approach. This highlights the simplicity of Spotify’s pipeline versus the
manifest-driven ABR logic in DASH/HLS.
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Figure 1. Spotify uses fixed-size HTTP range requests (~512 kB) to fetch parts of a single file,
while DASH/HLS relies on manifest-driven segments (2—6 s each) with ABR logic.



Traffic Analysis of Spotify Range Requests

This is a packet-level view of Spotify traffic reveals a distinctive burst pattern consistent with its range-
request architecture. Instead of a continuous stream, the client issues HTTP GET requests with Range
headers that fetch ~512 kB of audio data at a time. Each response arrives as a 206 Partial Content,
resulting in a sawtooth-shaped profile where large bursts of traffic are followed by idle gaps as the client
buffer fills. In a tool like Wireshark, this manifests as periodic spikes in throughput roughly every 2-3
seconds, aligned with buffer management decisions. While the actual payload remains encrypted under
TLS, these timing and size characteristics form a recognizable fingerprint of Spotify playback and have
been leveraged in research on encrypted traffic classification.

i Mockup: Spotify Traffic Analysis (Bursty Range Requests)
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Figure 2. Mockup of Spotify packet traffic showing bursty download behavior. Each spike corresponds to an
HTTP range request retrieving ~512 kB of audio data from the CDN, followed by an idle period as the client

buffer plays out. This burst—silence pattern differentiates Spotify’s range-based streaming model from the
continuous segment flow typical of DASH or HLS.

Conclusion

Spotify’s design emphasizes simplicity, caching efficiency, and fast seeks, trading away fine-grained
adaptive bitrate switching in favor of coarse quality tiers. DASH/HLS, in contrast, provide greater ABR
flexibility and are optimized for heterogeneous networks, long-form video, and live content.

For engineers, the comparison is instructive: the right protocol depends on the media type, user
expectations, and operational scale. Spotify’s model works for music because tracks are short,
popular, and cache-friendly; DASH/HLS thrive where network adaptation and segment-level control
matter most.



