Equipment Testing Report

Eagle Harbor Tech ISP-16 Prototype Integrator

Sander Miller, Columbia Plasma Physic Laboratory for DIII-D National Fusion Facility Magnetics Team June 12, 2024

Introduction

Integrator Testing Overview

- RC time is <u>33 us</u>, factory set for all channels
- Integration output found over a 10 second intervals
 - o Integration started I second after enable started to minimize initial drift
- Tests completed on a range of input/output channels
 - No discernible difference between channel results
- Plots are smoothed over every 0.16 seconds (100 data points)
 - R² values and linear fits calculated
 - RMS noise calculated with the difference between the smoothed and unsmoothed data

Units

$$V_{OUT} = \frac{1}{RC} \int_0^T V(t) dt$$

Example: Test 2

- Oscilloscope input (V) is in purple
- Integrator output (V) is in yellow

Drift vs. Figure of Merit

Drift (D):

- D = [Output(V)] / [T(s)]
- Units: V/s

Figure of merit (F):

- F = D(V/s) * RC(s) = [True integration (V-s)] / [T(s)]
- Units: V-s/s \rightarrow Rate of change of the true integration

Drift is used as the primary measure of integrator accuracy in these slides

Advertised Drift and Figure of Merit

The advertised F is $\sim 4.50E-8 V-s/s$, and D is $\sim 1.49 \text{ mV/s}$

ISP16-Users-Manual-33us-10JUN2016.pdf (eagleharbortech.com)

Testing Outline

Test 1

Shorted integration

- Details
- Setup
- Graphs and data

Test 2

Square wave integration

- Details
- Setup
- Graphs and data

Test 3

AC integration

- Details
- Setup
- Graphs and data

Drift Comparisons

- Drift and Figure of Merit
- ☐ Example Waveforms

Test 1

Shorted Circuit

Test 1 Overview

- Test 1 consisted of 6 subtests, all with a shorted integrator input through a:
 - Wire
 - Grounded wire
 - 50 Ohm resistor
 - Grounded 50 Ohm resistor
 - Switching halfway from wire to resistor
 - Switching halfway from resistor to wire
- Grounding was done on the oscilloscope
- First 4 subtests:
 - Measured mean and worst value for abs drift, R², and RMS noise.
- Switched subtests
 - Measured mean and worst value for abs drift before, and after test

Test 1 Setup

Grounded Test 1: Resistor Test 1: Grounded Resistor Smoothing: Averaged every 0.016 s Smoothing: Averaged every 0.016 s 150 40 30 Integrator Output (mV) Integrator Output (mV) Resistor Q -50 -30 Ź 10 4 6 8 2 6 Time (s) Time (s) St Test 1: Wire Test 1: Grounded Wire Smoothing: Averaged every 0.016 s Smoothing: Averaged every 0.016 s 250 200 40 Integrator Output (mV) 150 Integrator Output (mV) 20 100 50 -50 -20 -1002 Ó 2 6 8 10 Time (s) Time (s)

10

10

8

8

Not Grounded

Test 1 Data

Trials	21	21	21	21	
Test 1 RC time: 33 us	Wire	Grounded Wire	50 Ohm Resistor	Grounded 50 Ohm Resistor	Advertised
Mean Abs Drift (mV/s)	1.96	8.24	1.34	4.45	1.49
Worst Abs Drift (mV/s)	4.97	23.79	3.97	14.48	
Mean R^2	0.874	0.758	0.836	0.776	
Worst R^2	0.0613	0.0323	0.426	0.000324	
Mean RMS noise (mV)	28.15	46.06	8.27	28.82	
Worst RMS noise (mV)	28.73	141.82	9.39	33.64	

Comparisons of F and Drift for all tests here

Trials	7	7	
Test 1 (Switch) RC time: 33 us	Resistor to wire	Wire to resistor	Advertised
Before switch			
Mean Abs Drift (mV/s)	6.58	1.63	1.49
Worst Abs Drift (mV/s)	18.75	5.14	
After Switch			
Mean Abs Drift (mV/s)	68.89	60.95	1.49
Worst Abs Drift (mV/s)	93.69	84.47	

Test 2

Square Wave Input

Test 2 Overview

0.5 Hz square wave integration:

- Voltage divider brought voltage down by a factor of 100, and another factor of 21 due to the termination resistance according to this equation: (R_s + R_T)/R_T = (1000 + 50)/50 = 21
- Three different variations were performed:
 - \circ 1.6E-5 V, with an output amplitude \sim 0.5 V
 - 1.6E-4 V, with an output amplitude ~5 V
 - \circ 3.1E-4 V, with an output amplitude ~10 V
- For these tests the integrator was enabled I second before the input signal was started. A DPDT switch proved unreliable
- A minor offset in the function generator was accounted for in the output data by subtracting the integration of the mean of the input

Test 2 Overview

For each subtest, a linear fit was performed on the peaks and troughs of the output. Also recorded was:

- The average and worst mean abs drift of linear fits, and R² values
- Mean abs drift of peaks minus mean abs drift of trough
- Average quadratic fit to linear fit ratio for full-amplitude segment
- Output to input full-amplitude ratio
- Clipping occurred past +-10 V outputs.
- Linear fits were also plotted on a separate graph, and were adjusted to start at 0,0.

Test 2 Setup

Test 2 Data: Input offset accounted for

1.6E-5 V input: 0.5 V Amplitude

1.6E-4 V input: 5 V Amplitude

3.1E-4 V input: 10 V Amplitude

Test 2 Data

Trials	6	6	6	
Test 2 RC time: 33 us	1.6E-5 V, 0.5 Hz input	1.6E-4 V, 0.5 Hz input	3.1E-4 V, 0.5 Hz input	Advertised
Mean Abs Drift (mV/s)	3.97	16.21	22.45	1.49
Worst Abs Drift (mV/s)	13.58	21.21	35.45	
Mean abs drift peak/trough difference (mV/s)	1.68	5.00	7.03	
Worst F peak/trough dif (mV/s)	3.97	5.82	11.18	
Mean R^2	0.726	0.996	0.994	
Worst R^2	0.0421	0.994	0.99	
Mean Q/L R2 ratio	1.00E+00	1.00E+00	1.00E+00	
Out/In Peak-to-Peak ratio	1.012	0.976	1.032	

Test 2 Data: Prior to offset adjustment

Test 3

AC current

Test 3 Overview

Checked quality of integration of a higher-frequency signal.

- Input signals were ran through a transformer to minimize DC offset.
- The input signals are depicted as starting at t = 0 on the graphs
- A 1 kHz and 5 kHz sine wave signal was used.
- Conducted 10 trials and measured the mean abs drift and R² value for each.
- Measurements were done from t = 1 to t = 10 to account for any transient during the first second of integration.

Test 3 Setup

Test 3 Data

1 kHz Trials

5 kHz Trials

Test 3 Data

Trials	10	10	
Test 3 RC time: 33 us	1 V 1 kHz	1 V 5 kHz	Advertised
Mean Abs Drift (mV/s)	26.33	6.73	1.49
Worst Abs Drift (mV/s)	51.21	16.91	
Mean R^2	0.278	0.266	
Worst R^2	0.0154	0.0362	

Drift Comparisons & Example Waveforms

Drift Comparisons:EHT advertised = ~1.49 mV/s

	_			
Test 1 RC time: 33 us	Wire	Grounded Wire	50 Ohm Resistor	Grounded 50 Ohm Resistor
Mean Abs Drift (mV/s)	1.96	8.24	1.34	4.45
Worst Abs Drift (mV/s)	4.97	23.79	3.97	14.48
Test 2 RC time: 33 us	1.6E-5 V, 0.5 Hz input	1.6E-4 V, 0.5 Hz input	3.1E-4 V, 0.5 Hz input	
Mean Abs Drift (mV/s)	3.97	16.21	22.45	
Worst Abs Drift (mV/s)	13.58	21.21	35.45	
Test 3 RC time: 33 us	1 V 1 kHz	1 V 5 kHz		
Mean Abs Drift (mV/s)	26.33	6.73		
Worst Abs Drift (mV/s)	51.21	16.91		

Test 1 (Switch) RC time: 33 us	Resistor to wire	Wire to resistor
Before switch		
Mean Abs Drift (mV/s)	6.58	1.63
Worst Abs Drift (mV/s)	18.75	5.14
After Switch		
Mean Abs Drift (mV/s)	68.89	60.95
Worst Abs Drift (mV/s)	93.69	84.47

Figure of Merit Comparisons (Drift * RC):

EHT advertised = ~4.50E-8 V

Test 1 RC time: 33 us				Grounded 50 Ohm Resistor
Mean F (V-s/s)	6.47E-08	2.72E-07	4.41E-08	1.47E-07
Worst F (V-s/s)	1.64E-07	7.85E-07	1.31E-07	4.78E-07

		1.6E-4 V, 0.5 Hz input	3.1E-4 V, 0.5 Hz input
Mean F (V-s/s)	1.31E-07	5.35E-07	7.41E-07
Worst F (V-s/s)	4.48E-07	7.00E-07	1.17E-06

Test 3 RC time: 33 us	1 V 1 kHz	1 V 5 kHz
Mean F (V-s/s)	8.69E-07	2.22E-07
Worst F (V-s/s)	1.69E-06	5.58E-07

Test 1 (Switch) RC time: 33 us	Resistor to wire	Wire to resistor		
Before switch				
Mean F (V-s/s)	2.17E-07	5.39E-08		
Worst F (V-s/s)	6.19E-07	1.70E-07		
After Switch				
Mean F (V-s/s)	2.27E-06	2.01E-06		
Worst F (V-s/s)	3.09E-06	2.79E-06		

Example Waveforms

Test 1: Wire

Test 2: 1.6E-5 V square wave

Test 3: 1 V 1 kHz sine wave

