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Abstract

This paper is the first part of a project aimed at understanding deformations of triangulated categories,
and more precisely their dg and A∞ models, and applying the resulting theory to the models occurring in
the Homological Mirror Symmetry setup. In this first paper, we focus on models of derived and related
categories, based upon the classical construction of twisted objects over a dg or A∞-algebra. For a
Hochschild 2 cocycle on such a model, we describe a corresponding “curvature compensating” deformation
which can be entirely understood within the framework of twisted objects. We unravel the construction in
the specific cases of derived A∞ and abelian categories, homotopy categories, and categories of graded free
qdg-modules. We identify a purity condition on our models which ensures that the structure of the model
is preserved under deformation. This condition is typically fulfilled for homotopy categories, but not for
unbounded derived categories.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction

A by now standard philosophy in non-commutative algebraic geometry is that non-
commutative spaces can be represented by suitable categorical models based upon sheaf
categories and their derived categories in algebraic geometry. Among models we can roughly
distinguish between “small” (corresponding morally to “algebraic”) and “large” (corresponding
morally to “geometric”) models. The large models typically occur as module or sheaf type
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categories over the small models. The primordial example of a small model is a ring A, and
its associated large model is its module category Mod(A). In the case of a commutative ring A,
there is an intermediate geometric object Spec(A) for which Mod(A) ∼= Qch(Spec(A)).

In understanding the relation between commutative objects and their non-commutative
counterparts, a crucial role is being played by Hochschild cohomology. From the ring case,
Hochschild cohomology is known to describe first order non-commutative deformations, and it
turns out that for various more complicated models, natural notions of Hochschild cohomology
exist which fulfill the same role. On the side of small models, a notion of Hochschild cohomology
for schemes [34] describes deformations into non-commutative schemes based upon twisted
presheaves [21].

On the side of large models, a first important class is given by abelian categories (generalizing
module and sheaf categories). An intrinsic first order deformation theory for abelian categories
was developed in [24], and a notion of Hochschild cohomology was defined in function of
controlling this theory [23]. This notion further coincides with some other natural definitions
as shown in [11]. The deformation theory of abelian categories has some desirable relations to
the classical Gerstenhaber deformation theory of algebras. First of all, for an algebra A, there is
an equivalence

Defalg(A) −→ Defab(Mod(A)) : B −→ Mod(B) (1)

between algebra deformations of A and abelian deformations of Mod(A). More generally,
deformations of Grothendieck categories remain Grothendieck. If a Grothendieck category
further has a representation as an additive sheaf category with respect to a topology which can
be understood on an underlying set-theoretic level, it can be “tracked” through the deformation
process and we obtain structural results for deformations (see [6] for the case of quasi-coherent
sheaf categories over suitable projective schemes).

It is known that a lot of geometric information is actually encoded in the derived categories
of schemes, and it is often possible to model derived categories using combinatorial tools like
quivers. More generally, it is always possible to model the derived category of sufficiently
nice schemes using dg algebras as “small” models [27,3,12]. These facts motivate the derived
approach to non-commutative geometry, with enhanced triangulated categories rather than
abelian categories as fundamental models for non-commutative spaces. Here, enhancements
are given by dg or A∞-categories, and thus, they come with a natural notion of Hochschild
cohomology.

In line with the higher story, a fundamental question is to understand in which way this
Hochschild cohomology can be interpreted as describing certain first order deformations. In the
case of derived categories of abelian categories, a first step in this direction was undertaken
in [22]. However, in that paper, only linear (fixed object) deformations are considered, leading
to an incomplete picture. To understand the problem, we first return to abelian deformations.
It is clear that whereas k-algebra deformations themselves generalize straightforwardly to linear
deformations of k-linear categories with many objects (simply by keeping the object set fixed and
deforming the Hom modules), this is not the correct deformation concept for the abelian module
categories for by (1), their object set changes, and so will the object set of their derived category.
This is directly related to the fact that when we look at the obstruction theory for deforming
an individual object C ∈ C to a deformation D of C, there is an obstruction against lifting
in Ext2C(C,C) and if this obstruction vanishes, the freedom for lifting is given by Ext1C(C,C)
(well known for modules—see [20] for a treatment in the setup of abelian categories). Hence,
obstructions are responsible for the vanishing of some objects under deformation, whereas the
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freedom for lifting is responsible for the fact that a single object in the undeformed category may
transform into a whole fiber of objects in the deformed category.

In this paper, we model this phenomenon starting from an arbitrary Hochschild 2-cocycle
φ for an arbitrary A∞-category a, which we consider as a “large model” subject to object
changing deformation. The corresponding “curvature compensating” deformation is described in
Section 4.2 and shown to be well defined on representatives of a second Hochschild cohomology
class. Further, we are mainly concerned with the effect of curvature compensating deformations
on some familiar dg and A∞ models of homotopy and derived categories. Therefore, after
introducing all the necessary preliminaries on curved A∞-structures in Section 2, we devote
Section 3 to the introduction of an important type of models for triangulated categories,
inspired by the original categories of twisted objects over dg and A∞-algebras and their
generalizations [4,7,19,22]. We split up the construction in two individual steps for a category a:

(a) the construction of the free completion Free(a) under shifts and arbitrary direct sums
(Section 3.3);

(b) the construction of a twisted variant a∆ based upon a “choice of connections” ∆ of
connections (degree 1 endomorphisms) that are attached to objects in the original category,
and that are used to “twist” the cA∞-structure (Section 3.2).

In Proposition 3.23, we give natural conditions on ∆ for the combined construction Free(a)∆
to be strongly pre-triangulated in the sense of [4], and in Sections 3.4–3.6, we describe how a
number of familiar triangulated categories can be modeled by this construction. Precisely, we
discuss unbounded derived categories of A∞-categories, homotopy and derived categories of
abelian categories, and categories of graded free qdg-modules over cdg algebras, which are often
models for derived categories of the second kind in the sense of Positselski [31].

Later on in Sections 4.7–4.10, we return to these examples and analyze their curvature
compensating deformations. Our key tool is the observation that the curvature compensating
deformation can itself be naturally described in terms of construction (b) of a twisted variant,
where the connections ψ one attaches to objects implement local variations in the original
Hochschild cocycle (changing it from φ into φ + dHoch(ψ)).

For a cA∞-category a, we investigate the relation between linear deformations of a and
curvature compensating deformations of Free(a)∆ for the relevant choice ∆. This relation is
based upon the underlying canonical “embrace” transportation of Hochschild cocycles from
a to Free(a)∆ (Section 2.4). The induced curvature compensating deformation can actually
be described as the category of twisted objects Free(aφ[ϵ])∆+Ψϵ over the linear deformation
aφ[ϵ], where Ψ is given by the choice of all connections. If ∆ satisfies the condition of
Proposition 3.23 making Free(a)∆ strongly pre-triangulated, the same holds for ∆ + Ψϵ
hence the deformation is strongly pre-triangulated as well. Further, we identify so-called pure
(Section 4.6) choices of connections on Free(a) which ensure a transparent interpretation
of associated curvature compensating deformations of Free(a)∆. Basically, purity expresses
that on a fixed full subcategory of Free(a), all connections are allowed, and objects outside
this subcategory are simply thrown away. For a pure choice of connections, the deformations
remain “of the same nature” as the original category. Homotopy categories typically satisfy this
condition, whereas unbounded derived categories do not. We compare these deformation results
with a number of parallel Hochschild cohomology comparison results, on some of which we
elaborate in the Appendix.

Although the detailed picture is quite different, clearly there is a certain parallel between the
role of pure choices of connections for the deformations of strongly pre-triangulated categories
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on the one hand, and the role of set theoretically grounded topologies for the deformations of
Grothendieck abelian categories, which we mentioned earlier, on the other hand.

Finally, we want to stress the fact that the twisted variant construction (b) is fundamental in
the general construction of Fukaya type categories. This fact should facilitate the investigation of
the effect of curvature compensating deformations on these categories, a topic which is currently
investigated in collaboration with Masahiro Futaki. We also want to note that the deeper we
delve into the Fukaya categories literature (and especially the book [9] and the overview [8]),
the better we understand how intrinsically the subjects of Fukaya categories and deformations
are actually interwoven. In particular, in turns out that the basic idea for what we call here a
curvature compensating deformation is already contained in Seidel’s 2002 ICM address [32].
This being said, we believe that by now, the machinery concerning both (curved) A∞ structures
and Hochschild cohomology is more advanced than it was at the time, making investigations
more feasible.

The eventual aim of the current project is to investigate curvature compensating deformations
of enhanced triangulated categories a that occur in Homological Mirror Symmetry (HMS)
situations as a simultaneous “B-model” for some space X and “A-model” for a mirror X ′.
Kontsevich’s original HMS conjecture [16] was in part motivated by the fact that the exchange
of cohomology data between Hochschild cohomology on the complex side and ordinary
cohomology on the symplectic side, which is observed in the mirror symmetry phenomenon,
could be explained by the close relation of both to the categorical Hochschild cohomology of the
respective B-model (enhanced derived sheaf category) and A-model (enhanced Fukaya category)
if these models would be equivalent. The natural expectation under the HMS conjecture would
then further be that the intrinsic categorical deformation of this model – which is what we
focused on in this paper – can be interpreted as a simultaneous model for certain more or less
geometric deformations on both sides of the mirror. On the complex side, the story seems to
be complete since one can go all the way from a twisted presheaf deformation interpretation of
the Hochschild cohomology of a scheme through abelian deformations of the associated quasi-
coherent sheaf category (see [21]) to the associated curvature compensating deformation of the
derived category—which, as we discuss in Section 4.9, is somewhat larger but fully faithfully
contains the derived category of the deformation. On the symplectic side we expect a similar
story involving Fukaya categories of deformed symplectic structures with B-fields. A specific
HMS situation in which actual (as opposed to infinitesimal or formal) “geometric” deformations
on both sides were explicitly identified as mirrors was treated in [2,1]. We hope to obtain a
complete understanding of the situation in various cases, and use this to develop a possible picture
of “non-commutative HMS”.

2. Curved A∞-structures

Throughout, k is a commutative ground ring with unit. In this section we introduce the notions
of curved A∞-categories and their morphisms in relation with Hochschild complexes.

2.1. Hochschild object

A k-quiver, or simply quiver a consists of a set Ob(a) of objects and for A, A′
∈ Ob(a), a

Z-graded k-module a(A, A′).
Consider quivers a and b and a map f : Ob(a) −→ Ob(b). We define the k-module

[a, b] f =


A,A′∈a

Homk(a(A, A′), b( f (A), f (A′))).
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If Ob(a) = Ob(b), we define a ⊗ b as the quiver with the same set of objects and

a ⊗ b(A, A′) = ⊕A′′ a(A′′, A′)⊗k b(A, A′′).

We define kOb(a) to be the quiver with the same object set as a and

kOb(a)(A, A′) =


k if A = A′

0 else.

Clearly, kOb(a) is the unit with respect to the tensor product, so we put a⊗0
= kOb(a). We put

T (a) = ⊕n≥0 a⊗n and

[T (a), b] f,n = [a⊗n, b] f

=


A0,...,An∈a

Homk(a(An−1, An)⊗ · · · ⊗ a(A0, A1), b( f (A0), f (An))

and

[T (a), b] f,0 =


A∈a

b( f (A), f (A)),

the zero part. We have

[T (a), b] f =


n≥0

[T (a), b] f,n .

There is a natural projection

π0 : [T (a), b] f −→ [T (a), b] f,0

onto the zero part. Suppose an element J f ∈ [a, b] f has been chosen.
Consider another quiver c and map g : Ob(b) −→ Ob(c). We obtain brace-compositions

[T (b), c]g,n ⊗ [T (a), b] f,n1 ⊗ · · · ⊗ [T (a), b] f,nk −→ [T (a), c]g f,n−k+n1+···+nk

with

φ{φ1, . . . , φn} =


φ(J f ⊗ · · · ⊗ φ1 ⊗ J f ⊗ · · · ⊗ φn ⊗ J f ⊗ · · · ⊗ J f ). (2)

Remark 2.1. The element J f ∈ [a, b] should be thought of as a kind of identity map from a to
b, offering a “trivial” way to transport elements from a to b.

Remark 2.2. Let quivers a, b, c, d and maps

Ob(a)−→
f

Ob(b)−→
g

Ob(c)−→
h

Ob(d)

be fixed and suppose brace operations are defined with respect to (compositions) of these maps.
Consider elements φ ∈ [T (c), d]h , φi ∈ [T (b), c]g , ψi ∈ [T (a), b] f . If we use identity-like
element J f ∈ [a, b] f , Jg ∈ [b, c]g and Jg f = Jg ◦ J f ∈ [a, c]g f , then the operations (2) satisfy
the brace-type axiom (see [22, Definition 2.1]), i.e.

φ{φ1, . . . , φm}{ψ1, . . . , ψn}

=


(−1)αφ{Jgψ1, . . . , φ1{ψi1 , . . .}, Jgψ j1 , . . . , φm{ψim , . . .}, Jgψ jm , . . . , Jgψn}

where α =
m

k=1 |φk |
ik−1

l=1 |ψl |.
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Let Σa denote the shift of a, i.e. the quiver with Σa(A, A′)i = a(A, A′)i+1. We define the
bar construction of a to be Ba = T (Σa), and we further consider Cbr (a, b) f = [Ba,Σb] f and
the associated Hochschild object

C(a, b) f = Σ−1Cbr (a, b) f .

We put (C(a, b) f )0 = Σ−1
[Ba,Σb] f,0 and obtain the projection

π0 : C(a, b) f −→ (C(a, b) f )0

onto the zero part. We put Cbr (a) = Cbr (a, a)1a and C(a) = Σ−1Cbr (a).
In some situations (see [5,29]), it is useful to consider the following variant of the Hochschild

object. We put

[T (a), b]
⊕

f = ⊕n≥0[T (a), b] f,n

and C⊕

br (a, b) f = [Ba,Σa]
⊕

f . It is easily seen that, with elements J chosen as in Remark 2.2,
the subobjects

C⊕

br (a, b) f ⊆ Cbr (a, b) f

are compatible with the brace structure. In particular, C⊕

br (a) ⊆ Cbr (a) becomes a sub-brace
algebra.

The Hochschild object of the second kind is

C⊕(a, b) f = Σ−1C⊕

br (a, b)

and

C⊕(a) = C⊕(a, a)1a .

We will need the following:

Lemma 2.3. Consider Hochschild elements φ, φ1, . . . , φn , ψ1, . . . , ψm in C(a). Suppose we
have that φ1, . . . , φn ∈ C(a)0, i.e these elements belong to the zero part of the Hochschild
object. Then we have

φ{φ1, . . . , φn}{ψ1, . . . , ψm} =


σ∈Sn

φ{ασ(1), . . . , ασ(n+m)}

where Sn is the group of permutations on n elements, (α1, . . . , αn) = (φ1, . . . , φn) and
(αn+1, . . . , αn+m) = (ψ1, . . . , ψm).

Proof. It suffices to note that in the brace formula there are no contributions with “internal”
braces since φi {ψ j1 , . . . , ψ jk } = 0 for φi ∈ C(a)0. �

2.2. Cocategories

A concise way of introducing A∞-structures and -morphisms makes use of cocategories.
Recall that a cocategory C is a k-quiver with a comultiplication

∆ : C −→ C ⊗ C
which is coassociative, i.e. ∆ satisfies

(1 ⊗ ∆) ◦ ∆ = (∆ ⊗ 1) ◦ ∆.
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A counit for C is a morphism ε : C −→ kOb(C) with

(1C ⊗ ε) ◦ ∆ ∼= 1C ∼= (ε ⊗ 1C) ◦ ∆.

A cocategory morphism f : (C,∆) −→ (C′,∆′) is a morphisms of k-quivers such that

( f ⊗ f ) ◦ ∆ = ∆′
◦ f.

Consider two morphisms f, g : (C,∆) −→ (C′,∆′). A morphism of k-quivers d : C −→ C′ is
an f, g-coderivation iff

∆′
◦ d = ( f ⊗ d + d ⊗ g) ◦ ∆.

A coderivation of a cocategory C is a (1C, 1C)-coderivation.
Consider the morphism kOb( f ) : kOb(a) −→ kOb(b) with the same underlying map

Ob(a) −→ Ob(b) as f and with kOb( f )(A,A) : k −→ k equal to the identity morphism on
k. The morphism f is counital provided that

kOb( f ) ◦ ε = ε′ ◦ f.

For a cocategory (C,∆), we can iterate the comultiplication. We put

∆(0)
= 1 : C −→ C

∆(1)
= ∆ : C −→ C ⊗ C

∆(n)
= (1⊗n−2

⊗ ∆) ◦ ∆(n−1).

For a morphism f : C −→ C, we then have ∆(n)
◦ f = f ⊗n

◦ ∆(n).

2.3. cA∞-structures

Let a be a quiver and Ba its bar construction as defined in Section 2.1. The quiver Ba comes
equipped with natural projections pn : Ba −→ (Σa)⊗n and injections in : (Σa)⊗n

−→ Ba. We
typically omit the maps in from the notations. In particular, for every object A ∈ a we have an
element 1k,A ∈ kOb(a)(A, A) = (Σa)⊗0

⊆ Ba. If the object A is clear from the context, we
will simply write 1k .

The quiver Ba becomes a cocategory with ∆ : Ba −→ Ba ⊗ Ba determined by

∆(1k) = 1k ⊗ 1k

∆(a) = 1k ⊗ a + a ⊗ 1k

∆(an ⊗ · · · ⊗ a1) = (an ⊗ · · · ⊗ a1)


1k

+

n−1
i=1

(an ⊗ · · · ⊗ ai+1)


(ai ⊗ · · · ⊗ a1)

+ 1k


(an ⊗ · · · ⊗ a1)

for 1k ∈ (Σa)⊗0, a ∈ Σa, (an ⊗ · · · ⊗ a1) ∈ (Σa)⊗n . The cocategory Ba is counital with
p0 : Ba −→ kOb(a) as counit. We recall the following standard fact without proof.

Proposition 2.4. Consider an element

µ ∈ C2(a) ∼= [Ba,Σa]
1.
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Consider for n ≥ 1 the morphism of quivers µ̂n given by

µ̂n : Ba −→ (Ba)n : x1 ⊗ · · · ⊗ xm

→

n−k+1
l=1

(−1)|x1|+···+|xl−1|+l−1x1 ⊗ · · · ⊗ µk(xl , . . . , xl+k−1)⊗ · · · ⊗ xm .

The following are equivalent:

(1) µ{µ} = 0.
(2) There exists a unique codifferential d̂ : Ba −→ Ba, i.e. a coderivation such that d̂d̂ = 0,

with p1d̂ = µ̂1 = µ, and which satisfies pn d̂ = µ̂n .

Definition 2.5. An element µ ∈ C2(a) that satisfies the equivalent conditions of Proposition 2.4
is called a cA∞-structure on a, and in this case (A, µ) is called a cA∞-category.

If moreover the component µ0 ∈ C2(a)0 is zero, µ is an A∞-structure and (a, µ) an A∞-
category.

Explicitly, the condition µ{µ} = 0 translates into the following formulas:
j+k+l=p

(−1) jk+lµ j+l+1(1⊗ j
⊗ µk ⊗ 1⊗l) = 0. (3)

For an A∞-category (a, µ), putting H0a(A, A′) = H0(a(A, A′), µ1) yields a k-linear
category (without units) H0a, which is called the homotopy category of a.

For an arbitrary cA∞-category, such a construction does not exist.

Definition 2.6. A cdg-category is a cA∞-category (a, µ) with µn = 0 for n ≥ 3.

For an element µ = (µ0, µ1, µ2), the formulas (3) reduce to:

µ1(µ0) = 0. (4)
µ1µ1 + µ2(1 ⊗ µ0)− µ2(µ0 ⊗ 1) = 0. (5)
µ1µ2 − µ2(1 ⊗ µ1)− µ2(µ1 ⊗ 1) = 0. (6)
µ2(1 ⊗ µ2)− µ2(µ2 ⊗ 1) = 0. (7)

Example 2.7. Let a be a k-linear category. For Z-graded a-objects M = (Mn) and N =

(N n), we put Hom(M, N ) the Z-graded k-module with Hom(M, N )n =


i∈Z a(M i , N i+n).
A precomplex of a-objects is a Z-graded a-object M endowed with a predifferential dM ∈

Hom(M,M)1. As a quiver PCom(a) has PCom(a)(M, N ) = Hom(M, N ). We obtain a cdg-
structure on PCom(a) with µ2 the composition of graded a-morphisms, for f ∈ Hom(M, N )n ,
µ1( f ) = µ2(dN , f )− (−1)nµ2( f, dM ) and curvatures (µ0)M = µ2(dM , dM ).

If (a, µ) is a cA∞-category, the Hochschild object Cbr (a) is naturally endowed with a lot
of additional structure (see [22, Section 2.3]), which can be brought together in the form of a
B∞-structure [10]. Of fundamental importance for deformation theory is the underlying dg Lie
algebra structure, given by the commutator bracket [−,−] for the first brace operation (−){−},
and the Hochschild differential dHoch = [µ,−]. The Hochschild cohomology of (a, µ) is the
cohomology of (C(a), dHoch).

If µn = 0 for n ≥ n0, we have µ ∈ C⊕(a) and the Hochschild differential restricts to
C⊕(a). Thus, in this case C⊕(a) ⊆ C(a) becomes a subcomplex, whose cohomology is called
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the Hochschild cohomology of the second kind in [29] and the compactly supported Hochschild
cohomology in [5]. Importantly, in general the inclusion of this subcomplex is not a quasi-
isomorphism see [5,29]. In these papers, it is shown that in the case of the curved algebra
associated to a Landau–Ginzburg model, one needs the Hochschild cohomology of the second
kind to compute the “correct” result.

2.4. Embrace morphism

Consider quivers a, b, c, maps f : Ob(a) −→ Ob(b), g : Ob(b) −→ Ob(c), and an element
J ∈ [Σa,Σb] f .

Our main aim is to be able to interpret, for φ ∈ C(b, c)g and ψ ∈ C(a, b) f , expressions like

embrψ (φ) =

∞
m=0

φ{ψ⊗m
} (8)

as elements of C(a, c)g f .
To this end we suppose that c is a (possibly discrete) topological quiver, i.e the k-modules

c(C,C ′)i are (possibly discrete) topological k-modules, and we endow C(a, c)g f with the
pointwise topology inherited from c.

We say that the couple (φ, ψ) is allowable provided that (8) converges in C(a, c)g f . In this
case, we say that φ is left allowable with respect to ψ and that ψ is right allowable with respect
to φ.

Lemma 2.8 (See [22]). Suppose c is endowed with the discrete topology. The couple (φ, ψ) is
allowable if and only if for every ( fn, . . . , f1) ∈ a(An−1, An)⊗ · · · ⊗ a(A0, A1), there exists an
m0 such that for all m ≥ m0, we have

φn+m{ψ⊗m
}( fn, . . . , f1) = 0.

Consider ψ ∈ C1(a)0 determined by elements

ψA ∈ a(A, A)1

for A ∈ a.

Proposition 2.9. (1) Supposeψ is right allowable with respect to all the elements of a sub-brace
algebra C′

br (a) ⊆ Cbr (a). There is a brace algebra morphism

embrψ : C′

br (a) −→ Cbr (a) : φ −→ embrψ (φ)

with the right hand side given by (8).
(2) Suppose ψ is right allowable with respect to a cA∞-structure µ on a. Then embrψ (µ) is a

cA∞-structure on a as well.

Proof. This follows from straightforward calculations, making use of analogous techniques
as [22, Proposition 3.11]. �

Example 2.10. In Proposition 2.9(1), for any ψ ∈ C1(a)0, we can choose the sub-brace algebra

C′

br (a) = C⊕

br (a)

and in this case, we obtain a brace algebra morphism

embrψ : C⊕

br (a) −→ C⊕

br (a) : φ −→ embrψ (φ).
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Suppose we now consider a cA∞-structure µ on a with µn = 0 for n ≥ n0. Then we have
µ ∈ C⊕

br (a) and the same holds for the new cA∞-structure embrψ (µ).

Proposition 2.11. Consider elements φ, δ, ψ ∈ C(a) with δ ∈ C(a)0. We have

embrδ+ψ (φ) = embrψ (embrδ(φ)).

Proof. In the expression of embrδ+ψ (φ) we encounter the expressions

αn = φ{(δ + ψ)⊗n
} =

n
k=0


σ∈Sn

φ{βk
σ(1), . . . , β

k
σ(n)}

where βk
1 = · · · = βk

k = δ and βk
k+1 = · · · = βk

n = ψ . According to Lemma 2.3, since
δ ∈ C(a)0, we have

σ∈Sn

φ{βk
σ(1), . . . , β

k
σ(n)} = φ{δ⊗k

}{ψ⊗n−k
}.

We thus have

embrδ+ψ (φ) =

∞
n=0

n
k=0

φ{δ⊗k
}{ψ⊗n−k

}.

This can be reorganized into

embrδ+ψ (φ) =

∞
m,l=0

φ{δ⊗l
}{ψ⊗m

} =

∞
m=0


∞

l=0

φ{δ⊗l
}


{ψ⊗m

}

which is precisely embrψ (embrδ(φ)) as desired. �

2.5. cA∞-morphisms

Let a and b be quivers. We are interested in cocategory morphisms Ba −→ Bb.

Proposition 2.12. Consider a map f : Ob(a) −→ Ob(b) and an element

F ∈ C1(a, b) f = [Ba,Σb]
0
f .

For n ≥ 1, consider the morphism of quivers φn given by

Ba −→
∆(n−1)

(Ba)⊗n
−→
F⊗n

(Σb)⊗n

and put φ0 = kOb( f ) ◦ p0. The following are equivalent:

(1) For every m ∈ N and α ∈ (Σa)⊗m there exists an n0 ∈ N such that φn(α) = 0 for all
n ≥ n0.

(2) There exists a unique counital cocategory morphism φ : Ba −→ Bb with underlying map f
and with p1φ = φ1 = F, and this morphism satisfies pnφ = φn .

We call an element F ∈ C1(a, b) f that satisfies the equivalent conditions of Proposi-
tion 2.12 extendable, and we denote the subset of extendable elements by

C1
exb(a, b) f ⊆ C1(a, b) f .
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It is clear by Proposition 2.12 that the set of extendable elements forms an abelian subgroup for
the pointwise addition, and that it is compatible with compositions

C1(b, c)g ⊗ C1
exb(a, b) f −→ C1

exb(a, c)g f .

Definition 2.13. Let a be a quiver, X a set and f : X −→ Ob(a) a map. A collection of elements
(αx )x∈X with αx ∈ a( f (x), f (x)) is called strongly tensor nilpotent if there exists an n ∈ N such
that for every element

γ = βk ⊗ · · · ⊗ β1 ∈ a(Ak−1, Ak)⊗ · · · ⊗ a(A0, A1)

for which there exist n different indices i1, . . . , in with βim = αx for some x , we have that γ = 0.

Proposition 2.14. Consider a map f : Ob(a) −→ Ob(b) and an element

F ∈ C1(a, b) f = [Ba,Σb]
0
f .

Suppose the element F0 = (F0(1k,A))A∈a ∈


A∈a b( f (A), f (A)) is strongly tensor nilpotent in
the sense of Definition 2.13. Then F is extendable.

Proof. Condition (1) in Proposition 2.12 is fulfilled by taking n > m. �

Remark 2.15. If one works with filtered quivers 0 ⊆ · · · ⊆ Fλ
′

a ⊆ Fλa ⊆ · · · ⊆ F0a = a
with λ′

≥ λ over some ordered monoid Λ, one obtains natural induced filtrations on Ba
and completions B̂a. In this case, one can use a more general notion of complete cocategory
morphisms B̂a −→ B̂b, which can be obtained from elements F ∈ C1(a, b) f with (F0)A ∈

Fλb( f (A), f (A)) for some λ ≠ 0. This setup encompasses both deformations in the direction
of complete local rings and Fukaya categories.

Proposition 2.16. Consider quivers a, b and c and maps f : Ob(a) −→ Ob(b), g : Ob(b) −→

Ob(c). Consider cocategory morphisms α : Ba −→ Bb and β : Bb −→ Bc with underlying
morphisms f and g and with p1α = F and p1β = G the extendable elements defining α and β.
For the composition βα : Ba −→ Bc, we have that p1βα is given by

(G ◦ α)(x) =


n

G ◦ (F⊗n∆(n−1))(x)

According to Proposition 2.16, we obtain associative operations

∗ : C1
exb(b, c)g × C1

exb(a, b) f −→ C1
exb(a, c)g f : (G, F) −→ G ∗ F.

Definition 2.17. Consider cA∞-categories (a, µ) and (b, µ′). A morphism a −→ b of cA∞-
categories (or cA∞-morphism or cA∞-functor) with underlying map f : Ob(a) −→ Ob(b) is
an element

F ∈ C1(a, b) f

such that:

(1) the couple (µ′, F0) is allowable;
(2) there is a (necessarily unique) morphism of cocategories φ : Ba −→ Bb with p1φ = F ;
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(3) the morphism φ is a morphism of differential graded cocategories, i.e.

d̂φ = φd̂ ′

where d̂ =


n µ̂n , with µ̂n as defined in Proposition 2.4.

Proposition 2.18. Consider cA∞-categories (a, µ) and (b, µ′) and a map f : Ob(a) −→

Ob(b). An extendable element F = (Fn)n≥0 ∈ C1(a, b) f is a cA∞-morphisms if and only
if 

j+k+l=p

(−1) jk+l F j+l+1(1⊗ j
⊗ µk ⊗ 1⊗l) =


i1+···+ir =p

(−1)sµ′
r (Fi1 , . . . , Fir ) (9)

where for p ≥ 2 we have s =


2≤u≤r

(1 − iu)


1≤v≤u−1 iv


, for p = 1 we have that s = 1,

and for p = 0, s = 0. We also remark that for p = 0 the right-hand side of (9) is given by

µ′

0 + µ′

1(F0)+ µ′

2(F0, F0)+ · · ·

We obtain a subset of cA∞-morphisms

C1
c∞(a, b) f ⊆ C1

exb(a, b) f

which is closed under the associative operation ∗.

Example 2.19. For a quiver a, consider the map 1Ob(a) : Ob(a) −→ Ob(a). The element
Ia = (1a(A,A′) ∈ Hom0

k(a(A, A′), a(A, A′))) ∈ C1
exb(a, a)1Ob(a) is a unit element for ∗. The

corresponding cocategory morphism is the identity 1Ba : Ba −→ Ba. If a is endowed with a
cA∞-structure, Ia is a cA∞-isomorphism (see Definition 2.22).

Definition 2.20. Consider cdg-categories (a, µ) and (b, µ′). A cdg-functor with underlying map
f : Ob(a) −→ Ob(b) is a cA∞-functor F with Fn = 0 for n ≥ 2. A cdg-functor F is strict if
F0 = 0.

Proposition 2.21. Consider cdg-categories (a, µ) and (b, µ′) and an element F = (F0, F1)

with

F0 = (FA) ∈


A∈a

b( f (A), f (A))1

and

F1 = (FA,A′) ∈


A,A′∈a

Hom0
k(a(A, A′), b( f (A), f (A′)).

The element F is a cdg-functor provided the following identities hold:

F1(µ0) = µ′

0 + µ′

1(F0)+ µ′

2(F0, F0) (10)

F1µ1 = −µ′

1 F1 − µ′

2(F1 ⊗ F0)− µ′

2(F0 ⊗ F1) (11)

F1µ2 = µ′

2(F1 ⊗ F1). (12)

Definition 2.22. A cA∞-morphism F ∈ C1
c∞(a, b) f is a cA∞-isomorphism if there exists a

cA∞-morphism G ∈ C1
c∞(b, a) f with f and g inverse bijections and G∗F = Ia and F∗G = Ib.
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Proposition 2.23. Consider cA∞-categories (a, µ) and (b, µ′), a map f : Ob(a) −→ Ob(b)
and an element J ∈ [a, b]

0
f and an element ψ ∈ C1(a, b). Then

J + ψ ∈ C1(a, b) f

is a morphisms of cA∞-categories if and only if

embrψ (µ′) = (J + ψ){µ}.

Proof. By definition, J + ψ is a morphism of cA∞-categories if and only if
j+k+l=p

(−1) jk+l(J + ψ)(1⊗ j
⊗ µk ⊗ 1⊗l)

=


i1+···+ir =p

(−1)sµ′
r ((J + ψ)i1 , . . . , (J + ψ)ir ). (13)

This identity is given by the following equations: for p = 0

(J + ψ)1(µ0) =


k

µ′

k((ψ0)
⊗k)

for p = 1

(J + ψ)1(µ1)+ (J + ψ)2(1 ⊗ µ0 − µ0 ⊗ 1)
= −(µ′)1(J )− (µ′)1(ψ1)− (µ′)2(J ⊗ ψ0 + ψ0 ⊗ J )

− (µ′)2(ψ1 ⊗ ψ0 + ψ0 ⊗ ψ1)− · · ·

and so on. We thus see that the identity (13) can be expressed as

(J + ψ){µ} = embrψ (µ′). �

Corollary 2.24. Consider a cA∞-structure µ′ on a and let µ = embrψ (µ′) for an element
ψ ∈ C1(a)0. Then 1 + ψ : (a, µ) −→ (a, µ′) determines a morphism of cA∞-categories.

Proof. We have to verify that the condition in Proposition 2.23 is satisfied. For this it suffices to
note that for ψ ∈ C1(a)0 we have ψ{µ} = 0 whence (1 + ψ){µ} = embrψ (µ′). �

2.6. Strict curved morphisms

Consider cA∞-categories a, b, a map f : Ob(a) −→ Ob(b), and an element

J ∈ [Σa,Σb]
0
f ⊆ C1

exb(a, b) f .

Proposition 2.25. The element J is a cA∞-morphism if and only if for all n

µ′
n J⊗n

= Jµn . (14)

Proof. This is an application of Proposition 2.23 with ψ = 0. �

A cA∞-morphism J ∈ [Σa,Σb]
0
f will be called a strict cA∞-morphism. A strict cA∞-

morphisms which is an isomorphism will be called a strict cA∞-isomorphism.
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Proposition 2.26. A strict cA∞-morphism J is a cA∞-isomorphism if and only if the underlying
map f : Ob(a) −→ Ob(b) is bijective and all the morphisms

JA,A′ : a(A, A′) −→ b( f (A), f (A′))

are k-linear isomorphisms.

Proof. The fact that the map J−1, with underlying map f −1
: Ob(b) −→ Ob(a) and given by

the maps

J−1
A,A′ : b( f (A), f (A′)) −→ a(A, A′)

is the inverse to J for the operation ∗ is immediate. By (14) we know that J−1µ′
n = µn


J−1⊗n ,

and thus that J−1 is a cA∞-morphism.
The only if statement is immediate from the definition of the action ∗ and the fact that J has

only his first component non-zero. �

2.7. Units and isomorphisms

A cA∞-category (a, µ) is strictly unital if there exists

1 = (1A)A ∈


A∈a

a(A, A)0

with for all n ≥ 3, f, f1, . . . , fn−1 ∈ a:
(U1) µ1(1A) = 0.
(U2) µ2(1A, f ) = f = µ2( f, 1A).
(Un) µn( fn−1, . . . , 1A, . . . , f1) = 0.

The (unique) element 1 is called the strict unit for a, and 1A is called the strict unit for A.
An A∞-category (a, µ) is homotopy unital if H0a is unital.

Definition 2.27. Let a be a cA∞-category. An element α ∈ a(A, A′)0 is an isomorphism if the
following conditions hold for B ∈ a, f1, . . . , fn ∈ a, n ≥ 3.
(Iso1) µ1(α) = 0.
(Iso2) µ2(α,−) : a(C, A) −→ a(C, A′) and µ2(−, α) : a(A′,C) −→ a(A,C) are

isomorphisms of k-modules.
(Ison) µn( fn, . . . , α, . . . , f1) = 0 for n ≥ 3.

Let a be a homotopy unital A∞-category. An element α ∈ a(A, A′)0 is a homotopy isomorphism
if µ1(α) = 0 and the image of α in H0(a) is an isomorphism.

Proposition 2.28. Let a be a homotopy unital A∞-category. If α ∈ a(A, A′)0 is a strict
isomorphism, then α is a homotopy isomorphism.

Proof. By (Iso1), µ1(α) = 0. Let τA ∈ a(A, A)0 be an arbitrary element with [τA] = 1A ∈ H0a
and τA′ ∈ a(A′, A′)0 an arbitrary element with [τA′ ] = 1A′ ∈ H0a. In particular µ1(τA) = 0,
µ1(τA′) = 0. By (Iso2), there is a unique element β ∈ a(A′, A) with µ2(α, β) = τA′ and a
unique element γ ∈ a(A, A′) with µ2(γ, α) = τA. We have

0 = µ1(τA) = µ2(µ1(γ ), α)+ µ2(γ, µ1(α)) = µ2(µ1(γ ), α)

by (Iso1), so by (Iso2) we have µ1(γ ) = 0 and similarly µ1(β) = 0. Further, in H0a, we have
[γ ][α] = 1A and [α][β] = 1A′ , so [β] = [γ ] is an inverse isomorphism of [α]. �
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Proposition 2.29. Suppose a is strictly unital and α ∈ a(A, A′)0 satisfies (Iso1) and (Ison) for
n ≥ 3. Then (Iso2) is equivalent to

(Iso2′) There exists α′
∈ a0(A′, A) with µ2(α

′, α) = 1A, µ2(α, α
′) = 1A′ .

Proof. Suppose first that (Iso2) holds. By considering µ2(α,−) : a(A′, A) −→ a(A′, A′) and
1A′ ∈ a(A′.A′), we obtain a unique α′

∈ a(A′, A) with µ2(α, α
′) = 1A′ . Similarly we obtain a

unique α′′
∈ a(A′, A) with µ2(α

′′, α) = 1A. For three arbitrary consecutive elements g, f, h, we
have

0 = µ{µ}(g, f, h) = µ1(µ3(g, f, h))

−µ2(µ2(g, f ), h)+ µ2(g, µ2( f, h))

+µ3(µ1(g), f, h)+ µ3(g, µ1( f ), h)+ µ3(g, f, µ1(h))

−µ4(µ0, g, f, h)+ µ4(g, µ0, f, h)− µ4(g, f, µ0, h)

+µ4(g, f, h, µ0). (15)

Applying this to α′′, α, α′, we see that by (Ison), only the second line contributes non-zero terms,
whence

α′
= µ2(µ2(α

′′, α), α′) = µ2(α
′′, µ2(α, α

′)) = α′′.

Conversely, suppose (Iso2′) holds. We look into µ2(α,−). We claim that µ2(α
′,−):

a(C, A′) −→ a(C, A) is an inverse isomorphism of µ2(α,−). We compute for instance
µ2(α, µ2(α

′, h)) for an arbitrary element h. Applying (15) to α, α′, h, we see that by (Iso1)
and (Ison), only the terms on the second line are non-zero, whence

h = µ2(1, h) = µ2(µ2(α, α
′), h) = µ2(α, µ2(α

′, h))

as desired. �

Proposition 2.30. Let a be a cA∞-category and let α ∈ a(A, A′)0 be a strict isomorphism. The
following identities hold:

(1) µ2(µ0,A′ , α) = µ2(α, µ0,A).
(2) µ2(µ1( f ), α) = µ1(µ2( f, α)) and µ2(α, µ1( f )) = µ1(µ2(α, f )).
(3) µ2(µn( fn, . . . , f1), α) = µn( fn, . . . , µ2( f1, α)) and µ2(α, µn( fn, . . . , f1) = µn(µ2

(α, fn), . . . , f1).
(4) µn( fn, . . . , µ2( fi , α), fi−1, . . . , f1) = µn( fn, . . . , fi , µ2(α, fi−1), . . . , f1).

Proof. This immediately follows from the cA∞ identities expressing µ{µ} = 0, implementing
the vanishing of terms by the definition of an isomorphism. �

We say that a diagram

A
α //

f
��

A′

f ′

��
B

β
// B ′

of degree zero elements is µ2-commutative if µ2(β, f ) = µ2( f ′, α).
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Proposition 2.31. Suppose the higher diagram is µ2-commutative and α and β are isomor-
phisms. Then µ1( f ) = 0 if and only if µ1( f ′) = 0.

Proof. By Proposition 2.30, we have

µ2(β, µ1( f )) = µ1(µ2(β, f )) = µ1(µ2( f ′, α)) = µ2(µ1( f ′), α)

so the result follows form (Iso2). �

2.8. Equivalences

Definition 2.32. Let F ∈ C1
c∞(a, b) f be a cA∞-morphism between cA∞-categories.

(1) F is fully faithful if the morphisms

F1 : a(A, A′) −→ b( f (A), f (A′))

are k-linear isomorphisms.
(2) F is a strong equivalence if F is fully faithful and there is a map g : Ob(b) −→ Ob(a) and

isomorphisms ηB : f g(B) −→ B for B ∈ b.

Let F ∈ C1
∞(a, b) f be an A∞-morphism between A∞-categories.

(3) F is homotopy fully faithful if the morphisms

F1 : (a(A, A′), µa
1) −→ (b( f (A), f (A′)), µb

1)

are homotopy-equivalences of chain complexes.
(4) F is a homotopy equivalence if F is homotopy fully faithful and the induced functor

H0 F : H0a −→ H0b is essentially surjective.

Proposition 2.33. If F ∈ C1
∞(a, b) f is a strong equivalence between homotopy unital A∞-

categories, then F is a homotopy-equivalence.

Proof. Since F1 is an isomorphism of chain complexes, it is certainly a homotopy-equivalence.
Essential surjectivity of H0 F follows from Proposition 2.28. �

2.9. Normalized Hochschild complex

Let (a, µ) be a strictly unital cA∞-category with Hochschild complex C(a). In this section
we introduce the sub B∞-algebra of normalized cochains.

Definition 2.34. A cochain φ ∈ C(a) is called i-normalized if and only if ∀n ∈ N we have that
φn( f1, . . . , fn) = 0 when there exist an 1 ≤ k ≤ i such that fk = 1A.

A cochain φ ∈ C(a) is called normalized if it is i-normalized for every i ≥ 1.

Proposition 2.35. Let a be a cA∞-category and CN (a) the normalized Hochschild complex
consisting of the normalized cochains, then the canonical inclusion CN (a) −→ C(a) is a quasi-
isomorphism.

Proof. The proof is a slight alternation of the proof in [18, Theorem 4.4], where it is proven
for an A∞-algebra. We define a sequence of maps hi : C(a) −→ C(a) as follows. Take
c ∈


A0,...,An

Hom(a(An−1, An) ⊗ · · · ⊗ a(A0, A1), a(A0, An)), then we define si (c) to be
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the cochain in
A0,...,An−1

Hom(a(An−2, An−1)⊗ · · · a(Ai , Ai+1)⊗ a(Ai , Ai )

⊗a(Ai−1, Ai )⊗ · · · ⊗ a(A0, A1), a(A0, An−1))

given by

(si (c))(a1, . . . , an−1) = (−1)|a1|+···+|ai |+i+1c(a1, . . . , ai , 1, ai+1, . . . , an−1).

Since this is for some arbitrary n, we can extend it linearly to obtain a morphism si defined on
C(a). We now define

hi (c) = c − D(si (c))− si (D(c)).

Completely analogously to [18] one shows that these hi take a i-normalized Hochschild
cochain to a i+1-normalized Hochschild cochain. We thus have that the morphism H : C(a) −→

CN (a), given by hn ◦ . . . ◦ h0 on


A0,...,An
Hom(a(An−1, An)⊗ · · · ⊗ a(A0, A1), a(A0, An)) is

a chain deformation retraction, inducing the fact that the canonical inclusion CN (a) −→ C(a) is
a quasi-isomorphism. �

3. Twisted objects

In this section we introduce an important kind of models for triangulated categories, of which
we will investigate deformations in Section 4. These models originate from two constructions.
For the first construction (Section 3.3), we start with an arbitrary cA∞-category a and construct
the category Free(a) with as objects infinite sums of shifts of a-objects, as morphisms column
finite matrices, and as cA∞-structure the trivial extension of the structure for a.

For the second construction (Section 3.2), we start with an arbitrary cA∞-category (a, µ) and
a so called choice of connections on a. Here, a connection on an object A ∈ a is simply an
element δA ∈ a(A, A)1 and a choice of connections consists of a collection (∆A)A∈a of subsets
∆A ⊆ a(A, A)1. The twisted version of a with respect to ∆ is the quiver a∆ with as objects
couples (A, δA) with δA ∈ ∆A and the cA∞-structure “twisted” with respect to the Hochschild
1-element δ = (δA)(A,δA) to the “embrace” expression

embrδ(µ) =

∞
m=0

µ{ψ⊗m
} (16)

(where we obviously have to take care that this expression makes sense). Categories that originate
as the combined construction Free(a)∆ for a choice of connections on a are called categories
of twisted objects over a. The primordial example of a category of twisted objects is of course
the original dg-category of twisted complexes over a dg algebra [4], and since this construction
a number of variants have been considered in the literature [19,7,22]. In Sections 3.4–3.6, we
describe how a number of homotopy and derived categories can be modeled by this construction,
and in Proposition 3.23, we give natural conditions for these general models to be strongly pre-
triangulated.

3.1. Trivial variants

Let a be a quiver. Consider a collection of sets X = (XA)A indexed by the objects A ∈ Ob(a).
The corresponding trivial variant aX is the quiver with Ob(aX ) =


A∈Ob(a) XA and, for
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X A ∈ XA, YB ∈ XB :

aX (X A, YB) = a(A, B).

If an element φ ∈ Cm+1(a) is determined by elements

φn ∈ Homm
k (ΣaX (An−1, An)⊗ · · · ⊗ ΣaX (A0, A1),ΣaX (A0, An))

for A0, . . . , An ∈ a, then there results an obvious element φX ∈ Cm+1(aX ) determined by

φn ∈ Homm
k (Σa(X An−1 , X An )⊗ · · · ⊗ Σa(X A0 , X A1),Σa(X A0 , X An ))

for X A0 , . . . , X An ∈ aX . We thus obtain a morphism

(−)X : C(a) −→ C(aX ).

Proposition 3.1. (−)X is a brace algebra morphism.

Note that by choosing some XA = ∅, we can eliminate objects from a. If we take each XA
either ∅ or a singleton, aX obviously corresponds to a full subquiver b ⊆ a and (−)X is the usual
“limited functoriality” morphism. IfXA ≠ ∅ for all A ∈ a, we call aX a trivial enlargement of a.

Proposition 3.2. If aX is a trivial enlargement of a, then (−)X is a brace algebra isomorphism.

3.2. Twisted variants

Let a be a quiver.

Definition 3.3. A connection on A ∈ a is an element ψA ∈ a1(A, A). A choice of connections
on a is a collection Ψ = (ΨA)A∈a of subsets ΨA ⊆ a1(A, A).

We denote by con the choice of connections with con A = a1(A, A).
For a choice of connections Ψ in a, we consider the associated quiver aΨ as in Section 3.1

and we denote the objects of aΨ by (A, ψA) with ψA ∈ ΨA. Next we consider ψ ∈ C1(aΨ )0
determined by the elements

ψA ∈ aΨ ((A, ψA), (A, ψA))
1

= a(A, A)1.

We are interested in the situation where we can transport Hochschild elements, in particular
cA∞-structures, from a to aΨ by “twisting” with respect to the element ψ . To do so, we suppose
that ψ is right allowable with respect to the image S of (−)Ψ : C(a) −→ C(aΨ ). In this case,
by Proposition 2.9, we obtain the brace algebra morphism

embrψ = embrψ ((−)Ψ ) : C(a) −→ C(aΨ ).

If µ is a cA∞-structure on a, we obtain a new cA∞-structure embrψ (µ) on aΨ , a twisted variant
of µ.

We analyze the situation a bit further in case the quivers a and aΨ are considered as discrete
quivers in the definition of allowability.

Definition 3.4. The collection Ψ = (ΨA)A∈a of subsets ΨA ⊆ a1(A, A) is a-nilpotent if
for every ψ ∈ C1(a)0 with ψA ∈ ΨA for every A, for every φ ∈ C(a) and for every
( fn, . . . , f1) ∈ a(An−1, An)⊗ · · · ⊗ a(A0, A1), there is an m0 ∈ N such that for every m ≥ m0

φm+n{ψ⊗m
}( fn, . . . , f1) = 0.
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Proposition 3.5. The collection (ΨA)A∈a of subsets ΨA ⊆ a1(A, A) is a-nilpotent if and only if
the corresponding element ψ ∈ C(aΨ ) is right allowable with respect to S.

Remark 3.6. The construction of the category of twisted variants with respect to a choice of
connections constitutes a fundamental step in the definition of Fukaya type categories. Indeed,
these categories are first defined as cA∞-categories, and by attaching connections (also called
bounding cochains) to these objects, a maximal twisted version is constructed for which the
curvature elements are such that they allow for the calculation of cohomology groups [9].

3.3. Twisted objects

An important source of examples of twisted variants is given by so called quivers of twisted
objects. This notion was introduced directly in [22].

To obtain quivers of twisted objects over a quiver a, we need one additional step. Namely,
we first construct the category Free(a). An object of Free(a) is a formal expression M =

⊕i∈I Σmi Ai with I an arbitrary index set, Ai ∈ a and mi ∈ Z. For another N = ⊕ j∈J Σ ni Bi ∈

Free(a), we have the graded Hom-space

Free(a)(M, N ) =


i

⊕ j Σ n j −mi a(Ai , B j ).

An element f ∈ Free(a)(M, N ) is represented by a matrix f = ( f j i ) where f j i represents the
element σ n j −mi f j i . We naturally have a fully faithful embedding of k-quivers

a −→ Free(a) : A −→ A

and a trivial way of extending Hochschild elements mimicking matrix multiplication (see
[22, Proposition 3.2]):

ι : C(a) −→ C(Free(a)) : φ −→ φ.

Now we consider a choice of connections Ψ on Free(a) and construct the quiver Free(a)Ψ . We
suppose that the resulting ψ ∈ C1(Free(a)Ψ )0 is S-allowable with respect to the image S of

(−)Ψ ι : C(a) −→ C(Free(a)) −→ C(Free(a)Ψ ).

Hence, we obtain the brace algebra morphism

embrψ = embrψ ((−)Ψ ι) : C(a) −→ C(Free(a)Ψ ).

If µ is a cA∞-structure on a, we thus obtain a cA∞-structure embrψ (µ) on Free(a)Ψ . We call
Free(a)Ψ with this structure a category of twisted objects over a.

A choice of connections Ψ on Free(a) is called pure if there exists a full subcategory
Free′(a) ⊆ Free(a) with

ΨM =


Free(a)(M,M)1 if M ∈ Free′(a)
∅ else.

Thus, in this case we have Free(a)Ψ = Free′(a)con . The corresponding cA∞-category is called
a pure category of twisted objects over a.

Even if a is considered as a discrete quiver, we can endow Free(a) and Free(a)Ψ
with the pointwise topologies on the Hom-modules. More precisely, we endow the module
Free(a)(M, N ) above with the product topology over i . We use these topologies to define
allowability.
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Definition 3.7. The choice of connections Ψ = (ΨM )M∈Free(a), with

ΨM ⊆ Free(a)1(M,M),

is locally a-nilpotent if for every ψ ∈ C1(a)0 with ψM ∈ ΨM for every M , for every φ ∈ C(a),
for every ( fn, . . . , f1) ∈ Free(a)(Mn−1,Mn)⊗· · ·⊗Free(a)(M0,M1)with M0 = ⊕i∈I Σ ni Ai ,
and for every i there is an m0 ∈ N such that for every m ≥ m0

φm+n{ψ⊗m
}( fn, . . . , f1)(i) = 0.

Proposition 3.8. The choice of connections (ΨA)A∈a is locally a-nilpotent if and only if the
corresponding element ψ ∈ C(aΨ ) is S-allowable.

3.4. Models for derived categories

Let a be a quiver. For an element

f = ( f j i ) ∈ Free(a)(M, N ) =


i∈I

⊕ j∈J Σ n j −mi a(Ai , B j )

and a subset I ′
⊆ I , we put N f (I ′) = { j ∈ J | ∃i ∈ I ′ f j i ≠ 0}. Recall from [22] that the

element f is called intrinsically locally nilpotent if for every i ∈ I there exists an n ∈ N with
N n

f ({i}) = ∅.
Let iln be the choice of connections on Free(a) with ilnM ⊆ Free(a)(M,M)1 consisting

of the intrinsically locally nilpotent connections. According to [22, Proposition 3.6], iln is a
locally a-nilpotent choice of connections. Consequently, if µ is a cA∞-structure on a, we obtain
a cA∞-structure embriln(µ) on Free(a)iln .

This category of twisted complexes Free(a)iln is in fact the extension to the cA∞-setting
of the finite version free(a)iln , containing only the objects M = ⊕

n
i=1 Σ ni Ai , which was the

original category of twisted complexes over a dg-category a as introduced in [4]. Restricting to
the A∞-part results in the extension to the A∞-setting as described in [19]. Furthermore, if we
work over a dg-category a, it is known that the dg-part of the infinite version, (Free(a)iln)∞,
forms a model for the derived category D(a) of a, i.e.

H0(Free(a)iln)∞ ∼= D(a). (17)

In this section we prove that (17) holds for an arbitrary A∞-category a (Proposition 3.9, [22,
Remark 3.17]).

The notion of modules over an A∞-algebra was first introduced by Keller, and generalized
by Lefèvre-Hasegawa to modules over an A∞-category in [19]. Following ideas of Seidel [33]
for dg-modules, Lyubashenko describes module categories as A∞-functor categories. Precisely,
an A∞-module over an A∞-category a is an A∞-functor F : a

op
−→ Com(k) where Com(k)

is the dg-category of complexes of k-modules of Example 2.7. With A∞- transformations as
morphisms, A∞-modules over a can be organized into an A∞-category Mod∞(a). We refer
the reader to [25,26] for further details. The derived category D(a) of a is by definition the
localization of the homotopy category H0(Mod∞(a)) by the quasi-isomorphisms.

Let a be an A∞-category. Every object A ∈ a gives rise to a representable module

a(−, A) : a
op

−→ Com(k) : B −→ a(B, A).
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By [26] we know that these modules yield an A∞-Yoneda functor

Y : a −→ Mod∞(a) : A −→ a(−, A).

If we denote by Rep(a) ⊆ Mod∞(a) the full subcategory of representable modules, then we
know from [26, A.9] that

Y : a −→ Rep(a)

is a homotopy equivalence.
We now extend this Yoneda-embedding to an A∞-functor

Y : (Free(a)iln)∞ −→ Mod∞(a) (18)

which is given by the underlying morphism y : Ob((Free(a)iln)∞) −→ Ob(Mod∞(a)) :
Σ Ai →


Σa(−, Ai ), and

Y 1
M,N : Free(a)(M, N ) −→ Mod∞(a)(y(M), y(N )) : f → (embrδµ)2( f,−);

Y 2
M,N : Free(a)⊗2(M, N ) −→ Mod∞(a)(y(M), y(N )) : (g, f ) → (embrδµ)3(g, f,−);
....

The module y(M) =


Σa(−, Ai ) here is defined as the A∞-functor with underlying morphism
a

op
−→ Com(k) : A →


Σa(A, Ai ), d = (embrδµ)1


and

M1
: a(A, B) −→ Com(k)(M(B),M(A)) : f → (embrδµ)2(−, f );

M2
: a⊗2(A, B) −→ Com(k)(M(B),M(A)) : (g, f ) → (embrδµ)3(−, g, f );

....

Proposition 3.9 ([22, Remark 3.17]). The functor

πH0(Y ) : H0((Free(a)iln)∞) −→ H0(Mod(a)) −→ D(a)

is an equivalence of categories.

Proof. By [26, A.9] we know that there is a A∞-Yoneda functor yielding an homotopy
equivalence

Y : (Free(a)iln)∞ −→ Rep((Free(a)iln)∞).

We will now construct a homotopy fully faithful functor R : Rep((Free(a)iln)∞) −→

Mod∞(a). The underlying morphism is given by restricting the (Free(a)iln)∞-modules to a,
so we have

R : Ob(Rep((Free(a)iln)∞)) −→ Ob(Mod∞(a)) : (Free(a)iln)∞(−,M)

→


⊕Σa(−, Ai ), d


R : Rep((Free(a)iln)∞)


(Free(a)iln)∞(−,M), (Free(a)iln)∞(−, N )


−→ Mod∞(a)


(⊕Σa(−, Ai ), d), (⊕Σa(−, B j ), d)


f −→ f |a

where d = µ1 +µ2(δM ,−)+µ3(δM , δM ,−)+ · · · . The homotopy-inverse to this map is given
by extending g ∈ Mod∞(a)


(⊕Σ Ai , d), (⊕Σ B j , d)


along the direct sums and shifts.



Author's personal copy

O. De Deken, W. Lowen / Advances in Mathematics 243 (2013) 330–374 351

Composing this functor with the Yoneda functor Y , we see that its composition (18) is
homotopy fully faithful as well.

Since (Free(a)iln)∞ is the formal construction of adding arbitrary direct sums and cones, it
is clear that this homotopy fully faithful functor induces an equivalence of categories

H0((Free(a)iln)∞) −→ tria⊕


H0(Rep(a))


where tria⊕ is taken in H0(Mod(a)). This gives the announced equivalence, since
tria⊕ H0((Rep(a))) ∼= D(a). �

3.5. Models for homotopy categories

As discussed in [22, Section 3.5], categories of (pre)complexes can also be described using
twisted objects. Let (a, µ) be a linear category. We define a pure category of twisted objects
for which Pr(a) = Free′(a) ⊆ Free(a) consists of the objects M = ⊕i∈Z Σ i Ai . We denote
the corresponding pure choice of connections by pre and obtain the corresponding cdg-category
Free(a)pre = Pr(a)con . This category is canonically strictly isomorphic to the cdg-category
PCom(a) of precomplexes of a-objects, and its infinity part is canonically strictly isomorphic to
the dg-category Com(a) of complexes of a-objects.

Suppose a has a zero object. Let the full subcategory Pr+(a) (resp. Pr−(a), resp. Prb(a)) of
Pr(a) consist of the objects M = ⊕i∈Z Σ i Ai with Ai = 0 for i ≤ n0 for some n0 (resp. for
i ≥ n0 for some n0, resp. for i ≤ n0 and for i ≥ n1 for some n0 and n1). We thus obtain the
pure category of twisted objects Pr+(a)con (resp. Pr−(a)con , resp. Prb(a)con). This category is
canonically strictly isomorphic to the cdg-category PCom+(a) of bounded below precomplexes
(resp. PCom−(a) of bounded above precomplexes, resp. PComb(a) of bounded precomplexes)
of a-objects, and its infinity part is canonically strictly isomorphic to the dg-category Com+(a)
of bounded below complexes (resp. Com−(a) of bounded above complexes, resp. Comb(a) of
bounded complexes) of a-objects.

3.6. Models for qdg- and q A∞-modules

Let a be a cdg-category. It is known that due to curvature, in general there is no satisfactory
notion of a derived category for a (see for instance [15] for a discussions of the problems that
arise). On the other hand, in [31], Positselski defines a number of so called derived categories
of the second kind over a. These categories should not be seen as analogues of ordinary derived
categories over dg-categories, but rather as certain universal constructions sitting in between
a (non-existing) derived category and the entire homotopy category. In general, one of the
shortcomings of these categories is that they may contain little information (in particular too
little information to recover a itself, see [15] for some examples where the categories vanish
altogether). This situation should not be too surprising given the fact that the objects of a itself
cannot naturally be made into cdg-modules over a. They can, however, be made into so called
qdg-modules [29]. In this section, we investigate the relation of the category Free(a)con with the
category Modqdg(a) of qdg-modules from [29].

Let a and b be cdg-categories. Recall from [29] that a qdg-functor from a to b with underlying
map f : Ob(a) −→ Ob(b) consists of the same datum F ∈ C1(a, b) f , but from the conditions
(10)–(12), condition (10) is omitted. A qdg-module over a is by definition a strict qdg-functor
from a

op
to the cdg-category PCom(k) of precomplexes of k-modules (see Example 2.7).

Similarly, a cdg-module over a is a strict cdg-functor from a
op

to PCom(k). Thus, a qdg-module
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M is given by a map

Ob(a) −→ Ob(PCom(k)) : A −→ M(A)

and k-linear maps

MA,A′ : a(A, A′) −→ Hom(M(A′),M(A)) : f −→ M( f ).

For qdg-modules M and N , we put Hom(M, N ) ⊆


A∈a Hom(M(A), N (A)) the graded
k-module of natural transformations, i.e. a natural transformation of degree n is given by a
collection (ρA) with ρA ∈ Homn(M(A), N (A)) with for all f ∈ a(A, A′):

µ′

2(ρA′ ,M( f )) = (−1)n| f |µ′

2(N ( f ), ρA).

This defines the quiver Modqdg(a) of qdg-modules over a. We denote the cdg-structure on a by
µ and the one on PCom(k) by µ′. The cdg-structure µ′′ on Modqdg(a) is such that µ′′

2 is the
composition of natural transformations based upon µ′

2,

((µ′′

1)M,N )A = (µ′

1)M(A),N (A),

and

((µ′′

0)M )A = (µ′

0)M(A) − M((µ0)A).

Clearly, if we let Modcdg(a) denote the dg-category of cdg-modules on a, we have

(Modqdg(a))∞ = Modcdg(a).

Every object A ∈ a determines a representable qdg-module

a(−, A) : a
op

−→ PCom(k) : B −→ (a(B, A), (µ1)B,A),

a(−, A) : a(B, B ′) −→ Hom(a(B ′, A), a(B, A)) : f −→ a( f, A) = µ2(−, f ).

Indeed, for f ∈ a(B, B ′), g ∈ a(B ′, B ′′) we have

(1) a(−, A)(µ1( f )) = µ2(−, µ1( f )) = µ1(µ2(−, f ))− µ2(µ1, f ) = µ′

1(a( f, A)).
(2) a(−, A)(µ2( f, g)) = µ2(−, µ2( f, g)) = µ2(µ2(−, f ), g) = µ′

2(a(−, A)( f ), a(−, A)(g)).

We thus obtain a Yoneda embedding:

Lemma 3.10. There is a fully faithful strict cdg-embedding

Y : a −→ Modqdg(a) : A −→ a(−, A),

Y : a(A, A′) −→ Hom(a(−, A), a(−, A′)) : g −→ (µ2(g,−))B∈a.

Proof. The existence of the fully faithful embedding is based upon the Yoneda Lemma for the
underlying Z-graded k-linear categories. One verifies that the resulting functor satisfies the cdg-
axioms. By definition of the multiplications on Modqdg(a) we have

(1) Y (µ0) = µ2(µ0,−) = µ1(µ1)+ µ2(−, µ0) = µ′′

0.

(2) Y (µ1) = µ2(µ1,−) = µ1(µ2(−,−))− µ2(−, µ1) = −µ′′

1(Y ).
(3) Y (µ2) = µ2(µ2(−,−),−) = µ2(−, µ2(−,−)) = µ′′

2(Y, Y ),

where the second equality in (3) comes from the fact that there are no higher order
multiplications. �
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In a unital cdg-category (c, µ), natural notions of isomorphisms, direct sums and shifts exist
(see [29, Section 1.2]). Further, for C ∈ c consider an arbitrary element τ ∈ c(C,C)1. A
twist of C with respect to τ is defined in [29, Section 1.2] as an element D = C(τ ) together
with morphisms i ∈ c(C, D)0, j ∈ c(D,C)0 with µ2( j, i) = 1C , µ2(i, j) = 1D and
µ2( j, µ1(i)) = τ .

Example 3.11. Consider the cdg-category PCom(a) over a linear category a of Example 2.7.
For a precomplex M = (M, dM ) and element τ ∈ Hom(M,M)1, a twist of (M, dM ) by τ
is given by the precomplex M(τ ) = (M, dM + τ). Similarly, for a cdg-category a, an object
M ∈ Modqdg(a), and an element τ = (τA)A ∈ Hom(M,M)1, a twist of M by τ is given by

M(τ ) : a
op

−→ PCom(a) : A −→ M(A)(τA).

Proposition 3.12. Let a be a cdg-category and let c be a cdg-category with direct sums, shifts
and arbitrary twists of objects. Consider a strict cdg-functor F : a −→ c. There is a strict cdg-
functor F̂ : Free(a)con −→ c extending F and compatible with direct sums, shifts and twists,
and F̂ is unique up to natural isomorphism of strict cdg-functors.

Proof. We first define a strict cdg-functor

F̂ : Free(a) −→ c : ⊕i∈I Σ ni Ai −→ ⊕i∈I Σ ni F(Ai )

making use of the direct sums and shifts in Modqdg(a). Next, for an object (M, δM ) ∈

Free(a)con , we consider the map

F̂ : Free(a)(M,M)1 −→ Hom(F̂(M), F̂(M))1

and consider F̂(δM ) ∈ Hom(F̂(M), F̂(M))1. Let F̂(M)(F̂(δM )) be the twist of F̂(M) by the
element F̂(δM ) in Modqdg(a). We obtain a further strict cdg-functor

F̂ : Free(a)con −→ c : (M, δM ) −→ F̂(M)(F̂(δM ))

with the required properties. This is still a cdg-functor, because the twist is taken with the element
F̂(δ), which is the extra element needed in the cdg-functor identity on the right-hand side because
of the strictness of F . �

Remark 3.13. The statement of Proposition 3.12 can be adapted to encompass choices of
connections ∆ different from con.

Proposition 3.14. The Yoneda embedding Y : a −→ Modqdg(a) has an extension

Ŷ : Free(a)con −→ Modqdg(a)

which is a fully faithful strict cdg-embedding with the graded free qdg-modules as essential
image.

Proof. This is an application of Proposition 3.12. We first obtain the strict cdg-functor

Ŷ : Free(a) −→ Modqdg(a) : ⊕i∈I Σ ni Ai −→ ⊕i∈I Σ ni a(−, Ai )

where we use the direct sums and shifts in Modqdg(a). Using their universal properties and
Lemma 3.10, this is easily seen to define a fully faithful strict cdg-functor. Obviously the further
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cdg-functor

Free(a)con −→ Modqdg(a) : (M, δM ) −→ Ŷ (M)(Ŷ (δM ))

is also fully faithful. The statement about the essential image is clear. �

Proposition 3.15. The restriction

(Ŷ )∞ : (Free(a)con)∞ −→ Modcdg(a)

is a fully faithful dg embedding with the graded free cdg-modules as essential image. In
particular, if a is graded Artinian, (Free(a)con)∞ is a model for the contraderived category
of a in the sense of [31].

Proof. Immediate from [31, Section 3.8]. �

We end this section by remarking that the natural setting to encompass the results
in Sections 3.4 and 3.6 is that of q A∞-functors between cA∞-categories. Precisely, for
cA∞-categories (a, µ) and (b, µ′) and an underlying map f : Ob(a) −→ Ob(b), we define
a q A∞-functor from a to b to consist of an element F ∈ C1(a, b) f (replacing the datum of a
cA∞-functor) and an extra datum G ∈ C2(a, b) f such that

j+k+l=p

(−1) jk+l F j+l+1(1⊗ j
⊗ µk ⊗ 1⊗l)+ G p =


i1+···+ir =p

(−1)sµ′
r (Fi1 , . . . , Fir )

(19)

where for p ≥ 2 we have s =


2≤u≤r

(1 − iu)


1≤v≤u−1 iv


, for p = 1 we have that s = 1,

and for p = 0, s = 0. As with cA∞-functors, the right-hand side of (19) for p = 0 is given by

µ′

0 + µ′

1(F0)+ µ′

2(F0, F0) . . . .

A q A∞-module over a is given by a q A∞-functor a
op

−→ PCom(a). One can define natural
cA∞-categories of q A∞-functors and -modules (let us denote the latter by Modq∞(a)). In these
categories, the curvature of the functor represented by (F,G) ∈ C1(a, b) f × C2(a, b) f is given
by G.

Let (a, µ) be a cA∞-category, and ∆ an allowable collection on a. We then obtain a Yoneda
cA∞-functor

Y : (Free(a)∆, embrδµ) −→ Modq∞(a)

given by the underlying map M =


Σ Ai → y(M) =


Σa(−, Ai ) and

Y 0
M = (embrδµ)1 ∈ Modq∞(a)(y(M), y(M));

Y 1
M,N : Free(a)∆(M, N ) −→ Modq∞(a)(y(M), y(N )) : f → (embrδµ)2( f,−);

Y 2
M,N : Free(a)⊗2

∆ (M, N ) −→ Modq∞(a)(y(M), y(N )) : (g, f ) → (embrδµ)3(g, f,−);
...

where the expressions (embrδµ)k should be considered as the associated transformations of
q A∞-functors in stead of as multiplications on the category. The q A∞-module y(M) =

Σa(−, Ai ) is defined by the underlying map a
op

−→ Pre(k) : A → (


Σa(A, Ai ), d = 0)
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and

M0
A = (embrδµ)1 ∈ Pre(k)(M(A),M(A));

M1
A,B : a(A, B) −→ Pre(k)(M(B),M(A)) : f → (embrδµ)2(−, f );

M2
A,B : a⊗2(A, B) −→ Pre(k)(M(B),M(A)) : (g, f ) → (embrδµ)3(−, g, f );

...

G0
A = (embrδµ)2((embrδµ)0,−) ∈ Pre(k)(M(A),M(A));

G1
A,B : a(A, B) −→ Pre(k)(M(B),M(A)) : f → (embrδµ)3((embrδµ)0,−, f );

G2
A,B : a⊗2(A, B) −→ Pre(k)(M(B),M(A)) : (g, f )

→ (embrδµ)4((embrδµ)0,−, g, f );
...

In analogy with Proposition 3.9, one would like to think of this Yoneda functor as being
“homotopy fully faithful”, but this notion does not immediately make sense because we cannot
take H0 of cA∞-categories. In order to make mathematical sense of such a statement, one
would need some kind of “homotopy category of cA∞-categories”, and such a construction
is currently not known. On the other hand, one might envisage defining one based upon some
natural candidate homotopy equivalences like the one we just propose. More details about this
matter will appear elsewhere.

3.7. Strict units for twisted objects

Let a be a strictly unital cA∞-category. Let ∆ be an allowable collection of connections on
Free(a) and consider embrδ(µ) on Free(a)∆. Consider an object M = (⊕i∈I Σ ni Ai , δM ) and
for J ⊆ I , the object N = (⊕i∈J Σ ni Ai , δM |N ). There is a canonical element

s ∈ Free(a)∆(N ,M)

determined by the elements 1A j ∈ a(A j , A j ) ⊆ ⊕i∈I a(A j , Ai ) for j ∈ J and a canonical
element

p ∈ Free(a)∆(M, N )

determined by the elements 1Ai ∈ a(Ai , Ai ) ⊆ ⊕ j∈J a(Ai , A j ) for i ∈ J and 0 ∈ ⊕ j∈J
a(Ai , A j ) for i ∈ I \ J .

Proposition 3.16. Suppose µ is strictly unital.
We have embrδ(µ)1(s) = 0 and embrδ(µ)1(p) = 0.

Proof. We have

embrδ(µ)1(s) = µ1(s)+ µ2{δ}(s)+ · · · + µn{δ⊗n−1
}(s)+ · · · .

The first term is zero by (U1). The second term is

µ2{δ}(s) = µ2(δM , s)− µ2(s, δN ) = δM |N − δN = 0.

The higher terms are zero by (Un). The proof for p is similar. �
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Proposition 3.17. If µ is strictly unital, then so is embrδ(µ).

Proof. For M = (⊕i∈I Σ ni Ai , δM ), we define 1M ∈ Free(a)∆(M,M) to be determined by the
elements 1Ai ∈ a(Ai , Ai ) ⊆ ⊕ j∈J a(Ai , A j ) for i ∈ I . This is a special case of both s and p
above, so by Proposition 3.16, embrδ(µ)1(1M ) = 0. The other identities we have to check follow
in a similar fashion. �

Example 3.18. Let a be a cA∞-category and let ∆ be an allowable collection of connections on
a with 0 ∈ ∆A ⊆ a(A, A)1 for all A ∈ a. Put a′

= Free∆(a). Consider

f : Ob(a) −→ Ob(Free∆(a)) : A −→ (A, δA = 0)

and J ∈ [Σa,Σa′
]
0
f given by

JA,A′ = 1a(A,A′) : a(A, A′) −→ a(A, A′) = a′(A, A′).

Further, we have

µ′
n(an, . . . , a1) = µn(an, . . . , a1)+


µn+k(δ, . . . , an, . . . , δ, . . . , a1)

but since all the connections δA = 0, the higher terms vanish and J satisfies the condition of
Proposition 2.25. Hence, J is a fully faithful strict cA∞-morphism.

3.8. Triangles of twisted objects

Let a be a quiver. We now discuss some constructions in the quiver Free(a)con . Consider
objects M = (⊕i∈I Σmi Ai , δM ) and N = (⊕ j∈J Σ n j B j , δN ) in Free(a)con . We define the shift
of M to be the object

Σ M = ⊕i∈I Σmi +1 Ai

endowed with the connection corresponding to δM through

Free(a)(M,M) ∼= Free(a)(Σ M,Σ M).

We have

Free(a)con(M, N ) =


i∈I

⊕ j∈J a(Ai , A j ).

Consider an element f = ( f j i ) ∈ Free(a)con(M, N ). We define the cone of f to be the object

cone( f ) = N ⊕ Σ M = ⊕ j∈J Σ n j B j ⊕ ⊕i∈I Σmi +1 Ai

endowed with the connection

δcone( f ) =


δN f
0 −δM


.

Finally, suppose we have a collection of objects (Mi , δi )i∈I . We define the direct sum to be
the object ⊕i∈I Mi endowed with the natural “diagonal” connection obtained from the δi .

Now suppose we have a cA∞-structure µ on a for which ∆ is allowable, and consider the
induced structure embrδ(µ) on Free(a)∆.

The curvature of M is given by

cM = embrδ(µ)M
0 = µM

0 + µ1(δM )+ µ2(δM , δM )+ · · ·
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and the curvature of N is given by

cN = embrδ(µ)N
0 = µN

0 + µ1(δN )+ µ2(δN , δN )+ · · · .

We define the curvature of f to be

c f = embrδ(µ)1( f ) = µ1( f )+ µ2(δN , f )+ µ2( f, δM )+ · · · .

Suppose we consider other objects M ′, N ′
∈ Free(a)con and f ′

∈ Free(a)0con(M
′, N ′) and

elements α ∈ Free(a)0con(M,M ′), β ∈ Free(a)0con(N , N ′). There is a natural element

γ =


β 0
0 σα


∈ Free(a)con(cone( f ), cone( f ′)).

We put

cα,β = embrδ(µ)2(β, f )− embrδ(µ)2( f ′, α).

Lemma 3.19. (1)

ccone( f ) =


cN c f
0 cM


.

(2)

cγ =


cβ cα,β
0 cα


.

Proof. This follows from straightforward computation. �

Proposition 3.20. Consider the cA∞-category Free(a)∆ over some cA∞-category a. Let α and
β be isomorphisms.

(1) cM = 0 if and only if cM ′ = 0; cN = 0 if and only if cN ′ = 0.
(2) 0 = (embrδµ)1(α) = cα = −µ2(δM ′ , α)+ µ2(α, δM );

0 = (embrδµ)1(β) = cβ = −µ2(δN ′ , β)+ µ2(β, δN ).
(3) cα,β = µ2(β, f )− µ2( f ′, α).
(4) If cα,β = 0, then γ is an isomorphism.
(5) If cα,β = 0, then c f = 0 if and only if c f ′ = 0.

Proof. (1) follows from Proposition 2.30(1), (2) and (3) immediately follow from (Ison) for α
and β. (5) is an application of Proposition 2.31. (4) We first look at (Ison) for n ≥ 3. In the
expression of embrδ(µ)n(ϕn, . . . , γ, . . . , ϕ1), all terms are easily seen to vanish since α and β
satisfy (Ison) for n ≥ 3. Next, we have embrδ(µ)1(γ ) = cγ = 0 by the assumptions. It remains
to look into (Iso2). Consider an arbitrary object (P, δP ) ∈ Free∆(a). The morphism

embrδ(µ)2(γ,−) : Free(a)(P, cone( f )) −→ Free(a)(P, cone( f ′))

is isomorphic to a morphism

H : Free(a)(P, N )⊕ Free(a)(P,Σ M) −→ Free(a)(P, N ′)⊕ Free(a)(P,Σ M ′).
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We claim that H = embrδ(µ)2(β,−) ⊕ embrδ(µ)2(σα,−), and thus the morphism H is an
isomorphism as desired. To see this, consider κ ∈ Free(a)(P, N ), ρ ∈ Free(a)(P,Σ M) and
the corresponding


κ

ρ


∈ Free(a)(P, cone( f )). We have

embrδ(µ)2


β 0
0 σα


,


κ

ρ


= µ2


β 0
0 σα


,


κ

ρ


=


µ2(β, κ)

µ2(α, ρ)


=


embrδ(µ)2(β, κ)
embrδ(µ)2(α, ρ)


since all higher terms vanish with α and β being isomorphism. �

Definition 3.21 ([4,7]).

(1) A cA∞-category a is strongly c-triangulated provided the natural functor

a −→ free(a)iln

is a strong equivalence.
(2) An A∞-category a is strongly pre-triangulated provided the natural functor

a −→ (free(a)iln)∞

is a strong equivalence.

Proposition 3.22. If an A∞-category a is strongly pre-triangulated, then the category H0(a) is
canonically triangulated.

Proof. By Proposition 2.33, the functor H0(a) −→ H0((free(a)iln)∞) is an equivalence of
categories, so H0(a) inherits the triangulated structure from H0((free(a)iln)∞). �

Proposition 3.23. Let a be a strictly unital cA∞-category with a choice of connections ∆ on
Free(a).

(1) Suppose for f ∈ Free(a)0(M, N ), δM ∈ ∆M and δN ∈ ∆N we have δcone( f ) ∈ ∆cone( f ).
Then Free(a)∆ is strongly c-triangulated.

(2) Suppose for f ∈ Free(a)0(M, N ), δM ∈ ∆M and δN ∈ ∆N with cN = 0, cM = 0, c f = 0,
we have δcone( f ) ∈ ∆cone( f ). Then (Free(a)∆)∞ is strongly pre-triangulated.

Furthermore, in case (2), a collection of standard triangles in H0((Free(a)∆)∞) is given by
the images of

(M, δM )−→
f
(N , δN )−→

s
(cone( f ), δcone( f ))−→

p
(Σ M, δΣ M ).

Proof. (1) Let µ denote the cA∞-structure on a, µ′
= embrδ(µ) the structure on a′

= Free(a)∆,
and µ′′

= embriln(µ
′) the structure on a′′

= free(a′)iln . Consider the natural fully faithful
functor

ϕ : a′
= Free(a)∆ −→ free(Free(a)∆)iln = a′′

and an object X ∈ a′′. By Lemma 3.26, there are finitely many objects Mi ∈ a′ such that X
is isomorphic to a successive cone in a′′ between the objects ϕ(Mi ). Using Lemma 3.25, we
conclude by induction that there is an isomorphism ϕ(M) −→ X for some M ∈ a′.
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(2) Now we look at the induced functor ϕ∞ : a′
∞ −→ a′′

∞ and take X ∈ a′′
∞. In this case,

by Lemma 3.26, the successive cone can be realized using objects Mi with cϕ(Mi ) = 0 in a′′ and
maps ρ with cρ = 0 in a′′. Then by Lemma 3.25, we inductively find an element M ∈ a′

∞ with
an isomorphism ϕ(M) −→ X . �

Lemma 3.24. Consider the natural functor ϕ : a′
−→ a′′ and consider objects (M, δM ),

(N , δN ) ∈ a′ and an element f ∈ a′(M, N )0.

(1) Under condition (1) in Proposition 3.23, the object (cone( f ), δcone( f )) ∈ Free(a)con belongs
to Free(a)∆ and there is a canonical isomorphism

ϕ(cone( f )) ∼= cone(ϕ( f )).

(2) Suppose moreover that cN = 0, cM = 0 and c f = 0 and that condition (2) in
Proposition 3.23 holds. Then furthermore (cone( f ), δcone( f )) belongs to (Free(a)∆)∞.

Proof. We describe the isomorphism ϕ(cone( f )) ∼= cone(ϕ( f )), all other claims are clear. By
definition of the hom-spaces in a′ and a′′, we have canonical isomorphisms

a′′(ϕ(cone( f )), cone(ϕ( f ))) ∼= a′(cone( f ), N )⊕ Σa′(cone( f ),M)

which is further isomorphic to
a′(N , N ) Σ−1a′(M, N )

Σa′(N ,M) a′(M,M)


. (20)

We claim that the element represented by I(a) =


1N 0
0 1M


is an isomorphism. The hom-

space a′′(cone(ϕ( f )), ϕ(cone( f ))) is also isomorphic to (20), and the element represented by
I(b) =


1N 0
0 1M


serves as an inverse isomorphism. We further have the identity elements I(1)

on ϕ(cone( f )) and I(2) on cone(ϕ( f )), all represented by the same matrix. Before we perform
some computations, we list the different connections considered on N ⊕ Σ M . For ϕ(cone( f )),
the relevant connection in a′ is δ(1) =


δN f
0 −δM


, and the additional connection in a′′ is δ̃(1) = 0.

For cone(ϕ( f )) the relevant connection in a′ is δ(2) =


δN 0
0 −δM


and the additional connection

in a′′ is δ̃(2) =


0 f
0 0


. If we compute for instance µ′′

2(I(b), I(a)), then this can be brought back
to µ2(I(b), I(a)) = I(1) plus higher order terms in µn that vanish since one of the arguments is an
identity element. For the same reason, µ′′

n with n ≥ 3 vanishes as soon as one of the arguments
is I(a). It remains to calculate

µ′′

1(I(a)) = µ′

1(I(a))− µ′

2(δ̃(2), I(a))+ µ′

2(I(a), δ̃(1))

= µ1(I(a))− µ2(δ(2), I(a))+ µ2(I(a), δ(1))− µ2(δ̃(2), I(a))

= −µ2(δ(2) + δ̃(2), I(a))+ µ2(I(a), δ(1))

= − δ(1) + δ(1) = 0

as desired. �

Lemma 3.25. For isomorphisms η′
: ϕ(M ′) −→ X ′, η′′

: ϕ(M ′′) −→ X ′′ and an element
ρ ∈ a′′(X ′, X ′′)0, there is an isomorphism ϕ(N ) −→ cone(ρ) for some N ∈ a′. If moreover
cX ′ = 0, cX ′′ = 0 and cρ = 0 in a′′, then there is an isomorphism with N ∈ a′

∞.
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Proof. Since η′′ is an isomorphism, there exists a unique κ ∈ a′′(ϕ(M ′), ϕ(M ′′))0 such that the
following diagram µ′′

2-commutes:

ϕ(M ′)
η′

//

κ

��

X ′

ρ

��
ϕ(M ′′)

η′′

// X ′′

i.e. µ′′

2(ρ, η
′) = µ′′

2(η
′′, κ). In the earlier notations, we thus have cη′,η′′ = 0 and consequently, by

Proposition 3.20, the element η′′′
=


ρ 0
0 σκ


∈ a′′(cone(κ), cone(ρ)) is an isomorphism. Since

ϕ is fully faithful, there is a unique f ∈ a′(M ′,M ′′)0 with ϕ( f ) = κ , and by Lemma 3.24, there
is a further isomorphism θ : ϕ(cone( f )) −→ cone(κ). Finally, the composition µ2(η

′′′, θ) is the
desired isomorphism ϕ(cone( f )) −→ cone(ρ).

Now suppose cX ′ = 0, cX ′′ = 0 and cρ = 0 in a′′. By Proposition 3.20, we have cϕ(M ′) = 0,
cϕ(M ′′) = 0, cκ = 0 in a′′. It follows that also cM ′ = 0, cM ′′ = 0 and c f = 0 in a′, and
consequently ccone( f ) = 0 as desired. �

Lemma 3.26. For a cA∞-category b, every object in free(b)iln is isomorphic to a successive
cone starting from objects in the image of b. If b is an A∞-category, then every object in
free(b)iln,∞ is isomorphic to a successive cone starting from objects in the image of b and
using maps f with c f = 0.

Proof. This is classical in the A∞ case, and the same construction goes through in the cA∞

case. �

4. Deformations

In this section, we investigate first order deformations of the models for triangulated categories
that we introduced in Section 3. We restrict our attention to first order deformations for
technical simplicity. The type of deformation we consider can actually be defined for an arbitrary
Hochschild 2-cocycle φ on an arbitrary cA∞-category a. First of all, this cocycle gives rise to
a cA∞-category aφ[ϵ] where the component φA ∈ a(A, A)2 contributes a curvature φAϵ to
the object A in the deformation (Section 4.1). Since we are not strictly interested in the effect
of φ, but in the effect of any cocycle that determines the same class in the second Hochschild
cohomology, we may consider changing φ into φ + dHoch(ψ) in order to obtain an uncurved
deformation of the object A. In fact, the only relevant point is whether there existsψA ∈ a1(A, A)
with m1(ψA) = φA, for in this case (φ − dHoch(ψA))A = φA − m1(ψA) = 0. Thus, by defining
objects in the curvature compensating deformation acc

φ [ϵ] (Section 4.2) to consist of couples
(A, ψA) with m1(ψA) = φA, we realize that the obstruction against deforming A is given by
[φA] ∈ H0a(A, A)2, and if this obstruction vanishes, the freedom for deforming A corresponds
to H0a(A, A)1. On the straightforward extension aΨ of a to this new object set, we naturally
consider the extension of φ and the Hochschild 1-element ψ = (ψA)(A,ψA)∈aΨ built up from all
the ψA’s, and we define the curvature compensating deformation to be

acc
φ [ϵ] = (aΨ )φ+dHoch(ψ)[ϵ],

thus spreading out Hochschild 1-elements which would normally correspond to curved
isomorphisms of deformations. This turns out to be an effective way of eliminating these
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undesirable – at least from the A∞ point of view – isomorphisms, and we show that
cohomologous Hochschild cocycles actually give rise to A∞-isomorphic curvature compensating
deformations (Proposition 4.5).

From Section 4.5 on, we are concerned with curvature compensating deformations of
categories a′

= (Free(a)∆)∞ of twisted objects, relative to Hochschild 2-cocycles φ′ induced
by φ on a. In Proposition 4.7 we describe the curvature compensating deformation a′cc

φ′ [ϵ]

as a category of twisted objects over the linear deformation aφ[ϵ]. This is possible since the
curvature compensating deformation is in fact itself a twisted variant construction in the sense of
Section 3.2. This description allows us to “lift” the property on ∆ from Proposition 3.23 ensuring
strongly pre-triangulatedness. After introducing a notion of purity on ∆ in Section 4.6 which
ensures deformations to remain “of the same nature”, we discuss applications to various derived
and homotopy categories in Sections 4.7–4.10, and compare this with underlying Hochschild
cohomology comparisons (some of which are obtained in Appendix).

4.1. Linear deformations

Let (a, µ) be a cA∞-category. As discussed in [22, Section 4.5], the Hochschild complex
of a governs its cA∞-deformations with fixed object set. Precisely, a Hochschild 2-cocycle
φ ∈ ZC2(a) gives rise to an linear first order deformation

aφ[ϵ] = (a ⊕ aϵ, µ+ φϵ).

Now consider two cocycles φ, φ′
∈ ZC2(a) and an element η ∈ C1(a) with

dHoch(η) = φ′
− φ.

Let us analyze the deformation aφ′ [ϵ]. The cA∞-structure is given by

µ+ (φ + dHoch(η))ϵ = µ+ (φ + [µ, η])ϵ = µ+ (φ + µ{η} − η{µ})ϵ.

Proposition 4.1. We have inverse cA∞-isomorphisms

1 − ηϵ : aφ[ϵ] −→ aφ′ [ϵ]

and

1 + ηϵ : aφ′ [ϵ] −→ aφ[ϵ].

Proof. First we check that by Proposition 2.23, 1 − ηϵ is a cA∞-morphism. We compute that

embr−ηϵ(µ+ (φ + µ{η} − η{µ})ϵ) = µ+ (φ + µ{η} − η{µ})ϵ − µ{ηϵ}

= (µ+ φϵ)− (ηϵ){µ}

= (µ+ φϵ)− (ηϵ){µ+ φϵ}

as desired. Further, we have (1 + ηϵ) ∗ (1 − ηϵ) = 1 by Lemma 4.2. �

Lemma 4.2. Let a be a k-quiver and consider the k[ϵ]-quiver a[ϵ]. For arbitrary elements
η,ψ ∈ C1(a), we consider the elements 1 + ηϵ and 1 + ψϵ in C1(a[ϵ]). We have (1 + ψϵ) ∗

(1 + ηϵ) = 1 + ψϵ + ηϵ.

Proof. This follows from Proposition 2.16. �
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4.2. Curvature compensating deformations

Let (a, µ) be a cA∞-category and let φ ∈ C2(a) be a Hochschild cocycle. We denote by aφ[ϵ]
the corresponding linear first order deformation. The main idea behind the curvature compensat-
ing deformation we will now introduce, is that changing φ by adding a Hochschild boundary
[µ,ψ] with ψ ∈ C1(a)0 can turn curved objects in the deformation into uncurved objects, and
does not change the deformation up to equivalence in the sense of Section 4.1. However, it may
change the deformation if we are only interested in the uncurved infinity part. We compensate
this by allowing all possible curvature influencing boundaries at once, in the following way.

We consider the trivial enlargement aΨ with

ΨA = a(A, A)1

and denote the objects of aΨ by (A, ψA) with A ∈ a. We obtain a resulting element ψ ∈

C1(aΨ )0. The Hochschild cocycle we consider on aΨ is

φ + dHoch(ψ) = φ + [µ,ψ] = φ + µ{ψ}.

We define the total deformation of a relative to φ to be

atot
φ [ϵ] = (aΨ )φ+µ{ψ}[ϵ].

We define the curvature compensating deformation of a relative to φ to be the infinity part

acc
φ [ϵ] = (atot

φ [ϵ])∞.

In other words, it contains the objects (A, ψA) for which the curvature

(µ0)A + ((φ0)A + µ1(ψA))ϵ (21)

vanishes.
Now we consider the k[ϵ]-linear cA∞-category aφ[ϵ] and perform a twisted version relative

to Ψϵ with

(Ψϵ)A = a(A, A)1ϵ ⊆ aφ[ϵ]
1(A, A).

We denote the objects of (aφ[ϵ])Ψϵ by (A, ψϵ) with A ∈ a and ψ ∈ a(A, A)1. We obtain a
resulting element ψϵ ∈ C1((aφ[ϵ])Ψϵ)0 We use the brace algebra morphism

embrψϵ : C(aφ[ϵ]) −→ C((aφ[ϵ])Ψϵ)

to transport the cA∞-structure (µ+ φϵ) to (aφ[ϵ])Ψϵ .

Proposition 4.3. We have

atot
φ [ϵ] = ((aφ[ϵ])Ψϵ, embrψϵ(µ+ φϵ))

after identification of the object (A, ψA) on the left hand side with the object (A, ψAϵ) on the
right hand side.

Proof. This follows from direct inspection of the cA∞-structures. The structure on the right hand
side is

embrψϵ(µ+ φϵ) = (µ+ φϵ)+ µ{ψϵ}

since ϵ2
= 0, and this corresponds precisely to the structure µ + (φ + µ{ψ})ϵ on the left hand

side. �



Author's personal copy

O. De Deken, W. Lowen / Advances in Mathematics 243 (2013) 330–374 363

Remark 4.4. Note that although we restrict our attention here to first order deformations for
simplicity, the construction can also be applied to solutions of the Maurer Cartan equation to
obtain higher order curvature compensating deformations, and even formal deformations if one
takes into account the necessary completions. A detailed treatment of these situations is work in
progress and will appear elsewhere.

4.3. Dependence on the Hochschild representative

Consider two cocycles φ, φ′
∈ ZC2(a) and an element η ∈ C1(a) with

dHoch(η) = φ′
− φ.

Both total deformations atot
φ [ϵ] and atot

φ′ [ϵ] are linear deformations of the trivial enlargement aΨ

of Section 4.2. They are given by

atot
φ [ϵ] = (aΨ )φ+[µ,ψ][ϵ]

and

atot
φ′ [ϵ] = (aΨ )φ+[µ,ψ]+[µ,η][ϵ].

According to Proposition 4.1, we have a cA∞-isomorphism

1 − ηϵ : atot
φ [ϵ] −→ atot

φ′ [ϵ].

Let us first analyze the case in which η ∈ C1(a)0 only has non-zero components ηA ∈ a1(A, A).
The translations

a1(A, A) −→ a1(A, A) : ψA −→ ψA − ηA

for A ∈ a give rise to a bijection

f : Ob(aΨ ) −→ Ob(aΨ ) : (A, ψA) −→ (A, ψA − ηA)

and the element 1 f ∈ C1(aΨ [ϵ], aΨ [ϵ]) f determined by the identity maps

aΨ [ϵ]((A, ψ), (A′, ψ ′)) = a[ϵ](A, A′) −→ a[ϵ](A, A′)

= aΨ [ϵ]((A, ψ − ηA), (A′, ψ ′
− ηA′))

gives rise to an isomorphism of k[ϵ]-quivers

1 f : aΨ [ϵ] −→ aΨ [ϵ]

which constitutes a strict isomorphism of cA∞-categories

1 f : atot
φ [ϵ] = (aΨ )φ+[µ,ψ][ϵ] −→ (aΨ )φ+[µ,ψ+η][ϵ] = atot

φ′ [ϵ].

Further, composition with 1 f gives rise to canonical isomorphisms

C(aΨ , aΨ ) −→ C(aΨ , aΨ ) f : κ −→ κ f .

Next we consider the case where η ∈ C1(a) is arbitrary. We write

η = η0
+ η′

where η0
∈


A∈a a1(A, A) is the projection of η on the zero part of the Hochschild complex.
Consequently, the projection of η′ on the zero part is zero.
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According to Proposition 4.1 and Lemma 4.2, we can write (1 − ηϵ) as a composition

(aΨ )φ+[µ,ψ][ϵ] −→
1−η0ϵ

(aΨ )φ+[µ,ψ+η0][ϵ] −→
1−η′ϵ

(aΨ )φ+[µ,ψ+η][ϵ].

Proposition 4.5. We have an (uncurved) cA∞-isomorphism

1 f − η′

f ϵ : atot
φ [ϵ] −→ atot

φ′ [ϵ]

which restricts to an A∞-isomorphism

1 f − η′

f ϵ : acc
φ [ϵ] −→ acc

φ′ [ϵ].

Proof. The morphism 1 f − η′

f ϵ is the composition of the strict cA∞-isomorphism

1 f : atot
φ [ϵ] = (aΨ )φ+[µ,ψ][ϵ] −→ (aΨ )φ+[µ,ψ+η0][ϵ]

constructed with respect to η0, followed by the uncurved cA∞-morphism

1 − η′ϵ : (aΨ )φ+[µ,ψ+η0][ϵ] −→ (aΨ )φ+[µ,ψ+η][ϵ].

To see that it restricts to uncurved objects, we have to compare the curvature elements of an
object (A, ψA) and its image (A, ψA − η0

A) for the respective cA∞-structures. Obviously, the
condition µ0

A = 0 is present and equivalent on both sides. Suppose that this condition is not
fulfilled. The ϵ-part of the curvature of (A, ψA) in the domain is

c1 = φ0
A + µ1(ψA)

according to (21). The ϵ-part of the curvature of (A, ψA − η0
A) in the codomain is

c2 = φ0
A + [µ, η′

]
0
A + µ1

A(η
0
A)+ µ1

A(ψ
A

− η0
A)

where the last term is the contribution of ψ to the object (A, ψA − η0
A). To see that c2 = c1, it

suffices to note that since µ0
A = 0 and (η′)0A = 0, the term [µ, η′

]
0
A = 0. �

Remark 4.6. Further invariance results, like invariance of curvature compensating deformations
with respect to homotopy equivalences, will be treated separately in the context of deformations
of cA∞-functors with A∞ (and cA∞, q A∞)-functor categories as the main underlying tools. This
treatment, which makes use of the A∞-functor category description of the Hochschild complex,
is work in progress.

4.4. Strictly unital deformations

Let (a, µ) be a strictly unital cA∞-category. By Section 2.9, the normalized Hochschild
complex CN (a) is a quasi-isomorphic sub B∞-algebra of the Hochschild complex C(a). Thus
for every Hochschild 2-cocycle φ′

∈ ZC2(a), there exist φ ∈ ZC2
N (a) and η ∈ C1(a) with

dHoch(η) = φ′
− φ. We first look at the linear deformation (aφ[ϵ], µ + φϵ). By definition

of φ being normalized, it is readily seen that the deformation remains strictly unital with the
same strict unit 1 (considered as an element of


A∈a aφ[ϵ](A, A)0). By Propositions 4.3 and

3.17, it follows that the total deformation atot
φ [ϵ], and hence also the curvature compensating

deformation acc
φ [ϵ], are strictly unital as well. Finally, we conclude by Proposition 4.5 that atot

φ′ [ϵ]

is (uncurved) cA∞-isomorphic to a strictly unital cA∞-category, and acc
φ′ [ϵ] is A∞-isomorphic

to a strictly unital A∞-category.
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4.5. Twisted objects and curvature compensating deformations

In this section, we investigate the compatibility between twisted objects and curvature
compensating deformations. The description of a curvature compensating deformation as a
twisted variant of a linear deformation of Proposition 4.3 facilitates this investigation.

Consider a quiver a. Suppose µ ∈ C(a) is a cA∞-structure on a. Let ∆ be a collection of
connections on Free(a) such that (µ,∆) is allowable. Let φ ∈ C(a) be a Hochschild 2-cocycle
on a. In the following constructions, we will need embrδ(φ), so we have to introduce yet another
compatibility condition. Either we take φ fixed and assume ∆ from above to be such that (φ,∆)
is allowable, or either we take ∆ as above and assume φ is such that (φ,∆) is allowable. We
compare two constructions.

For the first one we start with the category Free(a)∆ with the cA∞-structure µ′
= embrδ(µ).

We are interested in the total deformation of this category relative to the Hochschild 2-cocycle
φ′

= embrδ(φ) on Free(a)∆ induced by φ. According to Proposition 4.3, we can first construct
the linear deformation

(Free(a)∆)φ′ [ϵ].

The objects of this category are given by (M, δM ) with M ∈ Free(a) and δM ∈ ∆M ⊆

Free(a)1(M,M). The cA∞-structure is given by

embrδ(µ)+ embrδ(φ)ϵ = embrδ(µ+ φϵ).

Next we have to consider Ψ on Free(a)∆ with Ψ(M,δM ) = Free(a)1(M,M) and we consider
Ψϵ = Free(a)1(M,M)ϵ on Free(a)∆[ϵ]. According to Proposition 4.3, the total deformation
we are interested in is

(Free(a)∆)tot
φ′ [ϵ] = ((Free(a)∆)φ′ [ϵ])Ψϵ, embrψϵ(embrδ(µ+ φϵ))).

We claim that this category can be described as a category of twisted objects over the linear
deformation aφ[ϵ] endowed with the cA∞-structure µ+ φϵ. More precisely, on Free(aφ[ϵ]) =

Free(a) ⊕ Free(a)ϵ we consider the choice of connections ∆ + Ψϵ consisting of elements
δM + ψMϵ with δM ∈ ∆M and ψM ∈ ΨM .

Proposition 4.7. There is a canonical strict isomorphism of cA∞-categories

(Free(a)∆)tot
φ′ [ϵ] ∼= Free(aφ[ϵ])∆+Ψϵ .

Proof. Clearly, there is a canonical isomorphism as quivers, which identifies an object
((M, δM ), ψM ) on the left hand side with the object (M, δM + ψMϵ) on the right hand side.
It then remains to compare the cA∞-structures. If we interpret the collections of connections ∆
and Ψϵ separately on the right hand side, the structure corresponding isomorphically to the left
hand side structure can also be written as

embrψϵ(embrδ(µ+ φϵ)).

By Proposition 2.11, this structure equals

embrδ+ψϵ(µ+ φϵ)

which is by definition the structure on the right hand side. �
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Proposition 4.8. Let φ be a normalized Hochschild 2-cocycle on a strictly unital cA∞-category
a. Suppose ∆ satisfies the condition in Proposition 3.23 (1) (resp (2)). Then the corresponding
total deformation (Free(a)∆)tot

φ′ [ϵ] is strongly c-triangulated (resp. the curvature compensating
deformation (Free(a)∆)cc

φ′ [ϵ] is strongly triangulated).

Proof. We look at case (2). By Proposition 4.7, the curvature compensating deformation is
isomorphic to

c = (Free(aφ[ϵ])∆+Ψϵ)∞.

Thus, it suffices to check the condition in Proposition 3.23. For connections δM + ψMϵ on M
and δN + ψN ϵ on N and an element f + f ′ϵ ∈ Free(aφ[ϵ])(M, N )1, we have

δcone( f + f ′ϵ) =


δN + ψN ϵ f + f ′ϵ

0 −(δM + ψMϵ)


=


δN f
0 −δM


+


ψN f ′

0 −ψM


ϵ.

By the assumption,

δN f
0 −δM


is in ∆, and obviously


ψN f ′

0 −ψM


is in Ψ so we are done. �

4.6. Pure choices of connections

In concrete cases (see Section 4.7), we are interested in understanding the precise relation
between a linear deformation aφ[ϵ] and the corresponding total (resp. curvature compensating)
deformation of a particular category Free(a)∆ (resp. (Free(a)∆)∞) of twisted objects. This
relation is described by Proposition 4.7. The main shortcoming that can be read off from the
formula, is that whereas the choice of connections ∆ that is used in the definition of Free(a)∆
can be more restrictive than con, the connections in Ψ that are added as coefficients of ϵ are
arbitrary in the definition of the total and curvature compensating deformations. As such, the
newly obtained choice of connections ∆ + Ψϵ is somewhat out of balance, and will potentially
describe a – relatively – larger category of twisted objects over aφ[ϵ] than the original category
was over a. A notable exception occurs for pure choices of connections.

Indeed, let ∆ be a pure choice of connections on Free(a). This means that there is a full
subcategory Free(a)′ ⊆ Free(a) with

∆M =


Free(a)(M,M)1 if M ∈ Free(a)′

∅ else

and so Free(a)∆ = Free(a)′con . The objects of aφ[ϵ] are in 1–1 correspondence with those of a,
and similarly the objects of Free(aφ[ϵ]) are in 1–1 correspondence with those of Free(a). The
choice ∆ + Ψϵ of connections on Free(aφ[ϵ]) by definition has

(∆ + Ψϵ)M =


Free(aφ[ϵ])(M,M)1 if M ∈ Free(a)′

∅ else

and Free(aφ[ϵ])∆+Ψϵ = Free(aφ[ϵ])′con for Free(aφ[ϵ])′ ⊆ Free(aφ[ϵ]) containing the same
objects as Free(a)′ ⊆ Free(a). Thus, it is clear that the total deformation can be considered as
a perfect analogue of the original category (and the same analogy holds between the restrictions
of both categories to their infinity parts).

In the next three sections, we look into deformations of the models discussed in
Sections 3.4–3.6.
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4.7. Deformations of derived A∞-categories

In this section we look into the derived category of a strictly unital A∞-category (a, µ). We
use the model a′

= (Free(a)iln)∞ from Section 3.4. We use

embrδ : C(a) −→ C(a′) : φ −→ φ′
= embrδ(φ)

to transport Hochschild cocycles. According to [22,23] (or rather its adaptation from dg to A∞),
embrδ is a quasi-isomorphism of B∞-algebras. This means that every Hochschild cocycle for a′

is equivalent to a cocycle embrδ(φ) for φ a cocycle for a. We now compare linear deformations
of a on the one hand and curvature compensation deformations of a′ on the other hand.

Let φ be a normalized Hochschild 2-cocycle for a. First, we look at the case where φ0
A = 0 for

every A ∈ a. This means that the cA∞-structure µ+φϵ on the linear deformation aφ[ϵ] is in fact
an A∞-structure. The category a′ is endowed with the induced A∞-structure µ′

= embrδ(µ)
and the induced Hochschild 2-cocycle φ′

= embrδ(φ). By Proposition 4.7, the curvature
compensating deformation of a′ with respect to φ′ is

a′cc
φ′ [ϵ] ∼= (Free(aφ[ϵ])∆+Ψϵ)∞

where ∆ = iln and Ψ = con. Clearly, if a connection f + f ′ϵ ∈ Free(aφ[ϵ])(M,M)1

is intrinsically locally nilpotent, so are the connections f ∈ Free(a)(M,M)1 and f ′
∈

Free(a)(M,M)1. Hence, for Free(aφ[ϵ]) we have iln ⊆ ∆ + Ψϵ and so the canonical model
(Free(aφ[ϵ])iln)∞ for the derived category of aφ[ϵ] is a full subcategory of the curvature
compensating deformation:

(Free(aφ[ϵ])iln)∞ ⊆ a′cc
φ′ [ϵ].

In general, this inclusion will not be a homotopy equivalence since more connections are allowed
in the curvature compensating deformation.

Example 4.9. Let k be a field and consider the ring k[ϵ] as a first order deformation of k. For k,
the inclusion

(Free(k)iln)∞ ⊆ (Free(k)con)∞

is a homotopy equivalence and both categories are models for the derived category of k-modules.
It is readily seen that the curvature compensating deformation of (Free(k)iln)∞ is homotopy
equivalent to (Free(k[ϵ])con)∞, which is a model for the homotopy category of k[ϵ], which in
turn is not equivalent to the derived category of k[ϵ].

Next, we look at the case where φ0
A is arbitrary, so aφ[ϵ] is a cA∞-category. It is well known

that for arbitrary cA∞-categories, there is no satisfactory notion of a derived category due to the
presence of curvature [15]. However, drawing the parallel with the first case of A∞-deformations
which we just discussed, we may expect anything that comes close to a derived category of aφ[ϵ]
to be contained inside the curvature compensating deformation a′cc

φ′ [ϵ].
Recently, Positselski has developed a theory of so-called semiderived categories for cA∞-

algebras over complete local rings, with the curvature divisible by the maximal ideal [30]. This
setting obviously applies to classical deformation setups, including the first order deformations
we discuss in this paper. Roughly speaking, the semiderived category is the further localization
of the contraderived category [31] by the morphisms that become acyclic upon reduction by the
maximal ideal. In the case of a deformation aφ[ϵ] as above, at least when a is assumed to be
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graded Artinian, the curvature compensating deformation a′

φ′ [ϵ] is a model for the semiderived
category of aφ[ϵ]. Indeed, this follows from [30, Lemma 2.1.2] and Section 3.6, Section 4.10.

Example 4.9 illustrates the responsibility of the fact that k[ϵ] has infinite homological
dimension for the fact that the curvature compensating deformation is larger than the derived
category. This principle was also remarked by Positselski, as he expects the semiderived category
to be a better candidate derived category in the case of formal deformations, as opposed to
infinitesimal deformations [30, Section 0.20].

We end this section with a word of warning. Although it may seem like the categories a′cc
φ′ [ϵ]

are larger than we want them to be, a much graver problem is that they are in fact often too
small. This is due to the fact that the curvature compensating deformation is constructed as the
infinity part of a reasonably sized total deformation, so if the total deformation is largely curved,
the curvature compensating deformation can shrink alarmingly. The most convincing example of
this phenomenon is given by the graded field from [13], which was studied further in [14,15]. Let
k be a field and let A = k[ξ ] and B = k[ξ, ξ−1

] be the graded algebras with ξ placed in degree
2. For both algebras, the element ξ can be interpreted as a Hochschild 2-cocycle, which will add
the curvature element ξϵ to the corresponding first order deformations Aξ [ϵ] and Bξ [ϵ].

Now consider the curvature compensating deformation (Free(b)iln)cc
ξ [ϵ] of (Free(b)iln)∞,

where b is the one-point category description of B, and take (M, δ, ψ) ∈ (Free(b)iln)cc
ξ [ϵ]. We

know that this implies that

m2(δ, δ) = 0
m2(ψ, δ)− m2(δ, ψ) = ξ

where all the expressions are the extensions to Free(b)iln . Define

h ∈ (Free(b)iln)cc
ξ [ϵ](M,M)−1

as given by the same description as ψ , but where all the powers of ξ are one less. It is clear that
we have that m2(h, δ) − m2(δ, h) = I d and m2(h, ψ) − m2(ψ, h) = 0. Since the Hochschild
cocycle is normalized, we have

µ1(h) = (embrδm)1(h)+

(embrδφ)1(h)+ (embrδm)2{ψ}(h)


ϵ

= m2(h, δ)− m2(δ, h)+

m2(h, ψ)− m2(ψ, h)


ϵ = I d.

This shows that I dM is nullhomotopic, and thus that

H0

(Free(b)iln)cc

ξ [ϵ]


= 0.

This phenomenon does not occur in the curvature compensating deformation (Free(a)iln)cc
ξ [ϵ]

of Free(a)iln , where a is the one-point category description of A. Take for example the object
(∗ ⊕ ∗[1], δ, ψ), where

δ =


0 0

aξ 0


and ψ =


0 a−1

0 0


.

It is clear that this is an element of the curvature compensating deformation, and since this is the
complex

. . . 0 → 0 → k
0
−→ k

a
−→ k

0
−→ k

a
−→ k

0
−→ . . .

it is not contractible.
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Remark 4.10. Note that our point of view in this paper is entirely centered around the
construction of a certain kind of deformation starting from a Hochschild cocycle, and, in contrast
with the situation for – for instance – abelian deformations [24], we do not define what is a
“curvature compensating deformation” of an A∞-category as such. Never the less, a candidate
definition is certainly at hand. All one has to specify is which reduction functor to use to reduce
from k[ϵ]-linear models to k-linear models. Recall that for abelian deformations, one uses a
simple linear functor category construction, mapping an abelian k[ϵ]-category D to the category
Add(k,D) of additive functors from the one point category k to D, which simply amounts to
selecting objects ofD with a k-linear structure. The correct analogue for our triangulated models
is to use the parallel A∞-functor category construction as reduction. However, the example of
Bξ [ϵ] above illustrates a major difficulty. Namely, the “deformation” we propose can become
zero, whence its reduction will also be zero, and hence different from the original category!
The reason is that the true “total” deformations take place in the curved world, and so do the
reductions (based upon cA∞-categories of q A∞-functors, see the end of Section 3.6). Actually,
a possibility if one is interested in the A∞ parts, is to consider this reduction we propose as a
way to determine “how good” a curvature compensating deformation we construct actually is in
particular cases. A treatment along these lines is work in progress.

4.8. Deformations of homotopy categories

Let (a, µ) be a linear category with a zero object. We consider the pure categories of twisted
objects a′

= (Pr⋆(a)con)∞ with ⋆ ∈ {∅,+,−, b} of Section 3.5, which are models for the
corresponding categories of complexes of a-objects. We use

embr⋆δ : C(a) −→ C(a′) : φ −→ φ′
= embrδ(φ)

to transport Hochschild cocycles. The discussion at the end of Section 4.5 applies and the
curvature compensating deformation ((Pr⋆(a)con)∞)

cc
φ′ is canonically strictly isomorphic to

(Pr⋆(aφ[ϵ])con)∞. Hence, the map embr⋆δ is paralleled on the level of deformations by

Deflin(a) −→ Defcc((Pr⋆(a)con)∞) : b −→ (Pr⋆(b)con)∞ (22)

where Deflin stands for linear deformations and Defcc stands for curvature compensating
deformations.

Furthermore, for ⋆ ∈ {+,−, b} the map embr⋆δ is a quasi-isomorphism of B∞-algebras
by [22].

4.9. Deformations of derived abelian categories

In this section we look at some implications of Section 4.8 for deformations of abelian
categories in the sense of [24]. Let C be an abelian k-category with enough injectives, and denote
by Inj(C) the k-linear category of injective objects. We know from [24] that a first order abelian
deformation of C has enough injectives, and in fact we have an equivalence

Defab(C) −→ Deflin(Inj(C)) : D −→ Inj(D) (23)

between abelian deformations of C and linear deformations of Inj(C). Further, the dg-category
(Pr+(Inj(C))con)∞ is a model for the bounded below derived category of C. Thus, composing
(23) with (22), we obtain the correspondence

Defab(C) −→ Defcc((Pr+(Inj(C))con)∞) : D −→ (Pr+(Inj(D))con)∞.
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Now suppose C is a Grothendieck category such that the unbounded derived category of C is
defined. A model for this derived category is given by the subcategory

(Pr(Inj(C))hopy−in j )∞ ⊆ (Pr(Inj(C))con)∞ (24)

consisting of twisted objects corresponding to homotopically injective complexes of injectives.
It follows from Proposition A.5 that

embrδ : C(Inj(C)) −→ C((Pr(Inj(C))hopy−in j )∞) : φ −→ φ′

is a quasi-isomorphism of B∞-algebras. However, if a 2-cocycle φ for Inj(C) corresponds to
an abelian deformation D of C, in general the induced curvature compensating deformation
((Pr(Inj(C))hopy−in j )∞)

cc
φ′ will not be a model for the unbounded derived category of D. This is

due to the fact that the category of twisted objects in question is not pure, and so its deformation
will “relatively grow” just like in the case discussed in Section 4.7. In fact, the same Example 4.9
can be modified to illustrate this point.

Another option is to focus on a larger category altogether, namely the homotopy category
of injectives itself, and more precisely its model (Pr(Inj(C))con)∞. Thus we look at (22) with
a = Inj(C) and ⋆ = ∅. In the general setup of Section 4.8, it does not follow that the underlying
map embrδ is a quasi-isomorphism. However, it follows from Proposition A.6,

embrδ : C(Inj(C)) −→ C((Pr(Inj(C))con)∞) : φ −→ φ′

does become a quasi-isomorphism of B∞-algebras under the assumption that C is a locally
noetherian Grothendieck category. Thus, for these categories, we may conclude that the
Hochschild cohomology of the category Inj(C), which naturally describes abelian deformations
of C, also naturally describes deformations of the homotopy category of injectives via induced
curvature compensating deformations.

The contrast with the failure of this statement for derived categories is most clearly illustrated
by the case of a smooth noetherian scheme X over a field k, for which the inclusion (24) is
known to be a homotopy equivalence. Clearly, the curvature compensating deformation theory
chooses the side of the homotopy category of injectives interpretation, and after deforming in the
direction of the non-smooth ground ring k[ϵ], this homotopy category of injectives is no longer
equivalent to the derived category. Again, Example 4.9 goes to show our point.

4.10. Deformations of graded free qdg-modules

Let a be a cA∞-category and consider the pure category of twisted objects Free(a)con .
According to Section 3.6, if a is actually a cdg-category, Free(a)con is a model for the full
subcategory of graded free modules inside Modqdg(a), and consequently by [31, Section 3.8],
for a graded Artinian a, (Free(a)con)∞ is a model for the contraderived category in the sense
of [31].

Since Freecon(a) is a pure category of twisted objects, we obtain maps

Deflin(a) −→ Deftot (Free(a)con) : b −→ Free(b)con

and

Deflin(a) −→ Defcc((Free(a)con)∞) : b −→ (Free(b)con)∞

from the transportation of Hochschild cocycles by means of

embrδ : C(a) −→ C(Free(a)con).
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If the cA∞-category (a, µ) we are interested in is non-trivially curved, and µn = 0 for n ≥ n0,
it may be a better idea to compare the deformation maps with the cohomology of the morphisms

embr⊕δ : C⊕(a) −→ C⊕(Free(a)con)

and

embr⊕δ : C⊕(a) −→ C⊕((Free(a)con)∞)

that are seen to be quasi-isomorphism based upon the comparison results in [29].
Furthermore, in some rather specific cases like the curved algebras associated to categories of

matrix factorizations, the inclusion

C⊕((Free(a)con)∞) ⊆ C((Free(a)con)∞)

is a quasi-isomorphism [5,29] so we do not have to modify our interpretation of curvature
compensating deformations in this case. On the side of C⊕(a) however, it is clear that linear
deformations are organized somewhat differently. First of all, only deformations into cA∞-
structures with finitely many components are allowed. Secondly, between deformations, only
isomorphisms with finitely many components are counted as isomorphisms. Note that this
finite components philosophy naturally carries over to the construction of total and curvature
compensating deformations. Indeed, if one starts with a Hochschild 2-cocycle φ ∈ ZC2

⊕(a),
the cocycle φ + dHoch(ψ) one uses for the extended category aΨ in Section 4.2 is contained in
ZC2

⊕(aΨ ).
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Appendix. Hochschild cohomology comparisons

In this appendix we present some Hochschild cohomology comparison results based upon the
techniques developed in [23]. These results are used in Section 4.9. For simplicity, we assume
the ground ring k to be a field.

A.1. Localizations of derived dg-categories

In [28] it was shown that well-generated algebraic triangulated categories can be realized as
localizations of derived dg-categories. In this section we take such a localization as the starting
point. Let g and T be dg-categories, let Moddg(g) be the dg-category of dg-modules over g, and
let u : g −→ T be a fully faithful dg-functor which is such that the induced dg-functor

ι : T −→ Moddg(g) : T −→ T (u(−), T )

induces a fully faithful functor H0(T ) −→ D(g) where D(g) is the derived category of g-
modules. We will call such a functor u : g −→ T localization generating.
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The following result improves [23, Theorem 4.4.1]:

Proposition A.1. Let u : g −→ T be a localization generating functor. The restriction
C(T ) −→ C(g) is a quasi-isomorphism of B∞-algebras.

Proof. This is an application of the dual version of [23, Proposition 4.3.4]. We have to look at
the canonical maps

T (T, T ′) −→ RHomg(T (u(−), T ), T (T (u(−), T ′))

which are quasi-isomorphisms by the assumption on ι. �

A.2. Grothendieck categories

Let C be a Grothendieck category and Ddg(C) the dg-category of homotopically injective
complexes of injective C objects, which is a model for the unbounded derived category. We
recall the following:

Theorem A.2 ([23, Theorem 5.2.2]). Let G be a set of generators of C, and choose for each
G ∈ G an injective resolution E(G) ∈ Ddg(C). The full subcategory u : g ⊆ Ddg(C) spanned by
the objects E(G) for G ∈ G is localization generating.

By Proposition A.1, we immediately obtain:

Corollary A.3. For g ⊆ Ddg(C) as in Theorem A.2, the restriction C(Ddg(C)) −→ C(g) is a
quasi-isomorphism of B∞-algebras.

In [23], the Hochschild complex of C was defined to be the Hochschild complex C(Inj(C))
where Inj(C) is the linear category of injective C-objects. This is motivated by the fact that there
is an equivalence between abelian deformations of C and linear deformations of Inj(C).

The following is proven along the lines of [23, Theorem 5.3.1]:

Proposition A.4. Let u : g −→ Ddg(C) be a localization generating functor for which the
complexes u(G) are all bounded below complexes of injectives. The Inj(C)− g-bimodule

X (G, E) = Ddg(C)(u(G), E)

gives rise to a quasi-isomorphism of B∞-algebras

C(Inj(C)) ∼= C(g).

We can now prove:

Proposition A.5. Consider the inclusion Inj(C) ⊆ Ddg(C). The restriction

C(Ddg(C)) −→ C(Inj(C))
is a quasi-isomorphism of B∞-algebras.

Proof. From an arbitrary set of generators G of C, we construct a localization generating
g ⊆ Ddg(C) as in Theorem A.2. Thus, by Corollary A.3, the restriction C(Ddg(C)) −→ C(g)
is a quasi-isomorphism. Combining this with Proposition A.4, keeping track of all involved
bimodules, easily yields the desired result. �
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A.3. Locally noetherian Grothendieck categories

Let C be a locally noetherian Grothendieck category and let N (C) be the abelian subcategory
of noetherian objects. Let N (C) ⊆ Ddg(C) be the full subcategory spanned by chosen injective
resolutions of the objects of N (C). Further, let Comdg(Inj(C)) be the dg-category of complexes of
injective C objects, which is a model for the homotopy category K (Inj(C)) of injective C-objects.

Proposition A.6. Consider the following diagram of inclusion functors:

N (C)
β

��
Inj(C)

α
// Ddg(C) γ

// Comdg(Inj(C)).

For δ ∈ {α, β, γ, γ α, γβ}, the induced restriction map C(δ) between Hochschild complexes is a
quasi-isomorphism of B∞-algebras.

Proof. Since N (C) consists of a collection of generators of the Grothendieck category C, the
statement for β is contained in Corollary A.3. The statement for α is Proposition A.5. By [17],
the objects of N (C) constitute a collection of compact generators for the homotopy category of
injectives K (Inj(C)). Thus, the inclusion γβ is localization generating and the statement for γβ
follows from Proposition A.1. Obviously, the statements for γ and γα now also follow. �
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