A SURVEY OF AUTOMATIC DIFFERENTATION TECHNIQUES
FOR NONLINEAR NODAL ANALYSIS

HOLLY M. JACKSON*

1. Introduction. Many complex nonlinear systems can be modeled using nodal
analysis. Due to their grid-like construction, nodal systems often have sparse Jacobian
matrices, and we can take advantage of this sparsity to accelerate their computation.
An implementation of sparse forward-mode or reverse-mode automatic differentiation
can be used to compute the Jacobian in a single call.

However, when a node in the system has a disproportionately high degree of
connectivity, the Jacobian may be mostly sparse, with several dense rows. In these
cases, it is more difficult to apply sparse automatic differentiation techniques.

In this paper, I present a basic formulation of a nodal system and implement
forward-mode and reverse-mode automatic differentiation to construct its Jacobian.
I implement a matrix coloring scheme to accelerate sparse forward-mode automatic
differentiation of the Jacobian of nodal systems. In addition, I implement a com-
bined sparse automatic differentiation technique to compute a Jacobian that is mostly
sparse, with several dense rows. I demonstrate my techniques on several examples of
ranging complexity. I solve these systems using Newton’s method computing the Ja-
cobian with the most efficient of my methods at each iteration. Finally, I perform a
thorough performance analysis on my methods and compare them to existing libraries
in Julia.

2. System formulation and matrix construction. In this section, I present
a general method to formulate a nonlinear nodal system defined by nodes, edges, and
initial conditions, based on [1]. A nodal system of this nature could represent a wide
variety of systems, such as lattices, resistive networks, economic models, and heat
transfer. Any system modeled on node-to-node relationships can be adapted to this
model.

A simple example of a nodal system — a small lattice — is shown in Figure 1. The
lattice has six unfixed nodes and fourteen edges. A initial load force f; is acting on
node 3.

Let us formulate a nonlinear system f(u) that calculates the force on each node
given node displacements u. I construct this system using two relationships: the con-
servation equations and constitutive equations. This same framework can be applied
to other nodal systems using the correct physical relationships.

Let us define two initial unknown quantities in our system: the forces on each
strut fs and the displacements of each node w. It is important to remember each node
is a 2D position n = (z,y) and each force is a 2D vector f = (fs, fy).

The law of conservation tells us the sum of the forces at each node should be 0 (or
the load force on that node) in each direction x and y. For our simple example, this
would mean for example, for node 1 f1 .+ fo, + f3. = 0 and f1,y+ f2,4+ f3,4 = 0. For
node 3, experiencing a load force fr,, we have the following conservation equations:
f4,r = 7fL,m and f4,y = 7.fL,y-

I can represent these relationships for the whole system using an incidence matrix
A such that Af, = fr.

*MIT EECS, Undergraduate Class of 2022 (hjackson@mit.edu).
1

mailto:hjackson@mit.edu

2 H. M. JACKSON

(quyo f3 (XQLYQ) fﬁ (X3LY3)

Fic. 1. A simple nonlinear lattice system. Forces through each strut labeled in green. An
external load f1, is acting on node 3 at (z3,y3).

f17w 0
fl,y 0
f2,ac 0
f2,y 0
(2]_) A = _fload,x
_fload,y
f27,9c 0
f27,y 0
f28,m
L fas 1L 1

The pseudocode in Algorithm 2.1 shows a general node-stamping method to con-
struct A for a lattice system with N vertices and S struts.

The equation below shows the incidence matrix for the simple system in Figure 1.
Notice A is a sparse matrix, and is even sparser for more complex systems like those
discussed in Section 4.

A SURVEY OF A.D. TECHNIQUES FOR NONLINEAR NODAL ANALYSIS 3

Algorithm 2.1 Generating the incidence matrix
Define A, a 2N x 2S5
Define f1,, a 2N-length vector
for each strut s; with force f; from (ni,ns) do
if n; is not fixed then
A(”l,a:asi,w) =1
A(ﬂl,y,siyy) =1
end if
if ns is not fixed then
A(n2,x73i,z) =-1
A(ng,y,si’y) =-1
end if
end for
for each load fiseq,: applied to node n; do
fL(ni,a:) = _fload,i,x
fL(ni,y) = _fload,i,y
end for
return A, fg

The constitutive equations for our system relate the forces through each strut to
the node displacements. I can calculate the force through a given strut from some
node n; with initial position (x1,y1) to some node ns with initial position (zs,ys2)
according to the following equations:

f, = (@2t Avo) - ¥ Az g

Ays) — A
fy:€(y2+ yQ)L(y1+ yl)(LO_L)
where Lg is the nominal length of the strut and L is the length of the strut after

displacement

(2.3)

L =/((x2 + Azg) — (21 + Az1))? + ((y2 + Aya) — (11 + Ayr))?
Lo= /(s =212 + (52— 13)

and € is a parameter representing the material stiffness of the strut.
The constitutive equations are nonlinear in the node displacements.
Let us define a vector v to hold the original node positions of the lattice.

(2.4)

T
v = [1‘1,91,$27927~-~»$NayN]

I also define a vector

Sfiz = [05 0707()’ cooy T fized) ~Yfizeds - - -]T

of length 25 which for each strut contains the z and y positions of a fixed vertex if
the strut is connected to one.

Finally, I define a sparse matrix « of size 25 x 25, which for each strut s; is one
at (21,21), (20 +1,24), (2,20 + 1), and (2¢ + 1,2i 4+ 1) (see sparsity pattern in Figure

4 H. M. JACKSON

10

15

20

25

Fic. 2. Sparsity plot of o matriz for simple system in Figure 1.

2). This allows us to quickly calculate the strut lengths to use in the constitutive
equations with sparse matrix operations.
Given these quantities, I can define Ly and L in linear algebraic form.

Lo = (Oé(AT’U + Sfiw).Z).1/2

(2 L = (a(A" (u+v) + s750).2).

Similarly, I can construct the constitutive equation in linear algebraic form.

(2.6) fo = ((AT (w+v) + sfi0)./ L. * (Lo — L))

Now, to formulate f(u), I combine our conservation and constitutive equations
as follows.

fs — (e(AT(u+v) + spi)./L. % (Lo — L)) =0
o Ay = (AT (w4)+ 5pia) /Lo (Lo — 1)) = 40
fr — €A(AT (u+v) + spiz)./L. % (Lo — L)) = 0
eA(AT (u+v) + s5pi2). /L. % (Lo — L)) = f1,

This gives us our final system f(u) = €A(AT (u+v) + sfiz)./L. % (Lo — L)) — frL.

3. Numerical methods. In order to analyze nodal systems like those outlined
in the previous section, I use a variety of automatic differentiation methods to compute
the Jacobian matrix. The Jacobian matrix describes the sensitivities of each node
position as the function f(u) changes.

I implemented different automatic differentiation approaches. The performance of
each method depends on the dimensions and sparsity pattern of the Jacobian matrix
and is analyzed thoroughly in Section 6.

A SURVEY OF A.D. TECHNIQUES FOR NONLINEAR NODAL ANALYSIS 5

First, I implemented forward-mode automatic differentiation [4], and accelerated
it for sparse matrices using my own implementation of greedy matrix coloring (Sec

Second, I implemented reverse-mode automatic differentiation, by deriving the
pullback function Bf(\) of the nodal system [2].

Finally, I merged the the two techniques in a combined sparse automatic differen-
tiation method which applies reverse-mode AD to compute dense rows of the Jacobian
while using sparse forward-mode AD (accelerated by matrix coloring) to compute the
rest of the Jacobian.

I applied my various automatic differentiation techniques in a an iterative New-
ton solver. Newton’s method needs to recompute the Jacobian matrix at each new
guess of the solution, and as such was a good way test the accelerated differentiation
techniques. I implemented Newton’s method to solve several example nodal systems
(see Sec 4 and 5).

3.1. Forward-Mode Automatic Differentiation. We can compute the Ja-
cobian of our system in a single function call using forward-mode automatic differen-
tiation.

Let us define a multi-dimensional dual number using the array of structs repre-
sentation

(3.1) D =Dy + Xe

where the sensitivity of the function is propagated along the rows of the matrix
3.

We can compute the derivative f'(Dg) in all directions of 3 in one call of f.
(Do) is the Jacobian of our system.

(3.2) f(D) = f(Do) + f'(Do)Xe

I implemented forward-mode automatic differentiation for a general nodal system
of the form defined in Section 2 for a multidimensional dual number. I checked my
implementation for correctness against Julia’s ForwardDiff. jacobian.

3.1.1. Sparse Forward-Mode AD using Matrix Coloring. When the Ja-
cobian is sparse, we can use matrix coloring to accelerate its computation. If we can
identify which columns are independent (i.e. their e terms would not collide when
computed at the same time), we can compute them simultaneously while still getting
the correct value for every row of the Jacobian.

We can find these relationships using graph coloring. If we know the sparsity
pattern of the Jacobian, we can build a graph of the column connectivity of the
Jacobian. We can apply a distance-1 coloring method to the graph to guarantee no
two adjacent nodes are the same color. All columns that are the same color can be
computed simultaneously. We can then decompress the final output to recover the
full Jacobian matrix.

Figure 3 shows the Jacobian matrix for the simple system in Figure 1 and its
compressed representation.

I implemented matrix coloring for a general nodal system of the form defined in
Section 2. I verified that the decompressed Jacobian still matched the result without
matrix coloring.

25 F

50 |

75

100

H. M. JACKSON

v w - - w w P w w w w w ow
e o o * @ o b P @& @ & & @&
* @ @ @ 0 L] * P ¢ @ @ @ & O
* @& & 9 L] P ¢ & @& & & O
e o & 9 50 e o & o
e e o 9 e o o @
L * @ @ r e e @ o
75
L * @ @ P e e @ o
* o o * @ o P ¢ @ & & @&
* o o * @ @ Wwop @€ @ @ & & o
e & & 9 L] e & & & 0
215 - 5-0 = 715 = 100 2 - : = ; = 8

10

Fic. 3. (a) The Jacobian matriz for the simple system in Fig 1 and (b) its compressed repre-

sentation.

3.2. Reverse-Mode Automatic Differentiation. When the size of the in-
put of our system is smaller than the size of the output of our system, it may be
faster to use reverse-mode automatic differentiation to compute the Jacobian of a
system. Reverse-mode AD computes the Jacobian row-by-row, while forward-mode
AD computes the Jacobian column-by-column.

To break down the steps of reverse accumulation, we can rewrite f(u) as composed
functions f = fLo fflo...0 fi.

(3.3)

f=cAw—fL
w=z/y 2 « (Lo —y'/?)
y=oaz

T =22

z=A"(u+v) + sfia

We can formulate reverse-mode AD through a successive application of pullback
functions going in the reverse direction on these composed functions.

L2 ¢L=3¢ 1oy L=t B2 (=), ..
B?(A) :qul ((Bf (P20 (w)-) (Bf G F777 0 (@))

fol fL

(A))))

We can calculate the derivatives with respect to each quantity in reverse order,
pulling back on the vector A.

(3.4)

f=x=0,1,1,1,...]"

w = eAT\

§ =0 * (z * %y.73/2. * (Lo - y.1/2) + z./y.l/z. * (
z=aly

Z=1T.%2z+w. % (1./y. Y2 x (Ly — y.1/?))

Az

i
I

1

7§y'

)

A SURVEY OF A.D. TECHNIQUES FOR NONLINEAR NODAL ANALYSIS 7

We can compute a single row of the Jacobian by pulling back on a basis vector
for row of Jacobian you want to compute B?(vi). Instead, the whole Jacobian can be
computed in one step by pulling back on the identity matrix, J = B}‘(I). I checked
my implementation for correctness against Julia’s ForwardDiff.jacobian.

3.2.1. Sparse Reverse-Mode AD using Matrix Coloring. Similarly to
forward-mode AD, matrix coloring can be applied to speed up sparse reverse-mode
AD. This simply requires assigning colors to rows in the graphs rather than columns.
I implemented matrix coloring to accelerate reverse-mode automatic differentiation
as well. T verified my implementation against Julia’s ForwardDiff . jacobian.

3.3. Combined Sparse Automatic Differentiation. .

In an irregular system where some rows are dense but much of the Jacobian re-
mains sparse, neither forward-mode nor reverse-mode automatic differentiation opti-
mally accelerate the computation of the Jacobian. To handle Jacobians with irregular
sparsity patterns, we can combine reverse-mode AD and sparse forward-mode AD to
accelerate the computation.

First, we can compute the sparsity pattern S of the Jacobian a single time with
one forward (or reverse) pass through the system (or using SparsityDetection. jl1).
Using a heuristic to determine the density of the rows of the Jacobian from the
sparsity pattern (e.g. > 50% of row nonzero), we can select a subset of rows to be
computed using reverse-mode automatic differentiation. We then color the rest of
the graph (ignoring these dense rows) and perform sparse forward-mode automatic
differentiation. Finally, we decompress the Jacobian and merge the results. This will
decrease the total number of columns being computed in the forward pass, accelerating
the differentiation overall if the overhead of the reverse mode is low enough.

Combined sparse automatic differentiation can also be applied in reverse. We can
instead compute dense columns using forward-mode AD, and then compute the rest of
the Jacobian row-wise using reverse-mode automatic differentiation accelerated with
matrix coloring (ignoring columns already computed by the forward-mode AD).

I implemented both types of combined sparse automatic differentiation. As a
proof of concept, I ran both implementations on the simple example. I checked my
implementation for correctness by against Julia’s ForwardDiff.jacobian.

3.4. Linear Solving. We can use Newton’s method to solve our nonlinear equa-
tion, now that we have a quick method to compute the Jacobian using forward-mode,
reverse-mode, or combined sparse automatic differentiation, depending on the size
and sparsity pattern of the Jacobian. Starting from an initial guess ug, we can use
Newton’s method to iteratively follow the tangent line of f until it nears the root of
the function.

At each iterative step, we update our guess for the root ux such that gives f(ux) =
0 using the following relation.

(3.5) upyr = g — J(up) " f(ug)

We can solve this numerically in two stages:
1. Solve Ja = f(uy) for a
2. Update upy1 = up —a
We perform the linear solve in step 1 by first factorizing the Jacobian and then
using sparse LU decomposition, which is more efficient for sparse systems than com-
puting the inverse of the Jacobian or using Julia’s backslash operator. The pseudocode

8 H. M. JACKSON

for my implementation of Newton’s method on my system is shown in Algorithm 3.1.

Algorithm 3.1 Newton’s method

function newton_step(f, up):
J = forward -mode_AD(f,u) / reverse_mode_AD(f,u) / combined mode_AD(f,u)
Factorize J
Use sparse LU decomposition to solve Jd = f(ug) with the factorized Jacobian
return ug —d

function newton(f, ug):
Ulast = UO
for i = 1 : max_iter do
u = newton_step(f, uqast)
if (J|f(w)||2 < 1072) N (||u — wast||2 < 10712) then
return u
end if
Ulast = U
end for
return u

Figure 4 shows the equilibrium state of the simple system from Figure 1, computed
using Newton’s method.

4. Example system 1: a complex lattice. Let us use automatic differen-
tiation to solve a large complex lattice system as an example. The blue lattice in
Figure 6 shows a lattice with 5000 nodes, structured similarly to the simple example
in Figure 1. I can formulate this system using the nodal stamping approach outlined
in Section 2. Similarly to simple example, I apply a downwards force (2.5 units) to
the node in upper right corner of lattice.

Since each node is only dependent on directly neighboring nodes, the Jacobian of
the system is very sparse as can be seen in Figure 5. The Jacobian matrix, originally
of size 10000 x 10000, can be compressed to 10000 x 20 using distance-one matrix
coloring; the figure shows each column labeled with its respective color.

Using the compressed Jacobian and forward-mode (or reverse-mode) automatic
differentiation, we can accelerate the solving of the original lattice system using New-
ton’s method. Figure 6 shows the original lattice system and the displaced result side
by side. Combined sparse automatic differentiation is not necessary to accelerate this
example since the Jacobian does not have irregular sparsity,

5. Example system 2: a nodal system with an irregular sparsity pat-
tern. Not all nodal systems show a regular sparsity pattern like in example system
1. For example, take a resistive network where many of the nodes are connected to
ground, or a hanging truss where many modes are connected to a single pin point.
These nodes are mutually dependent on many of the other nodes in the systems, and
this will add density to the Jacobian matrix.

To test combined sparse automatic differentation, I construct an example with
a Jacobian with an irregular sparsity pattern. I can do this by adding several high-
degree nodes to the structure (i.e. nodes connected to many other nodes in the
structure). We define the system to have 380 nodes and 2030 edges. The effect
of this is clearly visible in the Jacobian in Figure 7. While most of the Jacobian is
sparse, there are several very dense rows. This prevents us from easily applying sparse

A SURVEY OF A.D. TECHNIQUES FOR NONLINEAR NODAL ANALYSIS 9

Deformation of Lattice Under 0.5 Units Force

Fic. 4. Solution of the simple system from Figure 1 computed using Newton’s method. Original
node and strut positions shown in blue. Given a load force fr, = 0.5 in the negative y-direction
applied to node 3, the final displaced node and strut positions are shown in green. Fized nodes
marked red.

differentiation techniques.

To overcome this and still accelerate the automatic differentiation, we can use the
combined automatic differentiation technique presented in Section 3.3. There are two
possible approaches. I can identify the six dense rows in the Jacobian matrix (rows
with over 50% nonzero elements), and compute these in one pass using reverse-mode
automatic differentiation. Then, using matrix coloring, I can condense the 760 x 760
Jacobian matrix into a 760 x 26 compressed representation and use forward-mode
automatic differentiation to accelerate the rest of the computation. Merging the result
of the forward-mode AD and reverse-mode AD will reconstruct the entire matrix.

Conversely, I can identify the six dense columns in the Jacobian matrix and
compute these with forward-mode AD. Then, I would use sparse reverse-mode AD
with matrix coloring to compute the rest of the Jacobian. I implemented both and
compared their performance in the following section.

Using either of these two methods to compute the Jacobian at each iteration,
I run Newton’s method to the original lattice system. Figure 8 shows the original
lattice system and the displaced result side by side. The high-degree nodes are clearly
visible in the structure, adding significant additional support. After a 2 unit load force
is applied to the node in the top right corner, the structure displaces only slightly,
reinforced by its rigid internal structure.

6. Performance Analysis. I analyzed the performance of my automatic dif-
ferentiation methods for each example presented in this paper, since the performance
depends on the size and sparsity pattern of the Jacobian of the specific system. In

10 H. M. JACKSON

Ry
N
3
{*:\
-§\

[

2000 + W
Ny
_3%.\
.\%
N
4000 | N
B
AN
3
s
'_\
6000 |- *5&\
\§
N\
N
AN
8000 ‘%_§
N
.%\
Y
N
'l 1 1 i %"
2000 4000 6000 8000

Fic. 5. Sparse 10000 x 10000 Jacobian matriz for example system 1, colored with 20 colors.
The matriz can be compressed to 10000 x 20.

addition, I compared my implementations to existing Julia libraries.

In general, my implementation of forward-mode AD was less efficient than stan-
dard Julia libraries. However, my implementation of reverse-mode AD not only fared
better than standard Julia reverse-mode differentiation libraries, it also even fared
better than Julia’s ForwardDiff . jacobian for large systems. My reverse-mode AD
even fared better than ForwardDiff without acceleration using matrix coloring for
some examples.

For all examples, sparse vectors and matrices were represented using Julia’s
SparseArrays. jl library.

6.1. Simple example. Let us first analyze the performance of the simple sys-
tem. Since the simple system is a small lattice, sparse differentiation methods are not
necessary to accelerate the computation of the Jacobian and may add unnecessary
overhead, causing these methods to be less efficient on this example. As a result, we
would expect forward-mode or reverse-mode AD to be the most optimal differentia-
tion method for the simple system. For reference, a forward pass through f(u) for
the simple system takes 6.280us (72 allocations: 10.94 KiB).

Table 3 shows a thorough performance analysis of the simple system using my im-
plementations of forward-mode and reverse-mode automatic differentiation, compared
to Julia’s existing ForwardDiff. j1 and ReverseDiff. j1 differentiation packages. My
implementation of reverse-mode automatic differentiation was able to compute the Ja-
cobian the fastest of all methods, supporting our intuition.

The table shows that my implementation of forward-mode AD is less efficient
than Julia’s ForwardDiff . j1. However, my implementation of reverse-mode is more

A SURVEY OF A.D. TECHNIQUES FOR NONLINEAR NODAL ANALYSIS 11

Deformation of Lattice Under 2.5 Units Force

100 -

75 F

25 -

Fic. 6. Solution to example system 1 computed using Newton’s method. Original node and
strut positions shown in blue in the lattice on the left. Given a load force fr, = 2.5 in the negative
y-direction applied to the top right node, the final displaced node and strut positions are shown in
green in the lattice on the right.

100

200

300

400

500

600

700

100 200 300 400 500 600 700

F1a. 7. Sparsity pattern of the Jacobian matriz for example system 2.

12

100

95

a5

75

H. M. JACKSON

Deformation of Lattice Under 2 Units Force

10

20

40

Fic. 8. Solution to example system 2 computed using Newton’s method. Original node and
strut positions shown in blue in the lattice on the left. Given a load force fr, = 2 in the negative
y-direction applied to the top right node, the final displaced node and strut positions are shown in

green in the lattice on the right.

Performance
Method Time (us) | # Alloc. | Memory (KiB)
Julia ForwardDiff.jacobian 18.500 83 65.97
My forward mode_AD 121.401 169 51.39
forward mode_AD + matrix coloring 159.499 669 103.94
Julia ReverseDiff. jacobian 244.899 327 54.38
My reverse mode_AD 35.101 158 51.66
reverse_mode_AD + matrix coloring 90.899 648 103.72
TABLE 1

Performance analysis of the simple system. Peak performance in each category is colored green.

efficient that Julia’s ReverseDiff. jl.

Although I tested sparse forward-mode differentiation and combined sparse dif-
ferentiation as a proof-of-concept on the simple system, they performed less efficiently
because the simple system does not have a particularly sparse or irregular pattern.

6.2. Example system 1. Example system 1 has a sparse Jacobian matrix, as
shown in Figure 5. As a result, we would expect matrix coloring to help accelerate
the computation of the Jacobian matrix.

Table 3 shows a thorough performance analysis of this example using my imple-
mentations of forward-mode and reverse-mode automatic differentiation, compared
to Julia’s existing ForwardDiff. j1 and ReverseDiff. j1 differentiation packages. In

A SURVEY OF A.D. TECHNIQUES FOR NONLINEAR NODAL ANALYSIS 13

Performance
I Time (s) ‘ # Alloc. ‘ Memory (GiB)
Julia ForwardDiff . jacobian 32.637 87428 38.95
My forward mode_AD 78.772 21.70
forward mode_AD + matrix coloring 17.115 532095 24.04
Julia ReverseDiff . jacobian > 600 - -
My reverse_mode_AD 229
reverse_mode_AD + matrix coloring | 16.916 532087 24.04

TABLE 2
Performance analysis of example system 1. Peak performance in each category is colored green.

addition, I benchmark my implementation of forward-mode automatic differentiation
accelerated with matrix coloring.

The complex system has 5000 nodes and a 10000 x 10000 Jacobian matrix. A
forward pass through f(u) for the complex system takes 1.830 ms, with 108 allocations
using 6.22 MiB of memory.

As can be seen in the table, forward-mode AD with matrix coloring significantly
accelerates the computation of the Jacobian (> 4x my forward-mode alone, and
almost 2x the native Julia implementation), even using a less optimal implementation
of forward-mode automatic differentiation.

However, reverse-mode AD fares better than reverse-mode AD with matrix color-
ing for this example system. This is likely because of overhead added by decompressing
the Jacobian.

It is important to note, there is an overhead to compute the coloring from the
sparsity pattern, but is required only once and can be reused each sequential computa-
tion. In my implementation, computing the sparsity pattern takes the same duration
as computing one forward or reverse pass of the Jacobian. However, once the sparsity
pattern is computed a single time, it can be reused in every Newton iteration without
additional overhead.

6.3. Example system 2. Example system 2 has a Jacobian matrix with an
irregular sparsity pattern, as shown in Figure 7. Simply using matrix coloring to
speed up the computation of the Jacobian will have a limited effect since dense rows
in the matrix will limit the amount of compression. As a result, we would expect
combined sparse automatic differentiation, in which dense rows (or columns) of the
Jaocbian are processed separately, to accelerate the computation of the Jacobian the
most for example system 2.

This example has 380 nodes and a 760 x 760 Jacobian matrix. A forward pass
through f(u) for the complex system takes 272.401 ps, with 96 allocations using
964.61 KiB of memory.

Table 3 shows the performance analysis of this example. As can be seen in the ta-
ble, combined sparse automatic differentiation is the fastest method for this example.
Specifically, combined AD fares the best when the dense columns are computed using
forward-mode AD and the rest of the matrix is computed using reverse-mode AD ac-
celerated with matrix coloring (which I refer to as dense forward). This method is more
than twice as fast as forward-mode AD alone (from Julia’s ForwardDiff . jacobian).

As expected, forward-mode AD and reverse-mode AD with matrix coloring do not
fair much better (if not worse, in the case of reverse-mode AD) than their counterparts
without matrix coloring.

14 H. M. JACKSON

Performance
Method Time (ms) | # Alloc. | Memory (MiB)

Julia ForwardDiff . jacobian 114.599 6505 412.03
My forward mode_AD 799.475 237.44
forward mode_AD + matrix coloring 669.231 35993 423.85

Julia ReverseDiff.jacobian > 6000 - -
My reverse_mode_AD 66.551 209 191.26
reverse_mode_AD + matrix coloring 103.958 35989 382.84
My combined mode_AD (dense reverse) 69.030 35999 140.77

My combined-mode_AD (dense forward) 35989

TABLE 3
Performance analysis of example system 2. Peak performance in each category is colored green.

Additionally, it is interesting to note that my implementation of reverse-mode
AD is almost twice as fast as Julia’s ForwardDiff . jacobian without any acceleration
techniques applied.

7. Conclusions. In this paper, I implemented a variety of different automatic
differentiation techniques to compute the Jacobian of nonlinear nodal systems. The
methods presented here can be quickly adapted to many kinds of nodal systems for a
wide variety of applications.

In addition to implementing both sparse forward- and reverse-mode automatic
differentiation accelerated by matrix coloring, I also presented a combined automatic
differentiation approach that mixed both differentiation techniques to accelerate the
computation of Jacobians with irregular sparsity patterns. I developed a particularly
efficient implementation of reverse-mode AD for nodal systems, that outperformed
Julia’s built-in libraries for large systems. However, there is room for improvement
to accelerate my implementation of forward-mode AD, which was less efficient that
native Julia methods.

Although this paper is a case study of nodal systems, the techniques presented
here can be extended to accelerate computation in many different kinds of systems
with similar sparsity patterns. The problem of irregular Jacobian sparsity is not
unique to nodal systems. In future work, these methods could be applied to other
nonlinear problems.

Supplementary note. All supporting code for this project is included in the
supplementary file AD. j1.

REFERENCES

[1] M. R. DEEPAK RAMASWAMY AND K. VEROY, Egquation formulation methods - stamping tech-
niques, nodal versus node-branch form, Fall 2003.

[2] C. C. MARGOSSIAN, A review of automatic differentiation and its efficient implementation,
WIREs Data Mining and Knowledge Discovery, 9 (2019), https://doi.org/10.1002/widm.
1305, http://dx.doi.org/10.1002/WIDM.1305.

[3] P. MISHRA, A summer with jacobians, October 2019.

[4] J. REVELS, M. LUBIN, AND T. PAPAMARKOU, Forward-mode automatic differentiation in julia,
2016, https://arxiv.org/abs/1607.07892.

https://doi.org/10.1002/widm.1305
https://doi.org/10.1002/widm.1305
http://dx.doi.org/10.1002/WIDM.1305
https://arxiv.org/abs/1607.07892

	Introduction
	System formulation and matrix construction
	Numerical methods
	Forward-Mode Automatic Differentiation
	Sparse Forward-Mode AD using Matrix Coloring

	Reverse-Mode Automatic Differentiation
	Sparse Reverse-Mode AD using Matrix Coloring

	Combined Sparse Automatic Differentiation
	Linear Solving

	Example system 1: a complex lattice
	Example system 2: a nodal system with an irregular sparsity pattern
	Performance Analysis
	Simple example
	Example system 1
	Example system 2

	Conclusions
	References

