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We endow the homotopy category of well generated (pretriangulated) dg categories 
with a tensor product satisfying a universal property. The resulting monoidal 
structure is symmetric and closed with respect to the cocontinuous RHom of dg 
categories (in the sense of Toën [32]). We give a construction of the tensor product 
in terms of localisations of dg derived categories, making use of the enhanced derived 
Gabriel-Popescu theorem [27]. Given a regular cardinal α, we define and construct 
a tensor product of homotopically α-cocomplete dg categories and prove that the 
well generated tensor product of α-continuous derived dg categories (in the sense 
of [27]) is the α-continuous dg derived category of the homotopically α-cocomplete 
tensor product. In particular, this shows that the tensor product of well generated 
dg categories preserves α-compactness.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The main aim of this paper is the development of a suitable tensor product for well generated dg categories, 
that is, pretriangulated dg categories A for which H0(A) is well generated in the sense of Neeman [25]. Well 
generated triangulated categories were introduced in [25] as a natural class of triangulated categories sharing 
important properties like Brown representability with the subclass of compactly generated triangulated 
categories, while at the same time having a good localisation theory (see [25] and [17]). The derived category 
of a Grothendieck abelian category being well generated [24], there is a rich supply of examples of algebro-
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geometric origin and in the spirit of noncommutative geometry, our tensor product can be thought of as a 
kind of (derived) product of noncommutative spaces.

Our starting point is the homotopy category of dg categories Hqe developed by Tabuada [30] and Toën 
[32]. As shown in [32], Hqe has a monoidal structure given by the derived tensor product of dg categories ⊗L

and this monoidal structure is closed with the internal hom (denoted by RHom) given by the dg category 
of (cofibrant) right quasi-representable bimodules (also called quasi-functors).

When we restrict our attention to dg categories A, B that are (homotopically) cocomplete, it is natural to 
restrict to quasi-functors F ∈ RHom(A, B) whose associated underlying exact functor H0(F ) : H0(A) −→
H0(B) preserves coproducts. These will be called cocontinuous quasi-functors and they form a full dg 
subcategory RHomc(A, B) ⊆ RHom(A, B). We show (Corollary 3.25 and Theorem 3.31):

Theorem 1.1. Consider pretriangulated dg categories A and B.

(1) If A and B are homotopically cocomplete, the same holds for RHomc(A, B).
(2) If A and B are well generated, the same holds for RHomc(A, B).

We define the well generated tensor product of two well generated dg categories A and B, if it exists, as 
the unique well generated dg category A �B satisfying the following universal property in Hqe with respect 
to all well generated dg categories C:

RHomc(A � B, C) ∼= RHomc(A,RHomc(B, C)). (1)

Our main result is the existence of the well generated tensor product (see Theorem 1.3 below). In 
combination with Theorem 1.1 (2) we immediately obtain:

Corollary 1.2. The homotopy category Hqewg of well generated dg categories with cocontinuous quasi-functors 
is symmetric monoidal closed.

Our approach to the existence of the tensor product makes use of the localisation theory of well generated 
dg categories. More precisely, we use the (enhanced) derived Gabriel-Popescu theorem from [27] which 
identifies the well generated dg categories in Hqe as the dg quotients of dg derived categories D(a) by an 
(enhanced) localising subcategory W ⊆ D(a) generated by a set, for small dg categories a. We show:

Theorem 1.3. Let A, B be two well generated dg categories such that A ∼= D(a)/Wa and B ∼= D(b)/Wb for 
small dg categories a, b with Wa ⊆ D(a) and Wb ⊆ D(b) (enhanced) localising subcategories generated by 
a set of objects. There exists an (enhanced) localising subcategory Wa � Wb ⊆ D(a ⊗L b) such that the well 
generated tensor product of A and B exists and is given by the dg quotient

A � B = D(a⊗L b)/Wa � Wb. (2)

In particular, A � B is independent of the chosen realisations of A and B.

In the paper, we give a description of Wa � Wb in terms of generators (Theorem 4.14) as well as an 
intrinsic description (Theorem 4.17). We also give a description of the well generated tensor product in 
terms of Bousfield localisations (Theorem 4.20) which is specifically applied to α-continuous dg derived 
categories in the sense of [27] (we call them α-cocontinuous in line with the rest of our terminology). More 
precisely, we show (Theorem 5.5, Proposition 5.6, Corollary 5.7):

Theorem 1.4. Let α be a regular cardinal. Let a, b be two homotopically α-cocomplete small dg categories. 
Then, we have that



W. Lowen, J. Ramos González / Journal of Pure and Applied Algebra 226 (2022) 106843 3
Dα(a) � Dα(b) ∼= Dα(a⊗L
α b) (3)

in Hqewg, where a ⊗L
α b is the homotopically α-cocomplete tensor product of a and b.

In particular, the well generated tensor product preserves α-compactness.

Remarks 1.5.

(1) In [20], a tensor product of Grothendieck abelian categories was defined. The precise relationship between 
this tensor product and the tensor product of well generated dg categories (with t-structures) is currently 
under investigation in a joint project with Francesco Genovese and Michel Van den Bergh.

(2) In contrast to the tensor product of well generated dg categories, the tensor product of Grothendieck 
categories from [20] is not closed (as follows for instance from [28, Rem 6.5]). An in depth study of the 
nature of morphism categories between abelian categories is the topic of an ongoing joint project with 
Michel Van den Bergh.

(3) There is well known correspondence between pretriangulated dg categories on the one hand and stable 
linear infinity categories on the other hand, see for instance [8]. Since a pretriangulated dg category is well 
generated precisely when it is locally presented [33, §2.1], we expect our tensor product to correspond 
to a natural tensor product of presentable stable linear infinity categories. Such a tensor product can be 
obtained as a linear analogue of the tensor product of presentable stable infinity categories from [22,23]. 
The details of such a monoidal correspondence remain to be elucidated.

The present work extends part of the work carried out by the second named author in her PhD thesis 
under the supervision of Wendy Lowen and Boris Shoikhet.

Acknowledgements. The authors would like to thank an anonymous referee for the very careful reading of the 
paper and the valuable comments and corrections, in particular with respect to the proof of Lemma 3.20. The 
second named author is very grateful to Francesco Genovese for explaining how the notion of dg Bousfield 
localisation we consider gives rise to an adjunction of quasi-functors in the sense of [10] (see Remark 3.9). 
The authors would also like to thank Pieter Belmans, Boris Shoikhet, Greg Stevenson and Michel Van den 
Bergh for interesting discussions.

2. The homotopy category of dg categories

We fix a commutative ground ring k throughout the paper.
Let U be a fixed (Grothendieck) universe. Without further notice, categories are U-categories, small 

categories are U-small categories and cocomplete categories are U-cocomplete (i.e. have all U-small colimits) 
etc. In the sequel, making use of the universe axiom, we will sometimes use additional universes U ∈ V and 
V ∈ W, which will be made explicit in the terminology and notation.

In this chapter, we revise the essential aspects of the homotopy theory of dg categories that will be used 
further on.

2.1. The model structure on the category of dg categories

We denote by C(k) = U − C(k) the category of cochain complexes of U-small k-modules with cochain 
morphisms. The category dgcatk = U − dgcatk of U-small dg categories over k with k-linear dg functors has 
a standard model structure with the quasi-equivalences as weak equivalences [30]. This model structure has 
the following properties.

Proposition 2.1. [32, Prop 2.3] Consider dgcatk with the standard model structure. The following hold:
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(1) Any object in dgcatk is fibrant;
(2) There exists a cofibrant replacement Q : dgcatk −→ dgcatk such that the natural morphism Q(A) −→ A

is the identity on objects;
(3) If A is cofibrant in dgcatk and A, A′ ∈ A then A(A, A′) is cofibrant in C(k) for the projective model 

structure.

We denote by Hqe = U − Hqe = Ho(U − dgcatk) the homotopy category of U-small dg categories. 
Given a dg functor F : A −→ B, we denote by [F ] its image in Hqe and as usual we denote by [−, −] =
U − [−, −] = U − Hqe(−, −) the set of morphisms in Hqe. Observe that an element f ∈ [A, B] induces a 
functor H0(f) : H0(A) −→ H0(B) between the corresponding H0-categories.

2.2. The monoidal structure on the homotopy category of dg categories

Let C be a small dg category and dgMod(C) the dg category of all dg modules (that is, dg functors from Cop

to C(k)). We denote by D(C) the dg derived category of C, that is the full dg subcategory D(C) ⊆ dgMod(C)
of the cofibrant dg modules for the projective model structure on dgMod(C) (see for example [32, §3], where 
the dg derived category of C is denoted by Int(C)). By construction, H0(D(C)) is equivalent to the derived 
category D(C) of C [14, Prop 3.1].

The homotopy category of dg categories Hqe can be endowed with a closed symmetric monoidal structure, 
described by Toën in [32, §6]. In particular, given A, B, C small dg categories, in Hqe we have the adjunction

[A⊗L B, C] ∼= [A,RHom(B, C)], (4)

between the derived tensor product A ⊗L B and Toën’s internal RHom(B, C), which can be constructed as 
follows.

Let A and B be small dg categories. A bimodule F ∈ dgMod(B ⊗L Aop) induces a dg functor ΦF :
A −→ dgMod(B), and it is called right quasi-representable provided that the induced H0(ΦF ) : H0(A) −→
H0(dgMod(B)) factors through a functor H0(F ) : H0(A) −→ H0(B). In other words, for all A ∈ A, 
ΦF (A) ∈ dgMod(B) is quasi-representable, that is, quasi-isomorphic to a representable dg B-module. We 
will denote by qrep(B) the full dg subcategory of dgMod(B) with as objects the quasi-representable objects. 
In particular, the dg Yoneda embedding YB : B −→ dgMod(B) induces a quasi-equivalence B −→ qrep(B).

We denote by RHom(A, B) ⊆ D(B⊗LAop) the full dg subcategory of (cofibrant) right quasi-representable 
bimodules. This category is not small, but essentially small, and hence can still be considered as an element 
of Hqe (see [32]). In the literature, the elements of the category H0(RHom(A, B)) are usually called quasi-
functors between A and B (see, for example [14]). Given F ∈ RHom(A, B), we denote the same element 
considered in H0(RHom(A, B)) also by F and we will refer to both objects as quasi-functors.

In particular, the adjunction from (4) above can easily be extended (see for example [6, Cor 4.1]) to the 
following isomorphism in Hqe:

RHom(A⊗L B, C) ∼= RHom(A,RHom(B, C)). (5)

Concretely, the isomorphism (5) is given by sending F ∈ RHom(A ⊗L B, C) to the associated dg functor

A −→ dgMod(C ⊗L Bop) : A �−→ FA

with FA(B, C) := F (A, B, C). Then FA is right quasi-representable, and the resulting A −→ RHom(B, C)
gives rise to a representable element in RHom(A, RHom(B, C)).

In addition, we have the following result, relating the morphisms in Hqe and the internal hom of the 
monoidal structure.
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Proposition 2.2 ([32, Cor 4.8]). Let A, B be two small dg categories. There exists a functorial bijection 
between the set [A,B] of maps between A and B in Hqe and the set Iso(H0(RHom(A, B))) of isomorphism 
classes of quasi-functors.

Consider small dg categories A and B and F ∈ [A, B]. By Yoneda’s Lemma, if F induces a bijection 
F ◦ − : [C, A] ∼= [C, B] for every small dg category C, it follows that F is an isomorphism in Hqe. In the 
sequel, we will need the following refinement:

Proposition 2.3. Consider dg U-categories A and B and let V be a universe such that A and B are V-small. 
We consider the homotopy category V − Hqe of V-small dg categories and F ∈ V − [A, B]. If F induces a 
bijection F ◦− : V − [C, A] ∼= V − [C, B] for every U-small dg category C, it follows that F is an isomorphism 
in V − Hqe.

Proof. We may suppose that F is given by a dg functor F : A −→ B. Suppose that F induces a bijection 
F ◦− : V − [C, A] ∼= V − [C, B] for every U-small dg category C. We are to show that F is a quasi-equivalence.

We start by showing that F is quasi-essentially surjective. Consider the dg category k with a single object 
∗ and k(∗, ∗) = k. It is readily seen that there is a natural quasi-equivalence A ∼= V −RHom(k, A) for every 
V-small dg category A and hence by Proposition 2.2 a natural bijection V − [k, A] ∼= Iso(H0(A)). Hence, 
by the assumption (for C = k) F induces a bijection Iso(H0(A)) −→ Iso(H0(B)) as desired.

Next we show that F is quasi-faithful. Consider

Hn(FA,A′) : HnA(A,A′) −→ HnB(F (A), F (A′))

and f ∈ ZnA(A, A′) with Hn(FA,A′)([f ]) = 0 ∈ HnB(F (A), F (A′)). Consider the dg category Arn with two 
objects X, X ′ and Arn(X, X) = k1X , Arn(X ′, X ′) = k1X′ , Arn(X, X ′) = kx for x in degree n, Arn(X ′, X) =
0. Consider the dg functor φ : Arn −→ A : x �−→ f . We have Fφ(x) = d(h) for some h ∈ B(F (A), F (A′))n−1. 
Consider the dg functors ψ1 : Arn −→ A : x �−→ 0A,A′ and ψ2 : Arn −→ B : x �−→ 0F (A),F (A′) for the zero 
morphisms 0A,A′ ∈ A(A, A′)n and 0F (A),F (A′) ∈ B(F (A), F (A′))n. We claim that [Fφ] = [F ][φ] = [ψ2] in 
[Arn, B]. Let P(B) be the path object dg category for B as described in [6, §2.2]. Then it is readily seen 
that a homotopy between Fφ and ψ2 is given by

H : Arn −→ P(B)

with

H(X) = (F (A), F (A), 1F (A))

H(X ′) = (F (A′), F (A′), 1F (A′))

H(x) = (F (f), 0F (A),F (A′), (−1)n−1h)

Since also [Fψ1] = [F ][ψ1] = [ψ2] it follows from the assumption (for C = Arn) that [φ] = [ψ1] ∈ [Arn, A]
and consequently [f ] = 0 ∈ HnA(A, A′) as desired.

Finally we show that F is quasi-full. Thanks to the bijection Iso(H0(A)) −→ Iso(H0(B)), it suffices to 
show that for all B, B′ ∈ B, there exist A, A′ ∈ A and isomorphisms B ∼= F (A) and B′ ∼= F (A′) in H0B
such that HnA(A, A′) −→ HnB(F (A), F (A′)) is an isomorphism for every n. So let B, B′ ∈ B. Consider 
the full dg subcategory ι : B0 ⊆ B spanned by the objects B and B′ and let Q : Q(B0) −→ B0 be a cofibrant 
resolution which is the identity on objects. By the assumption (for C = Q(B0)), there exists a dg functor 
G : Q(B0) −→ A with [F ][G] = [FG] = [ιQ] ∈ [Q(B0), B]. It follows that

Hn(FG(B),G(B′)) : HnA(G(B), G(B′)) −→ HnB(F (G(B)), F (G(B′)))
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is surjective as desired. �
2.3. Variations upon the inner hom

Consider dg U-categories A and B. For universes V ⊆ V′ such that A and B are V-small, there is 
easily seen to be a quasi-equivalence V−RHom(A, B) ∼= V′−RHom(A, B). Hence, we will often omit the 
decoration V from the notation and simply write RHom(A, B) where it is understood that we make use of 
some universe for which the categories under considerations are small. If A is U-small, then RHom(A, B) is 
seen to be a dg U-category.

For F ∈ RHom(A, B), we have an induced functor H0(F ) : H0(A) −→ H0(B). We will consider several 
full subcategories of RHom(A, B) determined by properties of the functors H0(F ).

Given a universe U, its cardinality |U| is the unique inaccessible (and hence regular) cardinal such that 
U = V|U| where, for a cardinal κ, Vκ = {X | |X| < κ} - consisting of all the κ-small sets - denotes the 
κth-level of the von Neumann hierarchy (see [34]). Observe that, for U ∈ V, we have that |U| < |V| and 
hence |U| is a |V|-small cardinal.

Definition 2.4. Let C be a dg U-category.

(1) Let α be a cardinal. We say that C is homotopically α-cocomplete if H0(A) has all α-small coproducts.
(2) We say that C is homotopically cocomplete if C is homotopically |U|-cocomplete, that is, H0(A) has all 

U-small coproducts.

Definition 2.5. Consider dg U-categories A and B.

(1) Let α be a cardinal. A quasi-functor F ∈ RHom(A, B) is called α-cocontinuous if the induced functor 
H0(F ) : H0(A) −→ H0(B) preserves all α-small coproducts. We let

RHomα(A,B) ⊆ RHom(A,B)

denote the full dg subcategory of α-cocontinuous quasi-functors.
(2) A quasi-functor F ∈ RHom(A, B) is called cocontinuous if it is |U|-cocontinuous, that is if the induced 

functor H0(F ) : H0(A) −→ H0(B) preserves all U-small coproducts. We put

RHomc(A,B) = RHom|U|(A,B).

Next we look at annihilation of classes of objects.

Definition 2.6. Consider dg categories A, B and let N ⊆ Ob(A) be a class of objects. We say that F ∈
RHom(A, B) annihilates N if the induced functor H0(F ) : H0(A) −→ H0(B) is such that H0(F )(N) = 0
for every N ∈ N . We denote by

RHomN (A,B) ⊆ RHom(A,B)

the full dg subcategory of quasi-functors annihilating N .

Remark 2.7. We will use the same terminology and notation for a full dg subcategory A′ ⊆ A, where it is 
understood that annihilation is intended with respect to the class N = Ob(A′).
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The dg quotient B/A of a dg category B along a full dg subcategory A ⊆ B was introduced by Keller in 
[13] and analysed further by Drinfeld in [9]. The dg quotient fulfills the following universal property in Hqe:

RHom(B/A, C) ∼= RHomA(B, C), (6)

for all C ∈ Hqe (see [31]).

Example 2.8. Let C be a small dg category and let Acdg(C) be the full dg subcategory of dgMod(C) of acyclic 
dg modules, that is, the dg modules which are pointwise acyclic. The natural composition of morphisms in 
Hqe

D(C) −→ dgMod(C) −→ dgMod(C)/Acdg(C) (7)

is an isomorphism, and hence it induces a morphism Q ∈ [dgMod(C), D(C)].

3. Well generated dg categories

Well-generated triangulated categories in the sense of Neeman [25] form a very important class of tri-
angulated categories. They enjoy very nice properties concerning for example localisations (see [17]) and 
Brown representability (see [25, §8.4]), and they also appear naturally in many contexts. In particular, 
derived categories of Grothendieck abelian categories are well generated triangulated [24].

Porta shows in [27] that in the triangulated world, well generated algebraic triangulated categories play 
the analogous role to the one that Grothendieck categories play in the abelian world, in the sense that they 
fulfill a triangulated version of the well-known Gabriel-Popescu theorem for Grothendieck categories [26].

In this article we will focus on the pretriangulated dg version of well generated algebraic triangulated 
categories:

Definition 3.1. A pretriangulated dg category A is called well generated if the homotopy category H0(A) is 
a well generated triangulated category. It is called α-compactly generated for some cardinal α if H0(A) is 
α-compactly generated.

Observe that in Definition 3.1, H0(A) is automatically algebraic as it has A as an enhancement.

Remark 3.2. From now on, when dealing with well generated pretriangulated dg categories, we will usually 
omit the term pretriangulated for the sake of brevity.

In section §3.2 we discuss the localisation theory of well generated dg categories, which can be obtained as 
an enhancement of the localisation theory of well generated triangulated categories as described for example 
in [17] (see §3.1). After recalling α-cocontinuous (dg) derived categories in §3.3, in §3.4 we formulate the 
(enhanced) derived Gabriel-Popescu theorem due to Porta [27]. In §3.5, we prove that the cocontinuous 
internal hom between homotopically cocomplete dg categories is again homotopically cocomplete (Theo-
rem 3.25). In §3.6, we prove the main result of this chapter: the cocontinuous internal hom between well 
generated dg categories is again well generated (Theorem 3.31).

3.1. Localisation of well generated triangulated categories

The Verdier quotient of a triangulated category T with respect to a full triangulated subcategory W is 
given by a triangulated category T /W and an exact functor Q : T −→ T /W annihilating W such that 
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any exact functor T −→ T ′ annihilating W factors through Q. In other words, we have that the Verdier 
quotient T /W has the following universal property:

FunTr(T /W, T ′) −◦Q−−−→∼= FunTr,W(T , T ′), (8)

where FunTr(T /W, T ′) denotes the collection of exact functors from T /W to T ′ and FunTr,W(T , T ′) denotes 
the collection of exact functors from T to T ′ that annihilate W. On the other hand, a Bousfield localisation 
functor L : T −→ T can be characterized as the composition of a Verdier quotient Q : T −→ T /Ker(L)
followed by its right adjoint T /Ker(L) −→ T (see [17]).

If we restrict to the realm of well generated triangulated categories, we have that localising subcategories 
of well generated categories which are generated by a set of objects are again well generated, and so are the 
corresponding Verdier quotients [17, Thm 7.2.1]. Then, we have two equivalent approaches to the localisation 
of well generated triangulated categories which produce again well generated triangulated categories and 
which are equivalent, namely:

• Verdier quotients along localising subcategories generated by a set;
• Bousfield localisations with kernel generated by a set;

where we say that a localising subcategory W of a well generated triangulated category T is generated 
by a set if there exists a set of objects of T such that the smallest localising subcategory containing them 
is W. The fact that these two approaches are equivalent can be directly deduced from [17, Thm 7.2.1 & 
Prop 5.2.1].

In what follows, we analyse the induced correspondence of localisation theories in the dg setting. But 
before we proceed, we make an observation on the universal properties of the Verdier and dg quotients when 
we restrict to the well generated case with cocontinuous functors.

Let T be a well generated triangulated category and W ⊆ T a localising subcategory generated by 
a set. One can easily observe that under this hypothesis the quotient functor Q : T −→ T /W preserves 
coproducts, as it is a left adjoint between well generated triangulated categories. It is then not hard to check 
that the Verdier quotient, restricted to well generated triangulated categories, has the following universal 
property. Given T a well generated triangulated category, and W ⊆ T a localising subcategory generated 
by a set of objects (and hence well generated), the Verdier quotient T /W is a well generated triangulated 
category such that for any well generated triangulated category T ′, one has that

FunTr,c(T /W, T ′) −◦Q−−−→∼= FunTr,c,W(T , T ′), (9)

where the subindex c indicates that we are considering the exact functors which preserve coproducts.
In the dg realm one can check in a similar fashion, for example by means of Keller’s construction, that 

if B is a well generated dg category and A ⊆ B is a dg subcategory with H0(A) localising in H0(B) and 
generated by a set, then the dg quotient B/A is also a well generated dg category (as it is an enhancement 
of the Verdier quotient H0(B)/H0(A)) and the canonical morphism Q : B −→ B/A in Hqe is cocontinuous, 
that is, the induced H0(B) −→ H0(B/A) preserves coproducts. Observe then, that for all well generated dg 
categories C, the universal property of the dg quotient (6) in Hqe restricts to a quasi-equivalence

RHomc(B/A, C) ∼= RHomc,A(B, C). (10)
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3.2. Localisation of well generated dg categories

3.2.1. Localising subcategories generated by a set
Let B be a well generated dg category. Observe that in particular H0(B) is localising as a subcategory 

of itself and it is, as localising subcategory, generated by a set. In addition, the intersection of localising 
subcategories of H0(B) generated by a set is again such (see [11, Lem 3.2]). Consequently, for every full 
triangulated subcategory H ⊆ H0(B) there is a smallest localising subcategory generated by a set containing 
H. In particular, the poset of localising subcategories of H0(B) generated by a set is a complete lattice with 
infi Wi = ∩iWi and supi Wi = 〈∪iWi〉, where 〈∪iWi〉 denotes the smallest localising subcategory that 
contains ∪iWi. Observe that 〈∪iWi〉 is indeed generated by a set, taking for example ∪iNi where, for every 
i, Ni is a set such that 〈Ni〉 = Wi.

Definition 3.3. Consider H ⊆ H0(B) and B ∈ B. A filtration of B consists of a countable collection (Xi)∞i=0
of objects in H0(B) with X0 = 0 and maps xi : Xi −→ Xi+1 for all i ≥ 0 such that hocolim(Xi) = B. A 
filtration (Xi)∞i=0 of B is called an H-filtration if the cone of each xi : Xi −→ Xi+1 belongs to H and in this 
case B is called H-filtered.

Proposition 3.4. Let W be a localising subcategory of H0(B) generated by a set. Then, there exists a set N
generating W (i.e. W = 〈N〉) such that X ∈ H0(B) belongs to W if and only if it is N -filtered, where N is 
the class of small coproducts of elements in N .

Proof. By [17, Thm 7.2.1], we know we can take a regular cardinal α such that W and H0(B) are both 
α-compactly generated. In particular, the class of α-compact objects Wα = W∩Bα is essentially small (see 
[25, Prop 3.2.5, Lem 4.4.5]). Take N to be the set of objects in W consisting of taking for each isomorphism 
class of Wα a representative. We have that W = 〈N〉. By applying [25, Lemma B.1.3] to W, we know that 
every X ∈ W is N -filtered. On the other hand, as W is localising, every N -filtered object X in H0(B)
belongs to W, which concludes the argument. �

We describe now the relation with orthogonal complements.
Let T be a triangulated category. Recall that an object X ∈ T is said to be left orthogonal to an object 

Y ∈ T (or Y right orthogonal to X) if T (X, Y ) = 0 and we denote this by X ⊥ Y . For a full subcategory 
H ⊆ T , we obtain the following k-linear subcategories of T :

• H⊥ = {X ∈ T | H ⊥ X for all H ∈ H}
• ⊥H = {X ∈ T | X ⊥ H for all H ∈ H}

Remark 3.5. This notation for the right and left orthogonals is the most common in the literature, though 
it is not standard. For example, the notation in [25] is reversed (see [25, Def 9.1.10 & 9.1.11]).

Proposition 3.6. Let W be a localising subcategory of B generated by a set N , i.e. W = 〈N〉. Then we have 
that W⊥ = N⊥.

Proof. We have that N ⊆ W, hence W⊥ ⊆ N⊥. On the other hand, we have that N ⊆ ⊥(N⊥) and 
⊥(N⊥) is easily seen to be a localising (hence triangulated) subcategory [25, Lem 9.1.12]. Hence we have 
that W = 〈N〉 ⊆ ⊥(N⊥). Then, applying right orthogonals and the fact that N⊥ = ( ⊥(N⊥))⊥, we obtain 
that N⊥ ⊆ W⊥, which concludes the argument. �
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3.2.2. Bousfield localisations

Definition 3.7. Given two pretriangulated dg categories A, B and two right quasi-representable functors 
F ∈ RHom(A, B), G ∈ RHom(B, A), we say that F is left quasi-adjoint to G if and only if H0(F ) � H0(G). 
In this case we write F �H0 G.

Definition 3.8. Let A, B be pretriangulated dg categories and i : B −→ A a quasi-fully faithful dg functor. 
We say that i ∈ RHom(B, A) is a dg Bousfield localisation of A if H0(i) : H0(B) ↪→ H0(A) admits a left 
adjoint.

Remark 3.9. This definition is seen to be equivalent to the following definition: i : B −→ A is a dg Bousfield 
localisation if and only if there exists a right quasi-representable functor a ∈ RHom(A, B) which is left 
adjoint to i ∈ RHom(B, A) in the sense of adjoint pairs of quasi-functors from [10]. Obviously, this second 
definition implies the first. On the other hand, if H0(i) has a left adjoint F : H0(A) −→ H0(B), then we 
have an isomorphism

H0(B)(F (A),−) ∼= H0(i(A,−))

for all A ∈ A, where we consider i in dgMod(A ⊗LBop). This isomorphism is, by Yoneda lemma, determined 
by an element f ∈ H0(i(A, F (A))). Consider g a closed element of degree 0 in i(A, F (A)) lifting f . By dg 
Yoneda lemma, g induces a morphism

B(F (A),−) −→ i(A,−)

which is a quasi-isomorphism because it is a lift of the previous 0th-cohomology isomorphism, and both A
and B are pretriangulated. This shows that i is left quasi-representable as a bimodule and hence it admits 
a left adjoint a ∈ RHom(A, B) as a consequence of [10, Prop 7.1]. In particular, by unicity of adjoints, we 
have that H0(a) ∼= F .

Observe this implies, in particular, that dg Bousfield localisations have left quasi-adjoints.

Remark 3.10. Fix the same notations as in Remark 3.9. As a direct consequence of the theory of adjunctions 
of quasi-functors from [10, §6], there exist morphisms IdA −→ i ⊗L

Ba in H0(RHom(A, A)) ⊆ D(A ⊗Aop) and 
a ⊗L

A i −→ IdB in H0(RHom(B, B)) ⊆ D(B⊗Bop), called the unit and counit of the adjunction respectively, 
where ⊗L is the composition of bimodules, which preserves right quasi-representability (see [12, §6.1]). 
Observe that in our particular situation the counit a ⊗L

A i −→ IdB is an isomorphism in H0(RHom(A, A))
and hence a ⊗L

A i and IdB are quasi-isomorphic in RHom(B, B). Moreover, notice that a is cocontinuous, i.e. 
it belongs to RHomc(A, B).

Remark 3.11. Observe that a dg Bousfield localisation induces a classical Bousfield localisation of the cor-
responding underlying triangulated category.

3.2.3. Equivalent approaches to localisation
When we restrict to the world of well generated triangulated categories, there is a nice correspondence 

between localising subcategories and Bousfield localisation, as we have pointed out at the beginning of §3.1. 
This result can be easily enhanced to the dg realm. In particular, for a well generated dg category B, there 
is a poset isomorphism between:

(1) The poset Wdg of localising subcategories of H0(B) generated by a set, ordered by inclusion;
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(2) The opposite poset (Ldg)op of the poset Ldg of Bousfield localisations of B with kernel of the left adjoint 
(at the 0th-cohomology level) generated by a set, ordered by inclusion, i.e. we write i ⊆ i′ if and only if 
Im(i) ⊆ Im(i′) as sub-dg-categories, where Im(i) denotes the quasi-essential image of i.

The poset isomorphism is described as follows:

(1) Let W be a localising subcategory of H0(B) generated by a set. In particular, we have that W⊥ ⊆ H0(B)
has a left adjoint and hence gives rise to a localisation functor

H0(B) −→ W⊥ −→ H0(B),

such that the composition W⊥ ↪→ H0(B) → H0(B)/W is an equivalence and W⊥ is well generated (see 
[17, Prop 7.2.1, Prop 5.2.1 & Prop. 4.9.1]).
Denote by LW the full dg subcategory of B obtained as an enhancement of W⊥ ⊆ H0(B) via the natural 
enhancement of H0(B). We have that LW is a well generated dg category, and that F : H0(B) −→
H0(B)/W ∼= W⊥ is a left adjoint of H0(i) : H0(LW) ⊆ H0(B), where i denotes the embedding LW ⊆ B. 
In addition, Ker(F ) = W, which is generated by a set of objects.
To each W ∈ Wdg we assign the so constructed LW ∈ Ldg.

(2) Let i : B −→ A be a Bousfield localisation of a well generated dg category A such that the kernel of the 
left adjoint F of H0(i) is generated by a set of objects. Observe that Ker(F ) is a localising subcategory 
of H0(B). We put WL = Ker(F ).
We assign to L ∈ Ldg the so constructed WL ∈ Wdg.

3.3. The α-cocontinuous derived category

In this section we recall the α-cocontinuous derived category of an α-cocomplete dg category from [27]
(note that in [27] it is called the “α-continuous derived category”).

Definition 3.12. [27, §6] Let C be a homotopically α-cocomplete small dg category. The α-cocontinuous 
derived category Dα(C) is defined as the full subcategory of D(C) with objects given by the dg functors X
such that for every α-small family of objects {Ai}i∈I the canonical morphism

Hn(X)

⎛
⎝H0(C)∐

i

Ai

⎞
⎠ −→

∏
i

Hn(X)(Ai) (11)

is invertible for all n ∈ Z, where 
H0(C)∐

i

Ai denotes the coproduct taken in H0(C).

Remark 3.13. Observe that, in particular, the representable dg modules belong to Dα(C).

Remark 3.14. In addition, one can give an equivalent definition of Dα(C) as a Verdier quotient of D(C) with 
respect to the localising subcategory N generated by the cones of the morphisms

{σλ :
∐
i∈I

hCi
→ h∐H0(C)

i∈I Ci
}λ, (12)

where λ varies in the set of all α-small families {Ci}i∈I of objects of C.
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Definition 3.15. We call the natural enhancement of Dα(C) via the enhancement D(C) of D(C) the α-
cocontinuous derived dg category of C. We will denote it by Dα(C).

There is an equivalent construction of Dα(C) in Hqe as a dg quotient. Indeed, we have that for the dg 
quotient D(C)/N ′, where N ′ is the natural enhancement of N above via the enhancement D(C) of D(C), 
the natural composition of morphisms in Hqe

Dα(C) −→ D(C) −→ D(C)/N ′ (13)

is an isomorphism. This induces a morphism Qα ∈ [D(C), Dα(C)]. In particular, we have the following

Theorem 3.16 ([27, Thm 6.4]). Let a be a homotopically α-cocomplete small dg category. Then Dα(a) is 
α-compactly generated by the images of the free dg modules {a(−, A)}A∈a through the localisation functor 
D(a) −→ Dα(a).

3.4. Enhanced derived Gabriel-Popescu theorem

In [27], Porta proved a derived version of the Gabriel-Popescu theorem, showing that a triangulated 
category T is well generated and algebraic if and only if there exists a small dg category a such that T is 
triangle equivalent to the Verdier quotient of D(a) by a localising subcategory generated by a set. Further, 
T is α-compactly generated and algebraic if and only if there exists a small homotopically α-cocomplete dg 
category a such that T is triangle equivalent to Dα(a).

We are interested in enhanced versions of these results, which can easily be deduced making use of the 
higher observations (see also [7]).

Theorem 3.17. Let C be a pretriangulated dg category.

(1) C is well generated if and only if there exists a small dg category a such that C ∼= D(a)/W in Hqe, where 
W is the enhancement of a localising subcategory of D(a) generated by a set.

(2) C is α-compactly generated if and only if there exists a small homotopically α-cocomplete dg category a
such that C ∼= Dα(a) in Hqe.

From Theorem 3.17, one deduces (see [33, §3.1]):

Corollary 3.18. Let C be a pretriangulated dg category. Then C is well generated if and only if C is locally 
presentable in the sense of [33].

3.5. The cocontinuous internal hom of homotopically cocomplete dg categories

In this section we prove that given a U-small dg category b, and a well generated V-small dg category C
with a U-small set of generators, the internal hom RHom(b, C) in V −Hqe is a well generated dg category as 
well. As a consequence of this result, we prove that for any two U-small dg categories a, b with b homotopically 
U-cocomplete (resp. α-cocomplete) the internal hom RHom(a, b) is also homotopically U-cocomplete (resp. 
α-cocomplete) in U − Hqe, while if also a is homotopically U-cocomplete (resp. α-cocomplete), then so is 
RHomc(a, b) (resp. RHomα(a, b)) in U − Hqe.

We will start first with some considerations on the two variable setting.
The fact that the cofibrant replacement Q in dgcatk can be taken to be the identity on objects, permits 

to define a canonical functor
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iB : a −→ a⊗L b = a⊗Q(b) : A �−→ (A,B)

for all B ∈ b (see [32, §4]).
One can then consider the induced dg functor

(iB)∗ : dgMod(a⊗L b) −→ dgMod(a) : F �−→ F ◦ iB = F (−, B),

sometimes called restriction of scalars. This dg functor has a left adjoint

(iB)! : dgMod(a) −→ dgMod(a⊗L b),

sometimes also called extension of scalars. Moreover, (iB)∗ preserves acyclic dg modules, hence it induces 
an exact functor

(iB)∗ : D(a⊗L b) −→ D(a)

In addition, the left derived functor

L(iB)! : D(a) −→ D(a⊗L b),

is a left adjoint for (iB)∗ (see [21, §1]). Observe our notations for the restriction and extension of scalars 
functors follow the convention from classical topos theory as in [1] while in [21] another convention is used.

Lemma 3.19. Let a and b be small dg categories and consider an object B ∈ b. Then we have that the functor 
L(iB)! ∼= − ⊗L b(−, B).

Proof. Since L(iB)! is a left adjoint between well generated triangulated categories, it preserves coproducts. 
Therefore, it is fully determined by its value on the representables, as they generate D(a). Consider a module 
F ∈ D(a ⊗L b). Then, for any object A ∈ a we have that

D(a⊗L b) (L(iB)!(a(−, A)), F ) ∼= D(a) (a(−, A), (iB)∗(F ))
∼= D(a)(a(−, A), F (−, B))
∼= H0(F (A,B))
∼= D(a⊗L b)(a⊗L b((−,−), (A,B)), F )
∼= D(a⊗L b)(a(−, A) ⊗L b(−, B), F ),

where the first equivalence is given by the adjunction L(iB)! � (iB)∗, the second by definition of (iB)∗, the 
third and the fourth by definition of the morphisms in derived categories (see [12, §4]) and the last one can 
be readily seen using Proposition 2.1. As this holds for all F ∈ D(a ⊗Lb), we conclude by Yoneda lemma. �
Lemma 3.20. Let a, b be two small dg categories and W ⊆ D(a) a localising subcategory generated by a set. 
Then the triangulated subcategory

W ′ = {X ∈ D(a⊗L b) | (iB)∗(X) = X(−, B) ∈ W for all B ∈ b}

of D(a ⊗L b) is localising and generated by a set. In particular, if W is generated by a set N , then we have 
that W ′ is generated by the set N ′ = {L(iB)!(N) | N ∈ N , B ∈ b}.
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Proof. The fact that (iB)∗ preserves small coproducts immediately shows that W ′ is a localising subcategory 
of D(a ⊗L b).

We first prove that W ′ is generated by a set (and hence well generated by [17, Thm 7.2.1]). Given an 
object B ∈ b, consider the composition

D(a⊗L b) (iB)∗−−−→ D(a) Q−−→ D(a)/W,

where Q denotes the Verdier quotient functor. Observe that both (iB)∗ and Q preserve small coproducts, 
as they are left adjoint functors between well generated categories. Therefore, by [17, Thm 7.4.1] we have 
that

Ker(Q ◦ (iB)∗) = {X ∈ D(a⊗L b) | (iB)∗X = X(−, B) ∈ W}

is also well-generated and in particular generated by a set of objects. Notice now that, as

W ′ =
⋂
B∈b

Ker(Q ◦ (iB)∗) ⊆ D(a⊗L b),

we can apply [11, Lem 3.2] to conclude that W ′ is also generated by a set of objects.
We now show the second part of the statement, namely, that if W = 〈N〉 for a set N , then W ′ = 〈N ′〉

with N ′ = {L(iB)!(N) | N ∈ N , B ∈ b}.
We first prove that 〈N ′〉 ⊆ W ′. As W ′ is localising, it suffices to show that N ′ ⊆ W ′. Let’s take 

X = L(iB)!(N) ∈ N ′. We have that X(−, B′) = L(iB)!(N)(−, B′) = N(−) ⊗L b(B′, B) by Lemma 3.19, and 
one can easily see that it belongs to W. Indeed, we have that N = N(−) ⊗L k[0] ∈ W where k[0] ∈ D(k)
denotes the complex concentrated in degree 0 with k in the 0-term. In addition, k[0] is a compact generator 
of D(k), hence b(B′, B) ∈ D(k) can be written in terms of direct sums, extensions and shifts of k[0]. As 
N(−) ⊗L − : D(k) −→ D(a) commutes with all these, and W is localising, we can conclude. Hence, we have 
that 〈N ′〉 ⊆ W ′.

Now we prove that W ′ ⊆ 〈N ′〉. Observe that it suffices to show that 〈N ′〉⊥ ⊆ W ′ ⊥. Indeed, if we take 
left orthogonals, we have that

W ′ ⊆ ⊥(W ′ ⊥) ⊆ ⊥(〈N ′〉⊥) = 〈N ′〉,

where the last equality comes from [17, Prop 4.9.1(6)] because 〈N ′〉 is a localising subcategory generated by 
a set of a well generated category. Recall from Proposition 3.6 that 〈N ′〉⊥ = N ′ ⊥. Let’s consider X ∈ N ′ ⊥. 
Then, we have that

0 = D(a⊗L b)(L(iB)!(N), X),

for all N ∈ N and all B ∈ b. Hence we have that

0 = D(a⊗L b)(L(iB)!(N), X) ∼= D(a)(N, (iB)∗(X))

for all N ∈ N and all B ∈ b. Thus (iB)∗(X) = X(−, B) ∈ N⊥ = W⊥ for all B ∈ b. We are going to show 
that this is enough to conclude that X ∈ W ′ ⊥.

Observe that, because W ′ is a well generated subcategory of D(a ⊗L b) closed under coproducts, by [17, 
Thm 5.1.1] we have that W ′ is a right admissible subcategory [5, Def 1.2] and 〈W ′ ⊥, W ′〉 is a semiorthogonal 
decomposition of D(a ⊗Lb) (see for example [18, Lem 2.5]). Therefore, we have a diagram of adjoint functors
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W ′ D(a⊗L b) W ′ ⊥j′ q′

a′ i′

where j′ � a′, q′ � i′ with a′j′ ∼= 1W′ , q′i′ ∼= 1W′ ⊥ and furthermore ker(q′) = Im(j′) and ker(a′) = Im(i′). 
In particular, the projection functors associated to the semiorthogonal decomposition as in [18, §2.2] are 
precisely given by i′q′ : D(a ⊗L b) → D(a ⊗L b) and j′a′ : D(a ⊗L b) → D(a ⊗L b) (see, for example, the proof 
of [4, Lem 3.1]). Analogously, we have that 〈W⊥, W〉 is a semiorthogonal decomposition of D(a) and thus 
we have a diagram of adjoint functors

W D(a) W⊥j q

a i

where j � a, q � i with aj ∼= 1W , qi ∼= 1W⊥ and furthermore ker(q) = Im(j) and ker(a) = Im(i). 
The projection functors associated to this semiorthogonal decomposition are iq : D(a) → D(a) and ja :
D(a) → D(a). Now, observe that for all B ∈ b we have that the functor (iB)∗ is compatible with the given 
semiorthogonal decompositions in the sense of [18, §3], that is, we have that for all B ∈ b:

• (iB)∗(W ′) ⊆ W: This follows by definition of W ′;
• (iB)∗(W ′ ⊥) ⊆ W⊥: Let X ∈ W ′ ⊥. Then, given any Y ∈ W we have that D(a)(Y, (iB)∗(X)) ∼= D(a ⊗L

b)(Y ⊗L b(−, B), X) and this latter is equal to 0 because Y ⊗L b(−, B) ∈ W ′, which can be shown using 
the same argument as in the proof of the inclusion 〈N ′〉 ⊆ W ′ above.

Hence, by applying [18, Lem 3.1] we have that, with the notations above

(iB)∗j′a′ ∼= ja(iB)∗

(iB)∗i′q′ ∼= iq(iB)∗.
(14)

Notice now that, because 〈W ′ ⊥, W ′〉 is a semiorthogonal decomposition, we have that our initial object 
X ∈ N ′ ⊥ ⊆ D(a ⊗L b) fits in a distinguished triangle of the form

j′a′(X) −→ X −→ i′q′(X) −→ j′a′(X)[1],

where the morphisms are induced by the counit and unit of the adjunctions above. If we now apply (iB)∗, 
we obtain a distinguished triangle

(iB)∗j′a′(X) −→ (iB)∗X −→ (iB)∗i′q′(X) −→ (iB)∗j′a′(X)[1].

Observe that (iB)∗j′a′(X) ∼= ja(iB)∗(X) for all B ∈ b because of (14). We showed above that for all 
B ∈ b we have that (iB)∗(X) = X(−, B) belongs to W⊥ and hence a(iB)∗(X) = 0. Therefore, we have 
that 0 = ja(iB)∗(X) ∼= (iB)∗j′a′(X) for all B ∈ b. Consequently, we have that j′a′(X) = 0 and thus 
X ∼= i′q′(X) ∈ W ′ ⊥, which concludes the argument. �
Remark 3.21. Observe that the presented proof is symmetric in the arguments, and hence the similar 
statement for W ⊆ D(b) a localising subcategory generated by a set holds as well.

We are now in disposition to prove:

Theorem 3.22. Let b be a U-small dg category and C a well generated V-small dg category. Then, RHom(b, C)
is a well generated V-small dg category.
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Proof. As C is pretriangulated by hypothesis, so is RHom(b, C) for any small dg category b (see for instance 
[9, Rem E.2 & E.4]).

As C is a well generated dg category, by Porta’s Gabriel-Popescu theorem, there exists a small dg category 
c such that C is a Bousfield localisation of D(c), that is, there exists a quasi-fully faithful functor i : C −→ D(c)
which has a cocontinuous quasi-left adjoint F ∈ RHomc(D(c), C).

We have that, by [32, Cor 6.6], the morphism

j : RHom(b, C) −→ RHom(b,D(c))

induced by the dg functor i is quasi-fully faithful as well, thus H0(j) is a fully-faithful functor. Observe that, 
if we consider i as a right quasi-representable bimodule and we denote it by hi(−) ∈ RHom(C, D(c)), we have 
that j = hi(−) ⊗L

C (−). Then, the natural bimodule F ′ = F ⊗L
D(c) (−) ∈ RHom(RHom(b, D(c)), RHom(b, C))

can be easily seen to be a quasi-left adjoint of j : RHom(b, C) −→ RHom(b, D(c)). Indeed, we have a counit

F ′ ⊗L
RHom(B,D(c)) j = F ⊗L

D(c) hi(−) ⊗L
C (−) −→ IdC ⊗L

C (−) = IdRHom(b,C)

induced by the counit of the quasi-adjunction F �H0 hi(−) and a unit

IdRHom(b,D(c)) = IdD(c) ⊗L
D(c) (−) −→ hi(−) ⊗L

C F ⊗L
D(c) (−) = j ⊗L

RHom(b,C) F
′

induced by the unit of the quasi-adjunction F �H0 hi(−). We thus have that j is a dg Bousfield localisation 
of RHom(b, D(c)), and hence

H0(RHom(b, C)) H0(j)−−−−→ H0(RHom(b,D(c)))

is a Bousfield localisation of H0(RHom(b, D(c))).
Now observe that RHom(b, D(c)) ∼= D(bop ⊗L c) in Hqe as a direct consequence of the fact that 

D(c) ∼= RHom(cop, D(k)) in Hqe (see [32, §7]). We hence have an exact isomorphism f : D(bop ⊗L c) −→
H0(RHom(b, D(c))) and it is not hard to see that every X ∈ D(bop ⊗L c) is sent via f to the associated 
quasi-respresentable bimodule X : b −→ D(c) in H0(RHom(b, D(c))). Consequently, via f , we have that

D(bop ⊗L c) H0(F ′)◦f−−−−−−→ H0(RHom(b, C)) f−1◦H0(j)−−−−−−−→ D(bop ⊗L c)

provides a Bousfield localisation of D(bop ⊗L c). In addition, observe that

Ker(H0(F ′) ◦ f) ∼= {X ∈ D(bop ⊗L c) | (iB)∗(X) = X(B,−) ∈ Ker(H0(F )) for all B ∈ B},

where Ker(H0(F )) is a localising subcategory of D(c) generated by a set of objects. Then we can conclude 
by Lemma 3.20 that Ker(H0(F ′) ◦ f) is also generated by a set of objects. Consequently, H0(RHom(b, C))
is also well generated, as we wanted to show. �
Lemma 3.23. Consider small dg categories b, c, c′ and a quasi-fully faithful dg functor ϕ : c −→ c′. Consider 
the induced morphism hϕ ⊗L

c − : RHom(b, c) −→ RHom(b, c′). Consider a quasi-functor F ∈ RHom(b, c′)
which is such that H0(F ) : H0(b) −→ H0(c′) factors through H0(ϕ). Then, there exists F̄ ∈ RHom(b, c)
such that hϕ ⊗L

c F̄ ∼= F as elements in H0(RHom(b, c′)).

Proof. Consider the first argument (derived) bimodule restriction functor ϕ∗
1 : D(bop ⊗L c′) −→ D(bop ⊗L c)

and the first argument derived bimodule extension functor L((ϕ1)!) : D(bop ⊗L c) −→ D(bop ⊗L c′). Let F be 
as in the statement of the lemma and put F̄ = ϕ∗

1(F ). Consider the Yoneda embeddings yc : H0(c) −→ D(c), 
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yc′ : H0(c′) −→ D(c′), the (derived) restriction functor ϕ∗ : D(c′) −→ D(c) and the derived extension functor 
L(ϕ!) : D(c) −→ D(c′), for which we have

L(ϕ!)yc ∼= yc′H
0(ϕ) (15)

in D(cop⊗L c′). Consider F ∈ RHom(b, c′) as in the statement of the lemma. We consider F : b −→ D(c′) and 
H0(F ) : H0(b) −→ D(c′). Since F is a quasi-functor, there exists f : H0(b) −→ H0(c′) with H0(F ) ∼= yc′f

(note that we usually denote H0(F ) = f for quasi-functors, but we refrain from doing so within this proof). 
By assumption, there exists g : H0(b) −→ H0(c) with

H0(ϕ)g ∼= f. (16)

Using (15) and (16), we thus have

H0(F ) = yc′f ∼= yc′H
0(ϕ)g ∼= L(ϕ!)ycg (17)

and

H0(F̄ ) = ϕ∗L(ϕ!)ycg ∼= ycg (18)

where in the last equation we have used that ϕ is quasi-fully faithful. Equation (18) already shows F̄ to be 
a quasi-functor. Comparing the expressions (17) and (18), we see that H0(F ) ∼= L(ϕ!)H0(F̄ ) canonically. 
From this, one readily deduced that the canonical natural transformation hϕ ⊗L

c F̄ = L((ϕ1)!)ϕ∗
1(F ) −→ F

is an isomorphism in H0(RHom(b, c′)), as desired. �
Corollary 3.24. Consider a small dg category b and a dg category C. Let α be a cardinal with α ≤ |U|.

(1) If C is homotopically α-cocomplete, then so is RHom(b, C). Moreover, on the level of induced func-
tors between the H0-categories, coproducts are pointwise: for an α-small family (Fi)i∈I with Fi ∈
H0(RHom(b, C)) with coproduct 

∐
i Fi, the functors H0(Fi), H0(

∐
i Fi) : H0(b) −→ H0(C) are such 

that

H0(
∐
i

Fi)(B) =
H0(C)∐

i

H0(Fi)(B).

(2) If C is homotopically cocomplete, then so is RHom(b, C), and the coproducts are pointwise on the level 
of induced functors between the H0-categories.

Proof. Clearly, (2) is the case α = |U| in (1). Suppose C is homotopically α-cocomplete for α ≤ |U|. Let 
V be a universe such that U ∈ V and C is V-small. Then V−RHom(b, C) is constructed as an essentially 
V-small dg category which is a U-category, and α is a V-small cardinal. For Y α

C : C −→ V−Dα(C) we have 
a canonical morphism

Ỹ α
C : RHom(b, C) −→ RHom(b,V−Dα(C))

which is quasi-fully faithful [32, Cor 6.6]. Since the codomain is V-well generated by Theorem 3.22
and hence V-cocomplete, it suffices to show that H0(RHom(b, C)) is closed under α-small coproducts in 
H0(RHom(b, V−Dα(C))).
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Let (Fi ∈ RHom(b, C))i∈I be an α-small collection of objects. We may assume that b is cofibrant and 
that we have dg functors fi : b −→ C with Fi = YCfi for YC : C −→ V−D(C).

We will consider the functors Fα
i = Y α

C fi as representatives of the objects Ỹ α
C (Fi) ∈ RHom(b, V−Dα(C))

(where we refrain from writing the composition with a further Yoneda embedding in order to obtain the 
associated bimodules).

Consider the canonical quotient of dg V-categories Q : V−D(C) −→ V−Dα(C) and the induced quotient

Q̃ : RHom(b,V−D(C)) −→ RHom(b,V−Dα(C)).

The coproduct of the objects Fα
i ∈ H0(RHom(b, V−Dα(C))) is given by F = Q̃(

∐
i Fi) = Q ◦

∐
i Fi for 

Fi ∈ H0(RHom(b, V−D(C))) ∼= V−D(bop ⊗ C). By Lemma 3.23, it suffices to show that H0(F ) factors 
through H0(Y α

C ). To see this, we compute

H0(F )(B) = Q(
V−D(C)∐

i

hfi(B)) =
V−Dα(C)∐

i

hfi(B) ∼= h∐
H0(C) fi(B) (19)

where we have used the characterisation of the α-cocontinuous derived category from Remark 3.14. The 
computation (19) also demonstrates the additional claim. �
Corollary 3.25. Consider dg categories A and B. Let α be a cardinal with α ≤ |U|.

(1) If A and B are homotopically α-cocomplete, then so is RHomα(A, B). Moreover, on the level of in-
duced functors between the H0-categories, the α-small coproducts are pointwise. If in addition B is 
pretriangulated, then so is RHomα(A, B).

(2) If A and B are homotopically cocomplete, then so is RHomc(A, B). Moreover, on the level of induced 
functors between the H0-categories, small coproducts are pointwise. If in addition B is pretriangulated, 
then so is RHomc(A, B).

Proof. Again, (2) is the case α = |U| in (1). Let V be a universe with U ∈ V and such that A and B are 
V-small. Then α ≤ |V|. From Corollary 3.24 we know that RHom(A, B) is homotopically α-cocomplete. 
In order to prove that H0(RHomα(A, B)) is α-cocomplete it is enough to show that it is closed under 
α-small coproducts in H0(RHom(A, B)). Consider an α-small family (Fi)i∈I in H0(RHomα(A, B)). By 
Corollary 3.24, we have that

H0

⎛
⎝H0(RHom(A,B))∐

i

Fi

⎞
⎠

⎛
⎝H0(A)∐

j

Aj

⎞
⎠ ∼=

H0(B)∐
i

H0(Fi)

⎛
⎝H0(A)∐

j

Aj

⎞
⎠

for all α-small families (Aj)j∈J of elements of H0(A). From the fact that the Fi’s are α-cocontinuous we 
have that

H0(B)∐
i

H0(Fi)

⎛
⎝H0(A)∐

j

Aj

⎞
⎠ =

H0(B)∐
j

H0(B)∐
i

H0(Fi)(Aj) =
H0(B)∐

j

⎛
⎝H0

⎛
⎝H0(RHom(A,B))∐

i

Fi

⎞
⎠ (Aj)

⎞
⎠ ,

which proves that 
∐H0(RHom(A,B))

i Fi belongs to H0(RHomα(A, B)) as desired.
Now assume that B is pretriangulated. By [9, Rem E.2 & E.4], we know that RHom(A, B) is also 

pretriangulated, with the triangulated structure inherited from that of D(B ⊗L Aop). It is then enough to 
show that H0(RHomα(A, B)) ⊆ H0(RHom(A, B)) is a triangulated subcategory. Take F ∈ RHomα(A, B)
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and consider its shift F [1] when seen in the triangulated category H0(RHom(A, B)). We prove that F [1] is 
α-cocontinuous. Indeed, for any small family (Ai)i of objects of A, we have that

(H0(F )[1])

⎛
⎝H0(A)∐

i

Ai

⎞
⎠ =

⎛
⎝H0(F )

⎛
⎝H0(A)∐

i

Ai

⎞
⎠
⎞
⎠ [1]

=

⎛
⎝H0(B)∐

i

H0(F )(Ai)

⎞
⎠ [1]

=
H0(B)∐

i

(H0(F )(Ai)[1])

=
H0(B)∐

i

(H0(F )[1])(Ai),

where in the first and last equalities we use the fact that triangulated structure in H0(RHom(A, B)) is 
inherited from the canonical one in D(B ⊗L Aop), in the second equality we use that F is α-cocontinuous 
and in the third equality we use that shifts commute with coproducts. Now consider an exact triangle

F −→ F ′ −→ F ′′ −→ F [1]

in H0(RHom(A, B)), where F, F ′ ∈ H0(RHomα(A, B)). Given an α-small family (Ai) of elements in H0(A), 
for all i we have the exact triangle

H0(F )(Ai) H0(F ′)(Ai) H0(F ′′)(Ai) H0(F )(Ai)[1] (20)

in H0(B). Observe now that we have the following diagram with rows exact triangles:

H0(F )
(

H0(A)∐
i

Ai

)
H0(F ′)

(
H0(A)∐

i

Ai

)
H0(F ′′)

(
H0(A)∐

i

Ai

)
H0(F )

(
H0(A)∐

i

Ai

)
[1]

H0(B)∐
i

H0(F )(Ai)
H0(B)∐

i

H0(F ′)(Ai)
H0(B)∐

i

H0(F ′′)(Ai)
H0(B)∐

i

H0(F )(Ai)[1]

where the exact triangle below is the coproduct of the family of exact triangles from (20) above, and the 
vertical equalities are given because both H0(F ) and H0(F ′) are α-cocontinuous by hypothesis. By the 
axioms of triangulated categories, we have that

H0(F ′′)

⎛
⎝H0(A)∐

i

Ai

⎞
⎠ ∼=

H0(B)∐
i

H0(F ′′)(Ai).

Hence F ′′ ∈ RHomα(A, B), which concludes the argument. �
3.6. The cocontinuous internal hom of well generated dg categories

In this section we prove that for well generated dg categories A and B, the dg category RHomc(A, B) is 
again well generated.
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Remark 3.26. Let b be a small dg category and consider the associated dg Yoneda embedding Yb : b → D(b). 
From this point on, we will abuse notations and write Yb = hYb

∈ RHom(b, D(b)). In the same lines, if b
is homotopically α-cocomplete and Y ′

b : b → Dα(b) is the corestriction of the Yoneda embedding, we will 
write Y ′

b = hY ′
b
∈ RHom(b, Dα(b)).

The following result extends Toën’s derived Morita theory (the case C = D(c)) from [32, Thm 7.2] (see 
also [6, Corollary 4.2]).

Proposition 3.27. Let b be a small dg category and C a well generated dg category. We have that the dg 
functor

−⊗L Yb : RHomc(D(b), C) → RHom(b, C), (21)

is a quasi-equivalence, where Yb ∈ RHom(b, D(b)) is the dg Yoneda embedding (see Remark 3.26). Therefore, 
RHomc(D(b), C) ∼= RHom(b, C) in Hqe.

Proof. If C = D(c), the theorem reduces to derived Morita theory. In order to provide the proof for C
an arbitrary well generated dg category, we will build upon the proof of [6, Corollary 4.2]. Consider C a 
well generated dg category. In particular, by Theorem 3.17 there exists a small dg category c, a quasi-
fully faithful dg functor i : C −→ D(c) and a bimodule a ∈ RHomc(D(c), C) such that a �H0 i and hence 
in particular, a ⊗L

D(c) i 
∼= IdC ∈ H0(RHom(C, C)) by Remark 3.10. This implies that [a]iso ◦ [i] = IdC in 

Iso(H0(RHom(C, C))) ∼= [C, C] (see Proposition 2.2), where [a]iso denotes the isomorphism class of [a] ∈
H0(RHom(C, C)).

First, we prove that, for every well generated dg category C, the map

[D(b), C]c −→ [b, C] : f �→ f ◦ [Yb] (22)

is a bijection, where [−, −]c indicates the subset of morphisms in Hqe such that the induced morphism 
between the homotopy categories preserves coproducts.

We first prove surjectivity. Consider g ∈ [b, C]. Then, [i] ◦ g ∈ [b, D(c)] and by derived Morita theory, 
there exists f ∈ [D(b), D(c)]c such that f ◦ [Yb] = [i] ◦ g. Consider now [a]iso ◦ f , which belongs to [D(b), C]c. 
Then, [a]iso ◦ f ◦ [Yb] = [a]iso ◦ [i] ◦ g = g, which proves surjectivity.

In order to prove injectivity, one can follow a very similar argument to that of the proof of [6, Prop 3.10]
in which a first step towards the proof of derived Morita theory is provided. We provide the details here for 
convenience of the reader. Consider f1, f2 ∈ [D(b), C]c such that f1 ◦ [Yb] = f2 ◦ [Yb]. By composing with 
[i], we have [i] ◦ f1 ◦ [Yb] = [i] ◦ f2 ◦ [Yb] ∈ [b, D(c)]. It follows from [6, Prop 2.11(3)] that there exists a dg 
category A and a quasi-equivalence I : A −→ D(b) such that fi = [Fi] ◦ [I]−1 with Fi : A −→ C a dg functor 
for i = 1, 2. Consequently, we have that [i] ◦ fi = [i ◦ Fi] ◦ [I]−1 for i = 1, 2. We denote by a the full dg 
subcategory of A such that I ′ := I|a induces a quasi-equivalence of a with the full dg subcategory qrep(b)
of D(b) and by J : a ↪→ A the inclusion. We write Gi := Fi ◦ J : a −→ C for i = 1, 2. We hence have, for 
i = 1, 2, the following commutative diagram

D(b) A D(c).

qrep(b) a

∼
I i◦Fi

J ′

∼
I′ i◦Gi

J (23)

Following the notations of [6, §3.1], we consider the extension of i ◦Gi:
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̂i ◦Gi : dgMod(a) → dgMod(c) : X �→ Ei ⊗L X

where Ei ∈ dgMod(c ⊗L aop) is the bimodule corresponding to the functor i ◦ Gi : a −→ D(c), and the 
restriction of i ◦Gi:

˜i ◦Gi : dgMod(c) → dgMod(a) : X �→ dgMod(c)(i ◦Gi(−), X).

By [6, Prop 3.2], we have that H0(̂i ◦Gi) is cocontinuous and it is easy to check that ̂i ◦Gi restricts to a 

dg functor D(a) −→ D(c), because i ◦Gi(a) ⊆ D(c). In addition, we have the adjunction ̂i ◦Gi � ˜i ◦Gi.
From the discussion above, we have that

[i ◦G1] ◦ [I ′]−1 = [i ◦ F1] ◦ [I]−1 ◦ [J ′] = [i ◦ F2] ◦ [I]−1 ◦ [J ′] = [i ◦G2] ◦ [I ′]−1,

and hence [i ◦G1] = [i ◦G2]. From [6, Lem 3.9] if follows that [̂i ◦G1] = [̂i ◦G2].
Consider now the restriction functor J∗ : dgMod(A) → dgMod(a) : X �→ X ◦ J and the composition 

K := J∗ ◦ YA. From the proof of [21, Prop 1.17] it follows that H0(K) is cocontinuous and one has that 
K(J(a)) ∼= Ya(a) ⊆ D(a).

Now observe that ˜i ◦Gi ◦ i ◦ Fi(A) = D(c)(i ◦ Gi(−), i ◦ Fi(A)) for all A ∈ A, and hence we have the 

following natural transformation γ : K −→ ˜i ◦Gi ◦ i ◦ Fi induced by i ◦ Fi:

γA : K(A) = A(J(−), A) −→ D(c)(i ◦ Fi ◦ J(−), i ◦ Fi(A)) = ˜i ◦Gi ◦ i ◦ Fi(A).

By adjunction, we have a natural transformation β : ̂i ◦Gi ◦K → i ◦ Fi with the property that H0(β)|J(a)
is an isomorphism, where H0(J(a)) forms a compact generator of the well generated triangulated category 
H0(A). Consider the functor Φa : D(c) −→ qrep(C) associated to a ∈ RHomc(D(c), C). By composing 
with Φa we obtain a natural transformation α : Φa ◦ ̂i ◦Gi ◦K −→ Φa ◦ i ◦ Fi such that H0(α)|J(a) is an 

isomorphism. Then, we have that H0(C) is well generated, H0(Φa), H0(̂i ◦Gi) and H0(K) are cocontinuous, 
and so is H0(Φa) ◦H0(i) ◦H0(Fi) ∼= H0(Fi). Consequently, by the same argument of [6, Rem 2.4], we have 
that α is a termwise homotopy equivalence, and hence [a]iso◦ [̂i ◦Gi] ◦ [K] = [a]iso ◦ [i] ◦ [Fi] = [Fi] for i = 1, 2. 
Now, as [̂i ◦G1] = [̂i ◦G2], we obtain that [F1] = [F2]. This finally implies that f1 = f2 as desired.

Now, define [D(b) ⊗L a, C]′c as the subset of [D(b) ⊗L a, C] consisting of elements f such that H0(f)(−, A)
preserves coproducts for all A ∈ a. Then, we have the following commutative diagram induced by the Yoneda 
embedding Yb : b −→ D(b):

[a,RHomc(D(b), C)] [a,RHom(b, C)]

[
D(b) ⊗L a, C

]′
c

[
a⊗L b, C

]

[D(b),RHom(a, C)]c [b,RHom(a, C)] ,

[−⊗LYb]◦−

∼=

∼=

∼=

∼=

−◦[Yb]

(24)

where the vertical arrows are induced by the ⊗L-RHom adjunction in Hqe. As RHom(a, C) is well generated 
by Theorem 3.22, we have that the lower horizontal arrow is a bijection by the discussion above, and thus 
so is [− ⊗L Yb] ◦ −. Then, using Proposition 2.3 we can conclude that [− ⊗L Yb] is an isomorphism in Hqe, 
proving that − ⊗L Yb is a quasi-equivalence, as desired. �
Proposition 3.28. Let b be a homotopically α-cocomplete small dg category and C a well generated dg category. 
We have that the dg functor
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−⊗L Y ′
b : RHomc(Dα(b), C) → RHomα(b, C) (25)

is a quasi-equivalence, where Y ′
b ∈ RHom(b, Dα(b)) is the corestriction of the dg Yoneda embedding (see 

Remark 3.26). Therefore, RHomc(Dα(b), C) ∼= RHomα(b, C) in Hqe.

Proof. First recall that we have a dg Bousfield localisation a �H0 i : Dα(b) � D(b). One can easily see 
that a ⊗L

D(b) Yb ∈ RHomα(b, Dα(b)) is α-cocontinuous and it is isomorphic in H0(RHomα(b, Dα(b))) to the 
corestriction of the Yoneda embedding Y ′

b : b −→ Dα(b), which can be easily deduced from the fact that 
Yb = i ◦ Y ′

b. Hence, we have that

i⊗L
Dα(b) a⊗L

D(b) Yb
∼= Yb ∈ H0(RHom(b,D(b))).

We are going to show that, for any well generated dg category C, the map

[Dα(b), C]c −→ [b, C]α : f �−→ f ◦ [a]iso ◦ [Yb] (26)

is a bijection, where [−, −]c (resp. [−, −]α) indicates the subset of morphisms in Hqe such that the induced 
morphism between the homotopy categories preserves small coproducts (resp. α-small coproducts). Given 
f ◦[a]iso◦[Yb] = f ′◦[a]iso◦[Yb], then, by derived Morita theory, as both f ◦[a]iso and f ′◦[a]iso are cocontinuous, 
we have that f ◦ [a]iso = f ′ ◦ [a]iso. Consequently,

f = f ◦ [a]iso ◦ [i]iso = f ′ ◦ [a]iso ◦ [i]iso = f ′,

which proves injectivity.
Next, consider g ∈ [b, C]α. Then, by derived Morita theory, there is an element f ∈ [D(b), C]c such that 

f ◦ [Yb] = g. We are going to show that f factors through [a]iso ∈ [D(b), Dα(b)]c. Indeed, by the description 
of the kernel of H0(a) provided in Remark 3.14 and the universal property of the dg quotient (10), f factors 
through [a]iso if and only if

H0(f)(
∐
i

Yb(Bi)) ∼= H0(f)(Yb(
∐
i

Bi)),

where 
∐

i Bi is seen in H0(b), for all α-small coproducts. But this condition is readily seen to be satisfied 
taking into account that f is cocontinuous and f ◦ [Yb] = g is α-cocontinuous, and hence

f = t ◦ [a]iso.

In addition, t is also cocontinuous by the universal property of the dg quotient (10), that is t ∈ [Dα(b), C]c.
Now, observe that

t ◦ [a]iso ◦ [Yb] = f ◦ [Yb] = g,

which proves surjectivity.
Now, we define [Dα(b) ⊗L a, C]′c as the subset of [Dα(b) ⊗L a, C] consisting of elements f such that 

H0(f)(−, A) preserves coproducts for all A ∈ a. We define analogously [b ⊗La, C]′α as the subset of 
[
b⊗L a, C

]
consisting of elements f such that H0(f)(−, A) preserves α-small coproducts for all A ∈ a. Then, we have 
the following commutative diagram induced by the dg functor Y ′

b : b −→ Dα(b):
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[a,RHomc(Dα(b), C)] [a,RHomα(b, C)]

[
Dα(b) ⊗L a, C

]′
c

[
b⊗L a, C

]′
α

[Dα(b),RHom(a, C)]c [b,RHom(a, C)]α ,

[−⊗LY ′
b]◦−

∼=

∼=

∼=

∼=

−◦[a]iso◦[Yb]

−◦[Y ′
b]

(27)

where the vertical arrows are induced by the ⊗L-RHom adjunction in Hqe. As RHom(a, C) is well generated 
by Theorem 3.22, we have that the lower horizontal arrow is a bijection, and hence so is [− ⊗L Y ′

b] ◦ −. 
Therefore, using Proposition 2.3 we can conclude that [− ⊗L Y ′

b] is an isomorphism in Hqe, as desired. �
Before proving the main result of the section, we will need the following lemma.

Lemma 3.29. Let A be a well generated dg category and consider a small family of full well generated 
pretriangulated dg subcategories {Bi}i∈I of A closed under homotopy coproducts. Then 

⋂
i Bi is a well 

generated pretriangulated dg subcategory of A.

Proof. Observe that H0(
⋂

i Bi) =
⋂

i H
0(Bi) is a triangulated subcategory of A, and hence 

⋂
i Bi is a 

pretriangulated dg subcategory of A. It is thus sufficient to show that H0(
⋂

i Bi) is well generated. By 
hypothesis, we have that H0(A) is well generated and that, for all i ∈ I, H0(Bi) ⊆ H0(A) is a localising 
subcategory generated by a set of objects. Consequently, 

⋂
i∈I H

0(Bi) = H0(
⋂

i∈I Bi) is also a localising 
subcategory of H0(A) generated by a set of objects [11, Lem 3.2]. We can conclude by applying [17, Thm 
7.2.1] that H0(

⋂
i Bi) is well generated. �

Remark 3.30. The proof of the following theorem is a dg parallel of the argument followed in [2, Thm 2.60]
in order to prove that the category of models of a sketch taking values in an accessible category is again 
accessible.

Theorem 3.31. Let A, B be two well generated dg categories. Then RHomc(A, B) is well generated.

Proof. By Theorem 3.17, we can choose a cardinal α such that A ∼= Dα(a) for a a homotopically α-
cocomplete small dg category. We can further assume that a is cofibrant. By Proposition 3.28, it is enough 
to prove that RHomα(a, B) is well generated. Consider the small family Λ = {(Ai)i∈I | Ai ∈ a, |I| < α} of all 
α-small families of objects of a. Given λ = (Ai)i∈I ∈ Λ, denote by Eλ the full dg subcategory of RHom(a, B)
with objects F such that the canonical morphism 

∐H0

i H0(F )(Ai) → H0(F )(
∐H0

i Ai) is an isomorphism 
in H0(B). Observe that RHomα(a, B) =

⋂
λ∈Λ Eλ. We claim it is enough to prove that Eλ is well generated 

for each λ. Indeed, we know by Theorem 3.22 that RHom(a, B) is well generated, and one can readily check 
following the same argument of the proof of Corollary 3.25 that Eλ are pretriangulated dg subcategories of 
RHom(a, B) closed under homotopy coproducts. Hence, by Lemma 3.29, if Eλ is well generated for every 
λ ∈ Λ, we can conclude that 

⋂
λ∈Λ Eλ is a well generated pretriangulated dg subcategory of RHom(a, B).

It hence remains to prove that Eλ is well generated for every λ ∈ Λ. In order to show this we will prove that 
Eλ is a homotopy fiber product of a cospan diagram of well generated dg categories with cocontinuous dg 
functors. This allows us to conclude using the fact that the homotopy category of well generated dg categories 
(i.e. locally presentable dg categories) with cocontinuous morphisms is closed in Hqe under homotopy limits 
(see the proof of [33, Lem 3.3] or [29, Rem 6.2.2]).

Fix λ = (Ai)i∈I ∈ Λ and consider the family of canonical morphisms si : Ai →
∐H0

i Ai in H0(a). We fix 

a family ri : Ai →
∐H0

(Ai) in Z0(a) lifting the si. Consider the dg category Ar0 with two objects X, X ′

i
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and morphisms Ar0(X, X) = k1X , Ar0(X ′, X ′) = k1X′ , Ar0(X ′, X) = 0 and Ar0(X, X ′) = kx with x a 
morphism in degree 0. We introduce the following dg functors:

• We define the dg functor C : RHomc(D(a), B) → RHom(Ar0, B) as follows. For any F ∈ RHomc(D(a), B)
we associate the quasi-functor C(F ), that as a dg functor ΦC(F ) : Ar0 → qrep(B) is given by assigning 
to X the object ΦF (

∐
i hAi

) ∈ qrep(B), to X ′ the object ΦF (h∐H0
i Ai

) ∈ qrep(B) and to x the morphism 

ΦF (canλ) where canλ :
∐

i hAi
→ h∐H0

i Ai
is the canonical morphism in D(a) induced by hri . In order 

to lighten the notations, from this point on and for the rest of the proof we will not distinguish between 
right quasi-representable bimodules F and their associated dg functor ΦF . Given a morphism γ : F → G, 
we associate to it the following natural morphism C(γ) in RHom(Ar0, B):

F (
∐

i hAi
) F (h∐H0

i Ai
)

G(
∐

i hAi
) G(h∐H0

i Ai
),

C(F )(x)=F (canλ)

γX=γ∐
i hAi

γX′=γh∐H0
i Ai

C(G)(x)=G(canλ)

already seen inside qrep(B). We will denote this morphism by (γ∐
i hAi

, γh∐H0
i Ai

), and from now on we 

will follow this notation for morphisms in RHom(Ar0, B). In particular, if φ ∈ RHom(Ar0, B), we write 
φ = (φ1, φ2).

• We define the dg functor I : qrep(B) → RHom(Ar0, B) given by associating to each B ∈ qrep(B) the 
quasi-functor with constant value B and such that I(B)(x) = IdB . We define I on morphisms in the 
natural way.

We are going to show that Eλ is the homotopy limit of the following diagram

qrep(B)

RHomc(D(a),B) RHom(Ar0,B).

I

C

This will allow us to conclude. Indeed, B is a well generated dg category and hence so is qrep(B) because 
they are isomorphic in Hqe. In addition, by Proposition 3.28 we have that RHomc(D(a), B) ∼= RHom(a, B)
in Hqe. Consequently, as a direct consequence of Theorem 3.22, we can conclude that RHomc(D(a), B)
and RHom(Ar0, B) are also well generated dg categories. Furthermore, both I and C are easily seen to be 
cocontinuous.

In [3, §4] a model for the homotopy limit in Hqe is described using path objects. In what follows we will 
construct a quasi-equivalence from this concrete model to Eλ. Let us begin with describing the model for 
P := RHomc(D(a), B) ×h

RHom(Ar0,B) qrep(B). The objects of P are given by

{
(F,B, φ) | F ∈RHomc(D(a),B), B ∈ qrep(B), φ ∈ RHom(Ar0,B)0(C(F ), I(B)),

φ is closed and becomes an isomorphism in H0(RHom(Ar0,B))
}
.

The morphisms of degree n are given by

Pn((F1, B1, φ1), (F2, B2, φ2)) =

RHom (D(a),B)n(F , F ) ⊕ qrep(B)n(B ,B ) ⊕ RHom(Ar ,B)n−1(C(F ), I(B )).
c 1 2 1 2 0 1 2
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Given a morphism (γ, μ, ν) : (F1, B1, φ1) → (F2, B2, φ2) of degree n and a morphism (γ′, μ′, ν′) :
(F2, B2, φ2) → (F3, B3, φ3) the composition is provided by

(γ′, μ′, ν′)(γ, μ, ν) = (γ′γ, μ′μ, (−1)nν′C(γ) + I(μ′)ν)

and the differential is given by

d(γ, μ, ν) = (dγ, dμ, dν + (−1)n(φ2C(γ) − I(μ)φ1)).

We first show that if (F, B, φ) ∈ P, then the quasi-representable bimodule F ⊗L Y ∈ RHom(a, B)
lies in Eλ. Indeed, because φ : C(F ) → I(B) is a homotopy equivalence, we have that H0(F (canλ)) is an 

isomorphism and, because F is cocontinuous, the canonical morphism 
∐H0

i (H0(F )(hAi
)) → H0(F )(

∐
i hAi

)
also is. Therefore, the composition

∐H0

i (H0(F )(hAi
)) H0(F )(

∐
i hAi

) H0(F )(h∐H0
i Ai

)H0(F (canλ))

is an isomorphism, and thus we can conclude that the canonical morphism

H0∐
i

(H0(F ⊗L Y )(Ai)) → H0(F ⊗L Y )(
H0∐
i

Ai)

is an isomorphism as well, proving the claim.
We define a dg functor S : P → Eλ as follows. To every (F, B, φ) ∈ P we associate F⊗LY ∈ Eλ and to every 

morphism (γ, μ, ν) ∈ P((F, B, φ), (F ′, B′, φ′)) we associate the morphism γ⊗LY ∈ Eλ(F⊗LY, F ′⊗LY ). It is 
readily seen that this is indeed a dg functor. To conclude, it is enough to show that S is a quasi-equivalence.

We first show that S is quasi-essentially surjective. We know from the proof of Proposition 3.27 that the 
dg functor

RHomc(D(a),B) → RHom(a,B) : F �→ F ⊗L Y

is a quasi-equivalence. Consequently, given G ∈ H0(Eλ) ⊆ H0(RHom(a, B)), we can choose an 
F ∈ H0(RHomc(D(a), B)) such that there is an isomorphism ψ : F ⊗L Y → G in H0(RHom(a, B)). 
It is then easy to check that F (canλ) induces an isomorphism in H0(qrep(B)). Denote by φ ∈
RHom0(Ar0, B)(C(F ), I(G(

∐H0

i Ai))) the closed morphism of degree 0 given by (ψ ◦ F (canλ), ψ), where ψ
is a 0-cycle lifting the isomorphism

ψ|
∐H0

i Ai
: F ⊗L Y (

H0∐
i

Ai) → G(
H0∐
i

Ai)

in H0(qrep(B)). Observe that φ becomes an isomorphism in H0(RHom(Ar0, B)). Therefore, we have that 
(F, G(

∐H0

i Ai), φ) belongs to P, and it is easy to see that, seen as an object in H0(P), it is sent to G ∈
H0(Eλ), proving that S is quasi-essentially surjective as desired.

We now show that S is quasi-full. Consider σ ∈ Zn(Eλ)(S(F, B, φ), S(F ′, B′, φ′)) = Zn(Eλ)(F⊗LY, F ′⊗L

Y ). As Eλ is a full dg subcategory of RHom(a, B) and − ⊗L Y : RHomc(D(a), B) → RHom(a, B) is a quasi-
equivalence by Proposition 3.27, we have that there exists a σ′ ∈ Zn(RHomc(D(a), B))(F, F ′) such that 
Hn(− ⊗L Y )([σ′]) = [σ]. Next observe that, because [φ] ∈ H0(Ar0, B)(C(F ), I(B)) is an isomorphism, we 
can consider a 0-cycle ψ ∈ RHom(Ar0, B)(I(B), C(F )) such that [ψ] = [φ]−1. Therefore, there exists an 
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α ∈ RHom−1(Ar0, B)(C(F ), C(F )) such that d(α) = IdC(F ) − ψφ. We define μ ∈ qrep(B)(B, B′) as the 
composite

B F (
∐

i hAi
) F ′(

∐
i hAi

) B′,
ψ1

σ′∐
i hAi φ′

1

and ν ∈ RHomn−1(Ar0, B)(C(F ), I(B′)) as the composite

C(F ) C(F ) C(F ′) I(B′).−α C(σ′) φ′

We claim that (σ′, μ, ν) ∈ Zn(P)((F, B, φ), (F ′, B′, φ′)). Indeed, we have that

d(σ′, μ, ν) = d
(
σ′, φ′

1σ
′∐

i hAi
ψ1,−(φ′C(σ′)α)

)
=

(
0, 0,−d(φ′C(σ′)α) + (−1)n

(
φ′C(σ′) − I(φ′

1σ
′∐

i hAi
ψ1)φ

))
= (0, 0,−(−1)nφ′C(σ′)d(α) + (−1)n (φ′C(σ′) − φ′C(σ′)ψφ))

=
(
0, 0,−(−1)nφ′C(σ′)(IdC(F ) − ψφ) + (−1)nφ′C(σ′)

(
IdC(F ) − ψφ

))
= (0, 0, 0),

where the third equality follows from

I(φ′
1σ

′∐
i hAi

ψ1)φ =
(
φ′

1σ
′∐

i hAi
ψ1φ1, φ

′
1σ

′∐
i hAi

ψ1φ2

)
=

(
φ′

1σ
′∐

i hAi
ψ1φ1, φ

′
2F

′(canλ)σ′∐
i hAi

ψ1φ2

)

=
(
φ′

1σ
′∐

i hAi
ψ1φ1, φ

′
2σ

′
h∐H0

i Ai

F (canλ)ψ1φ2

)

=
(
φ′

1σ
′∐

i hAi
ψ1φ1, φ

′
2σ

′
h∐H0

i Ai

ψ2φ2

)

= φ′C(σ′)ψφ.

By construction, one readily sees that [(σ′, μ, ν)] ∈ Hn(P)((F, B, φ), (F ′, B′, φ′)) gets sent to [σ] ∈
Hn(Eλ)(F ⊗L Y, F ′ ⊗L Y ) via Hn(S), proving that S is quasi-full as desired.

To finish the argument, it remains to show that S is quasi-faithful. Consider (γ, μ, ν) ∈ ZnP((F, B, φ),
(F ′, B′, φ′)) such that [(γ, μ, ν)] ∈ HnP((F, B, φ), (F ′, B′, φ′)) gets sent to 0 via

HnP((F,B, φ), (F ′, B′, φ′)) → HnEλ(F ⊗L Y, F ′ ⊗L Y ).

In what follows, we denote by φF ∈ RHom0(Ar0, B)(C(F ), F (h∐H0
i Ai

)) the natural morphism (F (canλ),
IdF (h∐H0

i Ai
)). Notice that φF is closed and induces an isomorphism in H0(RHom(Ar0, B)). First, one ob-

serves that the morphism

(IdF , φ2, 0) : (F, F (h∐H0
i Ai

), φF ) → (F,B, φ)

is a homotopy equivalence by using the characterization of homotopy equivalences in P provided 
in [3, Lem 4.2]. Consequently, in order to conclude that [(γ, μ, ν)] = 0 is enough to show that 
[(γ, μ, ν)(IdF , φ2, 0)] = 0. We have that
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(γ, μ, ν)(IdF , φ2, 0) = (γ, μφ2, (−1)0νC(IdF ) + I(μ)0) = (γ, μφ2, ν)

in ZnP((F, F (h∐H0
i Ai

), φF ), (F ′, B′, φ′)). Therefore, it suffices to show that there exists an (α, β, δ) ∈

Pn−1((F, F (
∐H0

i Ai), φF ), (F ′, B′, φ′)) such that d(α, β, δ) = (γ, μφ2, ν). First observe that [γ ⊗L Y ] = 0
in HnEλ(F ⊗L Y, F ′ ⊗L Y ) by hypothesis, and hence, [γ] = 0 in Hn(RHomc(D(a), B))(F, F ′). Thus, there 
exists an element α ∈ RHomc(D(a), B))n−1(F, F ′) such that dα = γ. Our candidate (α, β, δ) is going to be 
(α, φ′

2αh∐H0
i Ai

+ (−1)nν2, 0). First we compute dν2. As (γ, μ, ν) is a n-cycle, we have that d(γ, μ, ν) = 0, in 

particular, this implies that 0 = dν + (−1)n(φ′C(γ) − I(μ)φ), that is

(dν1, dν2) =
(

(−1)n(−φ′
1γ

∐
i hAi

+ μφ1), (−1)n(−φ′
2γh∐H0

i Ai

+ μφ2)
)
.

Making use of this, we can compute now:

dβ = d(φ′
2αh∐H0

i Ai

+ (−1)nν2) = φ′
2γh∐H0

i Ai

+ (−1)ndν2

= φ′
2γh∐H0

i Ai

+ (−1)n((−1)n(−φ′
2γh∐H0

i Ai

+ μφ2))

= μφ2.

Consequently, we have that

d(α, β, δ) = d(α, φ′
2αh∐H0

i Ai

+ (−1)nν2, 0)

=
(
γ, μφ2, (−1)n−1(φ′C(α) − I(φ′

2αh∐H0
i Ai

+ (−1)nν2)φF )
)
,

where the last component is given by:

(−1)n−1(φ′C(α) − I(φ′
2αh∐H0

i Ai

+ (−1)nν2)φF ) =

= (−1)n−1
(
φ′

1α
∐

i hAi
− φ′

2αh∐H0
i Ai

F (canλ) − (−1)nν2F (canλ),

φ′
2αh∐H0

i Ai

− φ′
2αh∐H0

i Ai

− (−1)nν2

)

= (−1)n−1
(
φ′

1α
∐

i hAi
− φ′

2αh∐H0
i Ai

F (canλ) − (−1)nν2F (canλ),−(−1)nν2

)

= (−1)n−1
(
φ′

1α
∐

i hAi
− φ′

1α
∐

i hAi
− (−1)nν1,−(−1)nν2

)
= (−1)n−1 (−(−1)nν1,−(−1)nν2) = (ν1, ν2) = ν

We hence have that d(α, β, δ) = (γ, μφ2, ν) as desired. �
4. The well generated tensor product

Let Hqewg denote the subcategory of V − Hqe given by the V-small U-well generated dg categories with 
cocontinuous quasi-functors. Up to equivalence, Hqewg is easily seen to be independent of the choice of V.

Definition 4.1. Let A and B be well generated dg categories. A well generated tensor product of A and B is 
defined as a well generated dg category A �B such that for every well generated dg category C, the following 
universal property holds:
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RHomc(A � B, C) ∼= RHomc(A,RHomc(B, C)). (28)

As a consequence, by Theorem 3.31, if we can show that the tensor product of well generated dg categories 
exists, the resulting monoidal structure on Hqewg is closed.

Remark 4.2. Note that the situation is different from the one for Grothendieck categories. As shown in 
[20, Thm 5.4], the tensor product of locally presentable k-linear categories is closed under Grothendieck 
categories, but the natural inner hom of cocontinuous functors between locally presentable categories is not 
(as follows for instance from [28, Rem 6.5]). However, by Corollary 3.18, the distinction between locally 
presentable categories and localisations of module categories does not exist on the derived level, whence 
this subtlety vanishes. An in depth study of the nature of morphisms categories between abelian categories 
is the topic of an ongoing joint project with Michel Van den Bergh.

The rest of the paper is devoted to proving that the well generated tensor product exists (Theorem 4.14), 
and providing various constructions using localisation theory. In particular, §4.2 and §4.3 discuss the relation 
between the tensor product and the dg quotient, in §4.4 the tensor product is described in terms of localising 
subcategories of dg derived categories, and in §4.5 the tensor product is described in terms of their Bousfield 
localisations.

We start with some considerations regarding the internal hom in two variables in §4.1.

4.1. Considerations in the two variable setting

We devote this section to prove that both (α-)cocontinuity and annihilation of classes of objects behave 
suitably with respect to the monoidal structure. From now on, and for the rest of the paper, we will make 
implicit use of the fact that for every homotopically cocomplete small dg category, we can pick a cofibrant 
replacement in Hqe which is also homotopically cocomplete (homotopically cocompleteness is preserved 
under quasi-equivalences) and this cofibrant replacement is the identity on objects (see Proposition 2.1
above).

Let A, B, C be dg categories. Consider a right quasi-representable bimodule F ∈ RHom(A ⊗L B, C) and 
observe that the dg module F ∈ dgMod(C ⊗L Aop ⊗L Bop) with evaluations F (C, A, B) gives rise on one 
hand to a bimodule FA = F (−, A, −) ∈ dgMod(C ⊗L Bop) for every A ∈ A and on the other hand to a 
bimodule FB = F (−, −, B) ∈ dgMod(C ⊗L Aop) for every B ∈ B, and according to (5) these are all right 
quasi-representable.

Definition 4.3. We call F ∈ RHom(A ⊗L B, C) right cocontinuous provided that every FB is cocontinuous, 
left cocontinuous provided that every FA is cocontinuous, and bicocontinuous provided that it is left and 
right cocontinuous.

We denote by RHomc,c(A ⊗LB, C) ⊆ RHom(A ⊗LB, C) the full dg subcategory of bicocontinuous modules.
Given a regular cardinal α, the notions of left-, right- and bi-α-cocontinuous are defined similarly. In par-

ticular, we denote by RHomα,α(A ⊗LB, C) ⊆ RHom(A ⊗LB, C) the full dg subcategory of bi-α-cocontinuous 
right quasi-representable bimodules.

Definition 4.4. Consider NA a class of objects in A and NB a class of objects in B. With the same notations 
as above, we say F ∈ RHom(A ⊗L B, C) biannihilates (NA, NB) provided that every FA annihilates NB and 
every FB annihilates NA.

We denote by RHomNA,NB(A ⊗L B, C) ⊆ RHom(A ⊗L B, C) the full dg subcategory of right quasi-
representable bimodules that biannihilate (NA, NB).
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Similarly, we denote by RHom(c,NA),(c,NB)(A ⊗L B, C) ⊆ RHom(A ⊗L B, C) the full dg subcategory of 
bicocontinuous right quasi-representable bimodules that biannihilate (NA, NB).

We include the proof of the following statement for the convenience of the reader.

Lemma 4.5. Let α ≤ |U| be a regular cardinal. The following hold:

(1) For homotopically cocomplete dg categories A, B and C, we have that the equivalence (5) restricts to:

RHomc,c(A⊗L B, C) ∼= RHomc(A,RHomc(B, C)) (29)

(2) For homotopically α-cocomplete dg categories A, B and C, we have that the equivalence (5) restricts to:

RHomα,α(A⊗L B, C) ∼= RHomα(A,RHomα(B, C)) (30)

(3) For homotopically cocomplete dg categories A, B and C and sets of objects NA in A and NB in B, we 
have that the equivalence (5) restricts to:

RHom(c,NA),(c,NB)(A⊗L B, C) ∼= RHomc,NA(A,RHomc,NB(B, C)) (31)

Proof. Observe that (1) is the case α = |U| of (2). We prove (2). First we show that for any F ∈
RHomα,α(A ⊗LB, C) ⊆ RHom(A ⊗LB, C) the image of F via (5) is an element of RHomα(A, RHomα(B, C)). If 
we denote by F̄ the image of F in RHom(A, RHom(B, C)) via (5) we have that F̄ (A) = FA factors through 
RHomα(B, C) ⊆ RHom(B, C) by hypothesis. We hence have that F̄ belongs to RHom(A, RHomα(B, C)). 
Let’s now show that F̄ actually belongs to RHomα(A, RHomα(B, C)). Let {Ai}i∈I be an α-small family of 
objects in A. By definition, we have that

H0(F̄ )

⎛
⎝H0(A)∐

i∈I

Ai

⎞
⎠ = F∐H0(A)

i∈I Ai
∈ H0(RHomα(B, C)). (32)

For all i ∈ I we have a natural morphism

F∐H0(A)
i∈I Ai

= H0(F̄ )(
H0(A)∐
i∈I

Ai) ←− H0(F̄ )(Ai) = FAi
, (33)

in H0(RHomα(B, C)), and hence we have the natural morphism

H0(RHomα(B,C))∐
i∈I

FAi
−→ F∐H0(A)

i∈I Ai
(34)

in H0(RHomα(B, C)), induced by the universal property of the coproduct. We claim that this morphism is 
an isomorphism. Indeed, observe that for all B ∈ B, we have
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H0

⎛
⎝H0(RHomα(B,C))∐

i∈I

FAi

⎞
⎠ (B) =

=
H0(C)∐
i∈I

H0(FAi
)(B) =

H0(C)∐
i∈I

H0(F (Ai, B,−)) =
H0(C)∐
i∈I

H0(FB)(Ai) =

= H0(FB)

⎛
⎝H0(A)∐

i∈I

Ai

⎞
⎠ = H0

⎛
⎝F

⎛
⎝H0(A)∐

i∈I

Ai, B,−

⎞
⎠
⎞
⎠ = H0

(
F∐H0(A)

i∈I Ai

)
(B),

(35)

functorially in B ∈ B, where the first equality follows from Corollary 3.25 and the fourth from the fact that 
FB ∈ RHomα(A, C). It follows that (34) is an isomorphism. Consequently, we have that

H0(F̄ )(
H0(A)∐
i∈I

Ai) = F∐H0(A)
i∈I Ai

∼=
H0(RHomα(B,C))∐

i∈I

FAi
=

H0(RHomα(B,C))∐
i∈I

H0(F̄ )(Ai) (36)

in H0(RHomα(B, C)), as desired.
To conclude it is enough to prove that for any F ∈ RHom(A ⊗L B, C), if its image F̄ via (5) belongs to 

RHomα(A, RHomα(B, C)), then F lies in RHomα,α(A ⊗L B, C). Take such an F . By definition, for every 
A ∈ A we have that

F̄ (A) = FA ∈ RHomα(B, C),

which proves the α-cocontinuity of FA for all A ∈ A. Let {Ai}i∈I an α-small family of objects in A. For 
every B ∈ B we have that

H0(FB)

⎛
⎝H0(A)∐

i∈I

Ai

⎞
⎠ =

= H0

⎛
⎝F

⎛
⎝H0(A)∐

i∈I

Ai, B,−

⎞
⎠
⎞
⎠ = H0

(
F∐H0(A)

i∈I Ai

)
(B) = H0

⎛
⎝H0(F̄ )

⎛
⎝H0(A)∐

i∈I

Ai

⎞
⎠
⎞
⎠ (B) =

= H0

⎛
⎝H0(RHomα(B,C))∐

i∈I

H0(F̄ )(Ai)

⎞
⎠ (B) =

H0(C)∐
i∈I

(H0(FAi
)(B)) =

H0(C)∐
i∈I

H0(FB)(Ai),

where the fourth equality uses the fact that F̄ ∈ RHomα(A, RHomα(B, C)) and the fifth follows from 
Corollary 3.25. This proves the α-cocontinuity of FB for all B ∈ B. We can thus conclude that F ∈
RHomα,α(A ⊗L B, C) as we wanted to show.

We prove (3). It is enough to see that the isomorphism (29) in Hqe constructed above restricts to an iso-
morphism (31). Let F ∈ RHom(c,NA),(c,NB)(A ⊗LB, C) and denote by F̄ its image in RHomc(A, RHomc(B, C))
via (29). Then we have that

H0 (H0(F̄ )(A)
)
(B) = H0(FA)(B) = 0

for all B ∈ NB and hence F̄ ∈ RHomc(A, RHomc,NB(B, C)). Now observe that, for all B ∈ B, we have that

H0 (H0(F̄ )(A)
)
(B) = H0(FA)(B) = H0(F (A,B,−)) = H0(FB)(A) = 0
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for all A ∈ NA. Consequently, we have that H0(F̄ )(A) = 0 in H0(RHomc,NB(B, C)) for all A ∈ NA and 
hence F̄ ∈ RHomc,NA(A, RHomc,NB(B, C)) as desired.

To conclude, it is enough to show that for all F ∈ RHomc,c(A ⊗L B, C), if the image F̄ of F via (29)
belongs to RHomc,NA(A, RHomc,NB(B, C)), then F is an element of RHom(c,NA),(c,NB)(A ⊗L B, C). For all 
A ∈ A, we have that

H0(FA)(B) = H0 (H0(F̄ )(A)
)
(B) = 0

for all B ∈ NB, showing that, for all A ∈ A, FA annihilates NB. On the other hand, for all B ∈ B, we have 
that

H0(FB)(A) = H0(F (A,B,−)) = H0 (H0(F̄ )(A)
)
(B) = 0

for all A ∈ NA, showing that, for all B ∈ B, FB annihilates NA as desired. �
4.2. The tensor product of dg quotients

Consider A, B, C ∈ Hqewg and suppose A � B exists. By Lemma 4.5 above and the universal property of 
�, we have an isomorphism in Hqe

RHomc(A � B, C) ∼= RHomc,c(A⊗L B, C), (37)

for every well generated dg category C. Hence there exists, corresponding to the identity quasi-representable 
module on the left hand side by taking C = A � B, a canonical bicocontinuous quasi-representable module 
⊗ ∈ H0(RHomc,c(A ⊗L B, A � B)). We will denote the induced functor at the level of homotopy by

⊗H0 : H0(A⊗L B) −→ H0(A � B),

instead of our usual notation H0(⊗). Let XA ⊆ A and XB ⊆ B be classes of objects. We define the class

XA ⊗H0 XB = {XA ⊗H0 XB | XA ∈ XA, XB ∈ XB} (38)

of objects in H0(A � B).

Remark 4.6. Let C be a dg category. Observe that taking a class of objects in C is the same as taking a class 
of objects in H0(C) as Obj(H0(C)) = Obj(C).

In first place, let’s analyse the relation of the well generated tensor product and the annihilation of classes 
of objects in Hqewg.

Proposition 4.7. Consider classes NA ⊆ H0(A) and NB ⊆ H0(B) of objects. The class

NA �Cl NB = (NA ⊗H0 B) ∪ (A⊗H0 NB) ⊆ H0(A � B) (39)

is such that

RHomc,NA�ClNB(A � B, C) ∼= RHom(c,NA),(c,NB)(A⊗L B, C). (40)
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Proof. We have the isomorphism in Hqe

RHomc(A � B, C) ∼= RHomc,c(A⊗L B, C)

from (37) given at the H0-level by composition with the canonical bicocontinuous quasi-representable bi-
module ⊗ between A ⊗L B and A � B. Then it is enough to see that this isomorphism restricts to an 
isomorphism (40) in Hqe.

Consider F ∈ RHomc,NA�ClNB(A � B, C). Then F ⊗L
A�B ⊗ ∈ H0(RHomc,c(A ⊗L B, C)) is trivially seen 

to biannihilate (NA-NB).
On the other hand, given any G ∈ RHom(c,NA),(c,NB)(A ⊗L B, C), we have that

G ∼= F ⊗L
A�B ⊗ ∈ H0(RHom(c,NA),(c,NB)(A⊗L B, C))

for some F ∈ RHomc(A � B, C). Consequently, for every object B ∈ B, we have that H0(F )(NA ⊗H0 B) ∼=
H0(G)(NA, B) = 0 in H0(C) and, similarly, for every object A ∈ A, H0(F )(A ⊗H0NB) ∼= H0(G)(A, NB) = 0
in H0(C). Thus we have that H0(F ) annihilates NA �Cl NB, therefore F ∈ RHomc,NA�ClNB(A � B, C) as 
desired. �
Definition 4.8. We will call NA �Cl NB the tensor product of classes of objects NA and NB.

Remark 4.9. Let B, C be well generated dg categories and let N be a class of objects in B. Let 〈N〉 ⊆ H0(B)
be the smallest localising subcategory containing N . Then, given F ∈ RHomc(B, C), the induced H0(F ) :
H0(B) −→ H0(C) is exact and cocontinuous. As a consequence, Ker(H0(F )) is a localising subcategory of 
H0(B). It follows that

RHomc,N (B, C) = RHomc,〈N〉(B, C). (41)

Lemma 4.10. Let A, B be two well generated dg categories and WA ⊆ H0(A) and WB ⊆ H0(B) localising 
subcategories generated by sets. Let GA (resp. GB) be a set of generators of H0(A) (resp. H0(B)) and NA
(resp. NB) be a set of generators of WA (resp. WB). We have that:

〈WA �Cl WB〉 = 〈(NA ⊗H0 GB) ∪ (GA ⊗H0 NB)〉.

Hence 〈WA �Cl WB〉 is generated by a set of objects.

Proof. By definition we have that

〈WA �Cl WB〉 = 〈(〈NA〉 ⊗H0 B) ∪ (A⊗H0 〈NB〉)〉.

As it is a localising subcategory and it trivially contains NA ⊗H0 GB ∪ GA ⊗H0 NB, we have that 〈NA ⊗H0

GB ∪ GA ⊗H0 NB〉 ⊆ 〈WA �Cl WB〉.
In order to prove the other inclusion, we consider an element X ∈ 〈NA〉 ⊗H0 B. If it belonged to 

A ⊗H0 〈NB〉, we argue analogously. We know we can choose regular cardinals α and β such that the 
generators NA are all α-compact in WA and the generators GB are all β-compact in B. Combining [25, Lem 
4.4.5 & Lem B.1.3], we have that

X ∼= W ⊗H0 B,

where W (resp. B) can be written in terms of objects in NA (resp. in GB) by using coproducts, cones, direct 
summands and shifts. As ⊗H0 is bicocontinuous and an exact functor in each variable, we have that X can 
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be written using coproducts, cones, direct summands and shifts in terms of elements of the form N ⊗H0 G

where N ∈ NA and G ∈ GB. Therefore, X is an element of 〈NA ⊗H0 GB ∪ GA ⊗H0 NB〉. Consequently, we 
also have an inclusion 〈WA �Cl WB〉 ⊆ 〈NA ⊗H0 GB ∪ GA ⊗H0 NB〉 which concludes the proof. �
Theorem 4.11. Let A, B be two well generated dg categories such that A �B exists, and consider WA ⊆ H0(A)
and WB ⊆ H0(B) localising subcategories generated by sets. We have

A
WA

� B
WB

∼= A � B
〈WA �Cl WB〉

(42)

in Hqewg.

Proof. The subcategory 〈WA�ClWB〉 ⊆ H0(A �B) is a localising subcategory generated by a set of objects 
as proved in Lemma 4.10. Hence, A � B/〈WA �Cl WB〉 is a well generated dg category. If we show that it 
satisfies the universal property (28), we conclude our argument. For any well generated dg category C, we 
have:

RHomc(
A � B

〈WA �Cl WB〉
, C) ∼= RHomc,〈WA�ClWB〉(A � B, C)

∼= RHomc,WA�ClWB(A � B, C)
∼= RHom(c,WA),(c,WB)(A⊗L B, C)
∼= RHomc,WA(A,RHomc,WB(B, C))

∼= RHomc(
A
WA

,RHomc(
B
WB

, C)),

where the first and last isomorphisms come from the universal property of the dg quotient in Hqewg (see 
(10)), the second follows from (41) above, the third one is given by Proposition 4.7 and the fourth one by 
Lemma 4.5. �
Corollary 4.12. Let A, B be two well generated dg categories. If the tensor product A �B exists, so does the 
well generated tensor product between any two dg quotients of A, B with respect to localising subcategories 
generated by a set of objects.

Proof. This is a direct consequence of Theorem 4.11. �
4.3. Tensor product of well generated dg categories

In this section we show that the well generated tensor product exists and we provide a construction.
We will proceed as follows. We will show that the well generated tensor product of derived dg categories 

exists and it is again a derived dg category. This result will allow us, using Theorem 3.17, to approach 
the construction of the tensor product for arbitrary well generated dg categories making essential use of 
Corollary 4.12 above.

Proposition 4.13. Consider small dg categories a and b. In Hqewg, we have

D(a) � D(b) ∼= D(a⊗L b). (43)
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Proof. For a well generated dg category C, we have

RHomc(D(a⊗L b), C) ∼= RHom(a⊗L b, C)
∼= RHom(a,RHom(b, C))
∼= RHomc(D(a),RHomc(D(b), C))

where the first and the last isomorphisms are given by (21) and the second one is by the ⊗L - RHom-
adjunction in Hqe. �

We are finally in the position to prove the existence of the well generated tensor product.

Theorem 4.14. Let A, B be two well generated dg categories such that A ∼= D(a)/Wa and B ∼= D(b)/Wb in 
Hqe for small dg categories a, b with Wa ⊆ D(a) and Wb ⊆ D(b) localising subcategories generated by a set 
of objects. Then, the well generated tensor product of A and B exists and it is given by

A � B ∼= D(a⊗L b)/〈Wa �Cl Wb〉. (44)

In particular, A � B is independent of the chosen realisations of A and B.

Proof. We have A ∼= D(a)/Wa and B ∼= D(b)/Wb with Wa and Wb localising subcategories generated by 
a set of objects. By Proposition 4.13 we know that D(a) � D(b) exists and equals D(a ⊗L b). Then, by 
Theorem 4.11, we have that A �B ∼= D(a)/Wa �D(b)/Wb exists and it is given by D(a ⊗L b)/〈Wa �ClWb〉, 
and it is obviously independent of the realizations chosen, as it fulfils the universal property. �
Corollary 4.15. The homotopy category Hqewg of well generated dg categories with cocontinuous quasi-
functors is symmetric monoidal closed.

Proof. This follows from Theorem 4.14 and Theorem 3.31. �
4.4. Tensor product of localising subcategories

In this section we provide an alternative description of the tensor product from §4.3, in the spirit of [20, 
§2.5], which does not appeal to choices of generators of localising subcategories. In the next section, this 
construction will lead, via the equivalent approaches to localisation theory described in §3.2, to a description 
of the tensor product in terms of Bousfield localisations (in the spirit of [20, §2.6]), which will be used in 
§5.

Let a, b be two small dg categories and consider the derived dg categories D(a) and D(b). Let Wa ⊆ D(a)
and Wb ⊆ D(b) be localising subcategories generated by sets of objects. Inspired upon the construction of 
� above, we can define a tensor product of localising subcategories generated by a set as follows.

Definition 4.16. With the notations above, we put

Wa � Wb = 〈Wa �Cl Wb〉. (45)

We define one-sided localising subcategories of D(a ⊗L b) as follows:

W1 := {F ∈ D(a⊗L b)|F (−, B) ∈ Wa for all B ∈ b}
W := {F ∈ D(a⊗L b)|F (A,−) ∈ W for all A ∈ a}

(46)

2 b
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Theorem 4.17. The tensor product of localising subcategories generated by a set Wa � Wb is given by

W1 ∨W2 = 〈W1 ∪W2〉

in the poset Wdg of localising subcategories of D(a ⊗L b) generated by a set of objects.

In order to prove this result, we first provide an explicit description of the quasi-representable bimodule 
⊗ between D(a) ⊗L D(b) and D(a) � D(b) ∼= D(a ⊗L b) (see §4).

Lemma 4.18. Let a and b be small dg categories and consider the canonical bimodule ⊗ ∈ RHomc,c(D(a) ⊗L

D(b), D(a ⊗L b)). Then, given F ∈ D(a), G ∈ D(b), we have that:

(F ⊗H0 G)(A,B) = F (A) ⊗L G(B) (47)

in D(k) for all and A ∈ a, B ∈ b.

Proof. Recall that given c a small dg category, representables {c(−, C)}C∈c form a set of compact generators 
of D(c). Consequently, we have that F (resp. G) can be written in terms of representables in D(a) (resp. 
in D(b)) by using coproducts, cones and shifts. Because ⊗H0 is bicocontinuous and exact in each variable, 
and thus commutes with coproducts, cones and shifts in both variables, F ⊗H0 G can be also written in 
D(a ⊗L b) in terms of elements of the form a(−, A) ⊗H0 b(−, B) using direct sums, cones and shifts.

Now recall that ⊗ is just the image of the identity in H0(RHomc(D(a ⊗L b), D(a ⊗L b))) via the chain of 
isomorphisms

RHomc(D(a⊗L b),D(a⊗L b))) ∼= RHom(a⊗L b,D(a⊗L b))
∼= (RHom(a,RHom(b,D(a⊗L b)))
∼= RHomc(D(a),RHomc(D(b),D(a⊗L b))
∼= RHomc,c(D(a) ⊗L D(b),D(a⊗L b))

defined above (see (21), (4) and (29)). On the other hand, observe that the identity in RHomc(D(a ⊗L

b), D(a ⊗L b)) gets mapped under the first quasi-equivalence (21) to the Yoneda embedding a ⊗L b −→
D(a ⊗L b). Therefore, when restricted to the representables, one just has that

a(−, A) ⊗H0 b(−, B) = (a⊗L b)(−, (A,B)).

Now observe that
(
(a⊗L b)(−, (A,B))

)
(A′, B′) = (Q(a) ⊗ b)((A′, B′), (A,B))

= Q(a)(A′, A) ⊗ b(B′, B)

= a(A′, A) ⊗L b(B′, B),

(48)

where Q denotes the cofibrant replacement functor in dgcat, which can be chosen such that Q(a) −→ a is 
the identity on objects (Proposition 2.1). In addition, also by Proposition 2.1, we have that the induced 
Q(a)(A′, A) −→ a(A′, A) is a cofibrant replacement for a(A′, A) in C(k).

Recall that coproducts, cones and shifts are point-wise in D(a ⊗Lb), and hence the evaluation of F ⊗H0 G

at any point (A′, B′) can be written in terms of elements of the form a(A′, A) ⊗L b(B′, B) using coproducts, 
cones and shifts. But as ⊗L is bicocontinuous in D(k) and applying again that coproducts, cones and shifts 
are point-wise in D(a) and D(b), we obtain that
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(F ⊗H0 G)(A′, B′) = F (A′) ⊗L G(B′)

for all (A′, B′) ∈ a ⊗L b and we conclude. �
We proceed now to prove Theorem 4.17:

Proof. Let NA and NB be sets of generators of Wa and Wb respectively. Consider the set of compact 
objects GD(a) = {a(−, A)}A∈a as a set of generators of D(a) and respectively the set of compact objects 
GD(b) = {b(−, B)}B∈b as a set of generators of D(b). By Lemma 3.20 we know that W1 and W2 are localising 
subcategories in D(a ⊗L b) generated by a set of objects. More concretely, it follows from Lemma 3.19 and 
Lemma 3.20 combined with Lemma 4.18 that

W1 = 〈NA ⊗H0 GD(b)〉;
W2 = 〈GD(a) ⊗H0 NB〉.

(49)

Hence, we can conclude that

Wa � Wb = 〈Wa �Cl Wb〉 = 〈〈NA ⊗H0 GD(b)〉 ∪ 〈GD(a) ⊗H0 NB〉〉 = 〈W1 ∪W2〉 = W1 ∨W2,

where the second equality is a direct consequence of Lemma 4.10. �
4.5. Tensor product of dg Bousfield localisations

Let a, b be two small dg categories and consider the derived dg categories D(a) and D(b). Consider 
respective Bousfield localisations with kernels generated by a set of objects given by the dg subcategories 
La ⊆ D(a) and Lb ⊆ D(b) with respective quasi-left adjoints Fa and Fb. Denote by Wa = Ker(H0(Fa)) and 
Wb = Ker(H0(Fb)) the corresponding localising subcategories generated by a set.

Consider the following full dg subcategories of D(a ⊗L b):

• L1 = {F ∈ D(a ⊗L b) | F (−, B) ∈ La for all B ∈ b} ⊆ D(a ⊗L b);
• L2 = {F ∈ D(a ⊗L b) | F (A, −) ∈ Lb for all A ∈ a} ⊆ D(a ⊗L b).

The natural functors

• F1 : D(a ⊗L b) −→ H0(L1) : X �−→
(
F1(X) : (A,B) �−→ H0(Fa)(X(−, B))(A)

)
;

• F2 : D(a ⊗L b) −→ H0(L2) : X �−→
(
F2(X) : (A,B) �−→ H0(Fb)(X(A,−))(B)

)
;

can be easily seen to be the left adjoints for the inclusions H0(i1) : H0(L1) −→ D(a ⊗L b) and H0(i2) :
H0(L2) −→ D(a ⊗L b) respectively. We have thus that L1 and L2 are Bousfield localisations of D(a ⊗L b). 
Additionally, following the notations from (46) above, one can observe that

Ker(F1) = {F ∈ D(a⊗L b) | F (−, B) ∈ Wa for all B ∈ b} = W1,

and analogously

Ker(F2) = {F ∈ D(a⊗L b) | F (A,−) ∈ Wb for all A ∈ a} = W2.

As Wa and Wb are by hypothesis generated by a set, we have, as a consequence of Lemma 3.20 above, that 
W1 = Ker(F1) and W2 = Ker(F2) are also generated by a set of objects. Hence i1 and i2 are Bousfield 
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localisations of D(a ⊗L b) with kernel of the left adjoint at the 0th-cohomology level generated by a set of 
objects and we have the following:

Proposition 4.19. The localising subcategory W1 (resp. W2) and the well generated Bousfield localisation L1

(resp. L2) correspond under the isomorphism between Wdg and Lop
dg.

Theorem 4.20. The tensor product La � Lb is given by

L1 ∧ L2 = L1 ∩ L2

in the poset Ldg of dg Bousfield localisations of D(a ⊗Lb) with kernel of the left adjoint at the 0th-cohomology 
level generated by a set of objects.

Proof. We have that:

L1 ∩ L2 = L1 ∧ L2

= (W1 ∨W2)⊥

= 〈W1 ∪W2〉⊥

= (Wa � Wb)⊥

∼= D(a⊗L b)/Wa � Wb

∼= D(a)/Wa � D(b)/Wb

= La � Lb

where the first equality follows from Lemma 4.21 below, and the fourth is given by Theorem 4.17. �
Lemma 4.21. Let C be a well generated dg category. Given L and L′ two dg Bousfield localisations of C, we 
have that

L ∧ L′ = L ∩ L′ (50)

in the poset Ldg of dg Bousfield localisations of C with kernel of the left adjoint at the 0th-cohomology level 
generated by a set of objects.

Proof. Observe we have that:

L ∧ L′ = (WL ∨WL′)⊥

= 〈WL ∪WL′〉⊥

= W⊥
L ∩W⊥

L′

= L ∩ L′

where the first and last equalities are given by the isomorphism of posets described in §3.2.3, the second 
by the description of the poset of localising subcategories generated by a set and the third by Proposi-
tion 3.6. �
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5. Tensor product in terms of α-cocontinuous derived categories

In this section we provide the description of the tensor product of well generated dg categories when 
we realise them as α-cocontinuous dg categories. We make use of the description of the tensor product of 
Bousfield localisations of dg derived categories provided in §4.5.

Proposition 5.1. Let a, b be two homotopically α-cocomplete small dg categories and consider their respective 
α-cocontinuous dg derived categories Dα(a), Dα(b). Then we have that

Dα(a) � Dα(b) = Dα,α(a⊗L b),

where Dα,α(a ⊗L b) denotes the full dg subcategory of D(a) � D(b) = D(a ⊗L b) formed by the bimodules F
such that F (A, −) ∈ Dα(b) for all A ∈ a and F (−, B) ∈ Dα(a) for all B ∈ b.

Proof. This follows from Theorem 4.20. �
Consider a, b two homotopically α-cocomplete small dg categories. We know that Dα(a) � Dα(b) =

Dα,α(a ⊗Lb) is a well generated dg category, and hence, there exists a regular cardinal β and a homotopically 
β-cocomplete small dg category c such that Dα,α(a ⊗L b) ∼= Dβ(c). It is reasonable to ask the following 
questions:

• Can we find such a c with β = α? Or in other words, is the tensor product of α-compactly generated 
dg categories again α-compactly generated?

• Can c be found in terms of the provided a and b?

The answer to both questions is affirmative (see Proposition 5.6 and Corollary 5.7 below). Showing this will 
be the main goal of this chapter.

5.1. Tensor product of homotopically α-cocomplete dg categories

Fixed a U-small regular cardinal α, we can define a homotopically α-cocomplete tensor product in the 
full subcategory Hqeα of Hqe given by the homotopically α-cocomplete U-small dg categories.

Definition 5.2. Let a and b be homotopically α-cocomplete dg categories. A homotopically α-cocomplete 
tensor product of a and b is defined as a homotopically α-cocomplete small dg category a ⊗L

α b such that 
the following universal property holds in Hqeα:

RHomα(a⊗L
α b, c) ∼= RHomα(a,RHomα(b, c)). (51)

Remark 5.3. Observe that for α = ℵ0, as the homotopy category of a dg category is in particular Ab-enriched, 
we have that for a, b ∈ Hqeℵ0

:

• RHomℵ0(a, b) = RHom(a, b);
• and hence a ⊗L

ℵ0
b = a ⊗L b.

Remark 5.4. The following theorem, together with Proposition 5.6, constructs a homotopically α-cocomplete 
dg category d such that Dα(d) ∼= Dα,α(a ⊗L b) in Hqe, and shows that d is actually the homotopically α-
cocomplete tensor product of a and b. The argument, despite the technicalities intrinsic to this setup, 
is essentially of topos theoretic nature. Let us describe here the outline of the proof roughly, ignoring 
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the fact that we are working with cofibrant objects, and not just categories of dg modules, and that we 
are working with quasi-functors, instead of with dg functors. We first construct a candidate d for the 
homotopically α-cocomplete tensor product of a and b together with a dg functor F : a ⊗L b −→ d which is 
α-cocontinuous in each variable. Intuitively, one can think of these small dg categories as “dg Grothendieck 
sites”. Then, the fact that F is α-cocontinuous in each variable allows to observe that the restriction of 
scalars F ∗ : D(d) −→ D(a ⊗L b) restricts to a map Fs : Dα(d) −→ Dα,α(a ⊗L b) between the “categories of 
sheaves”. This is, in topos theoretical language, saying that F is a “continuous morphism of sites”. Then, 
using a parallel argument to that of classical topos theory, one has that Fs has a left adjoint, that we will 
denote in the proof by IndαF such that

a⊗L b d

D(a⊗L b) D(d)

Dα,α(a⊗L b) Dα(d),

Y
a⊗Lb

F

Yd

a
a⊗Lb

F!

ad

Indα
F

is a commutative diagram. In particular, one has that IndαF = ad ◦F! ◦ ia⊗Lb, where ia⊗Lb : Dα,α(a ⊗L b) ⊆
D(a ⊗L b) denotes the dg embedding. Then, by means of the concrete construction of d, one can conclude, 
and we will do so combining Theorem 5.5 and Proposition 5.6, that IndαF is an isomorphism in Hqe.

Theorem 5.5. Let α be a regular cardinal and a, b homotopically α-cocomplete U-small dg categories. Then, 
there exists a homotopically α-cocomplete U-small dg category d such that

RHomα(a,RHomα(b, C)) ∼= RHomα(d, C) (52)

for all U-well generated V-small dg category C. Moreover, we have that d = a ⊗L
α b.

Proof. The construction of d will be obtained by mimicking the construction of the tensor product of 
α-cocomplete k-linear categories following [16, §6.5], or [15, §10] and [19, §2.4] for the concrete case of 
α = ℵ0.

Consider the Yoneda embedding Ya⊗Lb : a ⊗L b −→ D(a ⊗L b) and the quasi-adjunction aa⊗Lb �H0 ia⊗Lb

where ia⊗Lb : Dα,α(a ⊗L b) ⊆ D(a ⊗L b) is the natural inclusion. Recall that aa⊗Lb ∈ RHomc(D(a ⊗L

b), Dα,α(a ⊗L b)).
Consider the bimodule aa⊗Lb⊗L

D(a⊗Lb)Ya⊗Lb ∈ RHom(a ⊗Lb, Dα,α(a ⊗Lb)). We prove that aa⊗Lb⊗L
D(a⊗Lb)

Ya⊗Lb is bi-α-cocontinuous. Observe that is the case if and only if

Dα,α(a⊗L b)(H0(aa⊗Lb) ◦H0(Ya⊗Lb)(−,−), X) : (a⊗L b)op −→ D(k)

sends α-small coproducts in both variables to α-small products for all X ∈ Dα,α(a ⊗L b), where we put 
Dα,α(a ⊗L b) = H0(Dα,α(a ⊗L b)). We have that

Dα,α(a⊗L b)(H0(aa⊗Lb) ◦H0(Ya⊗Lb)(−,−), X) = D(a⊗L b)(H0(Ya⊗Lb)(−,−), X) =

= H0(X)(−,−),

which, because X ∈ Dα,α(a ⊗L b), sends α-small coproducts in both variables to α-small products. Conse-
quently, aa⊗Lb ⊗L

L Ya⊗Lb is bi-α-cocontinuous.
D(a⊗ b)
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Denote by G the set of representables in D(a ⊗L b) and consider T ⊆ H0(Dα,α(a ⊗L b)) = Dα,α(a ⊗L b)
the closure of H0(aa⊗Lb)(G) under α-small coproducts. Denote by d ⊆ qrep(Dα,α(a ⊗L b)) the enhancement 
of T via the natural enhancement qrep(Dα,α(a ⊗L b)) of Dα,α(a ⊗L b). In particular, observe that d is an 
essentially small dg category which is homotopically α-cocomplete.

Consider the functor

F : a⊗L b −→ d

induced by the bimodule aa⊗Lb ⊗L
D(a⊗Lb) Ya⊗Lb, which remains bi-α-cocontinuous.

Consider C a well generated dg category. We are going to show that

φ : [d, C]α −→ [a⊗L b, C]α,α : f �−→ f ◦ [F ] (53)

is a bijection.
Observe that we have

[Dα,α(a⊗L b), C]c ∼= [Dα(a),RHomc(Dα(b), C)]c
∼= [Dα(a),RHomα(b, C)]c
∼= [a,RHomα(b, C)]α
∼= [a⊗L b, C]α,α

(54)

where the first bijection follows from the definition of the tensor product of well generated dg categories 
together with Proposition 5.1, the second from Proposition 3.28, the third from Theorem 3.31 together 
with Proposition 3.28 and the last one from the ⊗L − RHom adjunction. Observe that an element g ∈
[Dα,α(a ⊗L b), C]c gets sent to g ◦ [Y ′

a ⊗H0 Y ′
b]iso ∈ [a ⊗L b, C]α,α. If we denote by aa (resp. ab) the quasi-left 

adjoint of the inclusion ia : Dα(a) ⊆ D(a) (resp. Dα(b) ⊆ D(b)), it is easy to see, using the construction of 
the tensor product in terms of quotients as exposed in Theorem 4.11, that g ◦ [Y ′

a ⊗H0 Y ′
b]iso = g ◦ [(aa⊗L

D(a)
Ya) ⊗H0 (ab⊗L

D(b) Yb)]iso = g ◦ [aa⊗Lb]iso ◦ [Ya⊗Lb]. We denote by ta⊗Lb,C : [a ⊗L b, C]α,α −→ [Dα,α(a ⊗L b), C]c
the inverse of this bijection.

We have a map

[a⊗L b, C]α,α
t
a⊗Lb,C−→∼= [Dα,α(a⊗L b), C]c −→ [d, C]α : f �−→ ta⊗Lb,C(f) ◦ j, (55)

where j = [ȲDα,α(a⊗Lb)]−1 ◦ [i] ∈ [d, Dα,α(a ⊗L b)], with i : d ⊆ qrep(Dα,α(a ⊗L b)) and ȲDα,α(a⊗Lb) :
Dα,α(a ⊗L b) −→ qrep(Dα,α(a ⊗L b)) the natural quasi-equivalence provided by the Yoneda embedding. We 
are going to show that this is an inverse map of (53).

We have that ta⊗Lb(f) ◦ j ◦ [F ] = ta⊗Lb(f) ◦ [aa⊗Lb]iso ◦ [Ya⊗Lb] = f for any element f ∈ [a ⊗L b, C]α,α. 
Hence (55) is a right inverse of (53).

Now we want to show that ta⊗Lb,C(g ◦ [F ]) ◦ j = g. This equality is more involved and in order to prove 
it we will use the topos theoretical argument mentioned in Remark 5.4 above, which can also be seen as 
an α-version of the usual extensions of dg functors. Denote by IndαF := ta⊗Lb,Dα(d)([ad]iso ◦ [Yd] ◦ [F ]) ∈
[Dα,α(a ⊗L b), Dα(d)]c. We hence have that

IndαF ◦ [aa⊗Lb]iso ◦ [Ya⊗Lb] = [ad]iso ◦ [Yd] ◦ [F ]. (56)

Observe that IndαF ◦ [aa⊗Lb]iso = [ad]iso ◦ [F!] and hence IndαF = [ad]iso ◦ [F!] ◦ [ia⊗Lb]. We claim that

IndαF ◦ j = [ad]iso ◦ [Yd]. (57)
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Observe this will be enough to conclude. Indeed, as IndαF is cocontinuous, we have a diagram

[d, C]α [Dα(d), C]c

[a⊗L b, C]α,α [Dα,α(a⊗L b), C]c,

∼=
s

(−)◦[F ] (−)◦Indα
F

∼=
t
a⊗Lb,C

(58)

which is commutative as a direct consequence of (56), where s denotes the inverse of the bijection 
[Dα(d), C]c → [d, C]α : f �→ f ◦ [ad]iso ◦ [Yd] from Proposition 3.28. Then, we have that

ta⊗Lb,C(g ◦ [F ]) ◦ j = s(f) ◦ IndαF ◦ j = s(f) ◦ [ad]iso ◦ [Yd] = f,

where the second equality comes from (57). Consequently, (55) is also a left inverse of (53), which concludes 
the argument.

It hence only remains to prove that (57) holds. Consider the dg functor F : a ⊗Lb −→ d and the associated 
restriction F ∗ : dgMod(d) −→ dgMod(a ⊗L b) and extension F! : D(a ⊗L b) −→ D(d). Denote by d′ the full 
dg subcategory of Dα,α(a ⊗L b) quasi-equivalent to d via the quasi-equivalence Ȳa⊗Lb:

Dα,α(a⊗L b) qrep(Dα,α(a⊗L b))

d′ d

Ȳ
a⊗Lb

∼

I

G
∼

i

Observe that, for all D ∈ d′,

F ∗ ◦ Yd ◦G(D) = F ∗(hG(D)) =

= d(F (−), G(D)) =

= qrep(Dα,α(a⊗L b))(i ◦ F (−), i ◦G(D)) =

= qrep(Dα,α(a⊗L b))(Φa
a⊗Lb

◦ Ya⊗Lb(−), i ◦G(D)).

We hence have that

ia⊗Lb ◦ I(D) = D(a⊗L b)(Ya⊗Lb(−), ia⊗Lb ◦ I(D)) −→
−→ qrep(Dα,α(a⊗L b))(Φa

a⊗Lb
◦ Ya⊗Lb(−),Φa

a⊗Lb
◦ ia⊗Lb ◦ I(D)) =

= qrep(Dα,α(a⊗L b))(Φa
a⊗Lb

◦ Ya⊗Lb(−), i ◦G(D)).

Consequently, we have a natural transformation ia⊗Lb ◦ I −→ F ∗ ◦Yd ◦G. By adjunction, we have a natural 
transformation F! ◦ ia⊗Lb ◦ I −→ Yd ◦G and by composition a natural transformation

α : Φad
◦ F! ◦ ia⊗Lb ◦ I −→ Φad

◦ Yd ◦G. (59)

Now, observe that every object D ∈ H0(d′) is isomorphic to 
∐

i∈I H
0(G)−1H0(F )(Ai, Bi) where the co-

product is α-small. Then we have that



42 W. Lowen, J. Ramos González / Journal of Pure and Applied Algebra 226 (2022) 106843
H0(ad) ◦H0(F! ◦ ia⊗Lb ◦ I)(D) =

= H0(ad) ◦H0(F! ◦ ia⊗Lb)
(∐

i∈I

H0(aa⊗Lb) ◦H0(Ya⊗Lb)(Ai, Bi)
)

=

= H0(ad) ◦H0(F! ◦ ia⊗Lb) ◦H0(aa⊗Lb)
(∐

i∈I

H0(Ya⊗Lb)(Ai, Bi)
)

=

= H0(ad) ◦H0(F!)
(∐

i∈I

H0(Ya⊗Lb)(Ai, Bi)
)

=

=
∐
i∈I

H0(ad) ◦H0(F!) ◦H0(Ya⊗Lb)(Ai, Bi) =

=
∐
i∈I

H0(ad) ◦H0(Yd ◦ F )(Ai, Bi) =

= H0(Y ′
d)

(∐
i∈I

H0(F )(Ai, Bi)
)

=

= H0(ad) ◦H0(Yd ◦G)(D),

(60)

where the only non-trivial equality is the third one. It follows from the fact that

H0(ad) ◦H0(F! ◦ ia⊗Lb) ◦H0(aa⊗Lb) = H0(ad) ◦H0(F!),

which can be deduced by using the adjunctions H0(ad) � H0(id), H0(aa⊗Lb) � H0(ia⊗Lb) and H0(F!) �
H0(F ∗) together with the fact that the image of H0(F ∗)(Dα(d)) lies in Dα,α(a ⊗L b) ⊆ D(a ⊗L b). From 
(60), one can conclude that the natural transformation α from (59) is a termwise homotopy equivalence and 
consequently, we have that [ad]iso ◦ [F!] ◦ [ia⊗Lb] ◦ [I] = [ad]iso ◦ [Yd] ◦ [G]. Thus, we have that

IndαF ◦ j = [ad]iso ◦ [F!] ◦ [ia⊗Lb] ◦ [ȲDα,α(a⊗Lb)]−1 ◦ [i] =

= [ad]iso ◦ [F!] ◦ [ia⊗Lb] ◦ [I] ◦ [G]−1 =

= [ad]iso ◦ [Yd] ◦ [G] ◦ [G]−1 =

= [ad]iso ◦ [Yd],

as we wanted to show.
We hence have that φ : [d, C]α −→ [a ⊗L b, C]α,α : f �−→ f ◦ [F ] is a bijection. Given another small 

dg category e, we denote by [d ⊗L e, C]′α the subset of [d ⊗L e, C] of α-cocontinuous morphisms in the first 
variable, and by [(a ⊗L b) ⊗L e, C]′α,α the subset of [(a ⊗L b) ⊗L e, C] of α-cocontinuous morphisms in both 
the first and second variables. We have the following diagram

[e,RHomα(d, C)] [e,RHomα(a,RHomα(b, C))]

[
d⊗L e, C

]′
α

[
(a⊗L b) ⊗L e, C

]′
α,α

[d,RHom(e, C)]α
[
a⊗L b,RHom(e, C)

]
α,α

.

∼=

∼=

∼=

∼=

−◦[F ]

(61)
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Observe that RHom(e, C) is well generated as a direct consequence of Theorem 3.22, and hence the horizontal 
arrow is a bijection by (53). Thus, as a direct consequence of Yoneda lemma, we have that RHomα(d, C) ∼=
RHomα(a, RHomα(b, C)) in Hqe as we wanted to show.

Now, given any homotopically α-cocomplete small dg category c, we want to show that φ′ : [d, c]α −→
[a ⊗L b, c]α,α : f �−→ f ◦ [F ] is a bijection. From the argument above, we have that φ : [d, Dα(c)]α −→
[a ⊗L b, Dα(c)]α,α : f �−→ f ◦ [F ] is a bijection. Observe that the corestriction Y ′

c : c −→ Dα(c) of the Yoneda 
embedding induces injections

[d, c]α ⊆ [d,Dα(c)]α

and

[a⊗L b, c]α,α ⊆ [a⊗L b,Dα(c)]α,α.

It is then easy to check that φ′ can be obtained as the restriction of φ to [d, c]α, and hence we have that φ′ is 
injective. As the elements H0(F )(a ⊗Lb) generate H0(d) under α-small coproducts and Y ′

c is α-cocontinuous, 
we can conclude that it is also surjective. Then, a similar argument as above using the universal property 
of the internal hom and Yoneda lemma allows us to prove that RHomα(a, RHomα(b, c)) ∼= RHomα(d, c), 
showing that d = a ⊗L

α b as desired. �
5.2. Tensor product of α-cocontinuous derived dg categories

Proposition 5.6. Let a, b be two homotopically α-cocomplete small dg categories. Then, we have that

Dα(a) � Dα(b) ∼= Dα(a⊗L
α b) (62)

in Hqewg.

Proof. We have that:

RHomc(Dα(a),RHomc(Dα(b), C)) ∼= RHomα(a,RHomα(b, C))
∼= RHomα(a⊗L

α b, C)
∼= RHomc(Dα(a⊗L

α b), C)

for every well generated dg category C, where the first isomorphism comes from Proposition 3.28 together 
with Theorem 3.31, the second isomorphism follows from Theorem 5.5 and the last isomorphism from 
Proposition 3.28. This concludes the argument. �
Corollary 5.7. The tensor product of two α-compactly generated dg categories is again α-compactly generated.

Proof. The theorem follows from the enhanced Gabriel-Popescu theorem (Theorem 3.17) and Proposi-
tion 5.6 above. �
References

[1] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, in: M. Artin, A. Grothendieck, J.L. de 
Verdier (Eds.), Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), in: Lect. Notes Math., vol. 269, 
Springer-Verlag, Berlin-New York, 1972, Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de 
N. Bourbaki, P. Deligne et B. Saint-Donat. MR 0354652.

[2] J. Adámek, J. Rosický, Locally Presentable and Accessible Categories, London Mathematical Society Lecture Note Series, 
vol. 189, Cambridge University Press, Cambridge, 1994. MR 1294136.

http://refhub.elsevier.com/S0022-4049(21)00184-5/bib87B2A352943057ACB39ED2D92D8FC7FBs1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib87B2A352943057ACB39ED2D92D8FC7FBs1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib87B2A352943057ACB39ED2D92D8FC7FBs1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib87B2A352943057ACB39ED2D92D8FC7FBs1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib22D22653B93C8F1D817CDDD1B0FD0BC3s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib22D22653B93C8F1D817CDDD1B0FD0BC3s1


44 W. Lowen, J. Ramos González / Journal of Pure and Applied Algebra 226 (2022) 106843
[3] O. Ben-Bassat, J. Block, Milnor descent for cohesive dg-categories, J. K-Theory 12 (3) (2013) 433–459. MR 3165183.
[4] A.I. Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR, Ser. Mat. 53 (1) (1989) 

25–44. MR 992977.
[5] A.I. Bondal, M.M. Kapranov, Representable functors, Serre functors, and mutations, Math. USSR, Izv. 35 (3) (1990) 

519–541.
[6] A. Canonaco, P. Stellari, Internal Homs via extensions of dg functors, Adv. Math. 277 (2015) 100–123. MR 3336084.
[7] A. Canonaco, P. Stellari, Uniqueness of dg enhancements for the derived category of a Grothendieck category, J. Eur. 

Math. Soc. 20 (11) (2018) 2607–2641. MR 3861804.
[8] L. Cohn, Differential graded categories are k-linear stable infinity categories, arXiv :1308 .2587, 2016.
[9] V. Drinfeld, DG quotients of DG categories, J. Algebra 272 (2) (2004) 643–691. MR 2028075.

[10] F. Genovese, Adjunctions of quasi-functors between DG-categories, Appl. Categ. Struct. 25 (4) (2017) 625–657. MR 
3669175.

[11] S.B. Iyengar, H. Krause, The Bousfield lattice of a triangulated category and stratification, Math. Z. 273 (3–4) (2013) 
1215–1241. MR 3030697.

[12] B. Keller, Deriving DG categories, Ann. Sci. Éc. Norm. Supér. (4) 27 (1) (1994) 63–102. MR 1258406.
[13] B. Keller, On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1) (1999) 1–56. MR 1667558.
[14] B. Keller, On differential graded categories, in: International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 

2006, pp. 151–190. MR 2275593.
[15] G.M. Kelly, Structures defined by finite limits in the enriched context. I, in: Third Colloquium on Categories, Part VI 

(Amiens, 1980), Cah. Topol. Géom. Différ. Catég. 23 (1) (1982) 3–42. MR 648793.
[16] G.M. Kelly, Basic concepts of enriched category theory, Repr. Theory Appl. Categ. 10 (2005), vi+137, Reprint of the 1982 

original [Cambridge Univ. Press, Cambridge; MR0651714].
[17] H. Krause, Localization Theory for Triangulated Categories, Triangulated Categories, London Math. Soc. Lecture Note 

Ser., vol. 375, Cambridge Univ. Press, Cambridge, 2010, pp. 161–235. MR 2681709.
[18] A. Kuznetsov, Base change for semiorthogonal decompositions, Compos. Math. 147 (3) (2011) 852–876. MR 2801403.
[19] I. López Franco, Tensor products of finitely cocomplete and abelian categories, J. Algebra 396 (2013) 207–219. MR 3108080.
[20] W. Lowen, J. Ramos González, B. Shoikhet, On the tensor product of linear sites and Grothendieck categories, Int. Math. 

Res. Not. 2018 (21) (2018) 6698–6736. MR 3873542.
[21] V.A. Lunts, D.O. Orlov, Uniqueness of enhancement for triangulated categories, J. Am. Math. Soc. 23 (3) (2010) 853–908. 

MR 2629991.
[22] J. Lurie, Derived algebraic geometry II: noncommutative algebra, arXiv :math /0702299, 2007.
[23] J. Lurie, Higher algebra, https://www .math .ias .edu /~lurie /papers /HA .pdf, 2017.
[24] A. Neeman, On the derived category of sheaves on a manifold, Doc. Math. 6 (2001) 483–488. MR 1874232.
[25] A. Neeman, Triangulated Categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 

2001. MR 1812507.
[26] N. Popesco, P. Gabriel, Caractérisation des catégories abéliennes avec générateurs et limites inductives exactes, C. R. 

Math. Acad. Sci. Paris 258 (1964) 4188–4190. MR 166241.
[27] M. Porta, The Popescu-Gabriel theorem for triangulated categories, Adv. Math. 225 (3) (2010) 1669–1715. MR 2673743.
[28] L. Positselski, J. Rosický, Covers, envelopes, and cotorsion theories in locally presentable abelian categories and con-

tramodule categories, J. Algebra 483 (2017) 83–128. MR 3649814.
[29] M. Robalo, Motivic homotopy theory of noncommutative spaces, Ph.D. thesis, Université Montpellier 2, 2014.
[30] G. Tabuada, Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories, C. R. Math. Acad. Sci. 

Paris 340 (1) (2005) 15–19. MR 2112034.
[31] G. Tabuada, On Drinfeld’s dg quotient, J. Algebra 323 (5) (2010) 1226–1240. MR 2584954.
[32] B. Toën, The homotopy theory of dg-categories and derived Morita theory, Invent. Math. 167 (3) (2007) 615–667. MR 

2276263.
[33] B. Toën, Derived Azumaya algebras and generators for twisted derived categories, Invent. Math. 189 (3) (2012) 581–652. 

MR 2957304.
[34] N.H. Williams, On Grothendieck universes, Compos. Math. 21 (1969) 1–3. MR 0244035.

http://refhub.elsevier.com/S0022-4049(21)00184-5/bibE75764D41315ECD14475A786114F1F86s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib072C1751EFF418B4A86C08ED5EF1C7F1s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib072C1751EFF418B4A86C08ED5EF1C7F1s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibE1795156D64C88DE91E04AA8FC3C0E06s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibE1795156D64C88DE91E04AA8FC3C0E06s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibEA4E5ED422CC39363672573A089FA0FBs1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibC3DBBF6CF793AC501963FAA8A995C854s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibC3DBBF6CF793AC501963FAA8A995C854s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib0FFF2896C3761F958D3D81A8FE1AC89Bs1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibE482874716B72F8DFBBF2D43488C28E5s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib554F92AF89C5CDB70259D397D96D8473s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib554F92AF89C5CDB70259D397D96D8473s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibDBB77C0855B52608EFCCC5732221F4F2s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibDBB77C0855B52608EFCCC5732221F4F2s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibED1DB22FE22224797FFF914B2AD6E488s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibC272AA8FB1214725B8E8FDAE25986CA4s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibB2FC65FDF868E34165B5F91F12CD931Es1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibB2FC65FDF868E34165B5F91F12CD931Es1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib895CAF2C486ABE434A274AF1C94C2ED6s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib895CAF2C486ABE434A274AF1C94C2ED6s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib70083E5B00869D234448E800BF397929s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib70083E5B00869D234448E800BF397929s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibCE3D7EFF5E379C9B08ADF014796526C2s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibCE3D7EFF5E379C9B08ADF014796526C2s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibF4AF0B637CB0DF1F21EC39E53C746EA1s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib5633A641716B7C263FAAD2CCEB93E7E8s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib2BC630C97980991C803CE6D84D4DD9EDs1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib2BC630C97980991C803CE6D84D4DD9EDs1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibF35D6FC5F5FC51ABD078B4F07C35055Bs1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibF35D6FC5F5FC51ABD078B4F07C35055Bs1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib1D6A771987A1E9F48D37CE764B9C1314s1
https://www.math.ias.edu/~lurie/papers/HA.pdf
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibF805369296A24EB41260E7415742C19Cs1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib5A39AF43F71E38E04EC5B645972E1EACs1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib5A39AF43F71E38E04EC5B645972E1EACs1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib3FC150D65775639C726D7D838E25F121s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib3FC150D65775639C726D7D838E25F121s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib559E29D2DBB9FBB22082D8071C579ABFs1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib8600FA802FB150F5057845DD0EA411D0s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib8600FA802FB150F5057845DD0EA411D0s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib8730AB827FC6ECE487773978162C9D86s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibFB1509CA17692DA3845996D78118EF48s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibFB1509CA17692DA3845996D78118EF48s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bibB6A69BE52DFF60884ABA09A2E1C17343s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib942418F421A515896117D7275127A35Bs1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib942418F421A515896117D7275127A35Bs1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib1C7509351C79D0B82F3FBF15D6AD4B52s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib1C7509351C79D0B82F3FBF15D6AD4B52s1
http://refhub.elsevier.com/S0022-4049(21)00184-5/bib578EB35C9509E8ACAF3F2DFB9C6D551Cs1

	On the tensor product of well generated dg categories
	1 Introduction
	2 The homotopy category of dg categories
	2.1 The model structure on the category of dg categories
	2.2 The monoidal structure on the homotopy category of dg categories
	2.3 Variations upon the inner hom

	3 Well generated dg categories
	3.1 Localisation of well generated triangulated categories
	3.2 Localisation of well generated dg categories
	3.2.1 Localising subcategories generated by a set
	3.2.2 Bousfield localisations
	3.2.3 Equivalent approaches to localisation

	3.3 The α-cocontinuous derived category
	3.4 Enhanced derived Gabriel-Popescu theorem
	3.5 The cocontinuous internal hom of homotopically cocomplete dg categories
	3.6 The cocontinuous internal hom of well generated dg categories

	4 The well generated tensor product
	4.1 Considerations in the two variable setting
	4.2 The tensor product of dg quotients
	4.3 Tensor product of well generated dg categories
	4.4 Tensor product of localising subcategories
	4.5 Tensor product of dg Bousfield localisations

	5 Tensor product in terms of α-cocontinuous derived categories
	5.1 Tensor product of homotopically α-cocomplete dg categories
	5.2 Tensor product of α-cocontinuous derived dg categories

	References


