
 1

MANUAL
V 1.02

please bear with me: this is essentially the manual for Gravity Waaaves VSEJET Hardware synth with 
just an erratum added to account for the different stuff in the DSK software version.  So when you 
read through the main manual, occasionally you’ll see something that doesn’t seem super relevant 
to your software.  Try not to become concerned/aroused/incensed by this fact for now and instead 
attempt to use your common sense to work through what appears to be inconsistencies with your 
version.  As the vast bulk of GWDSK’s operations are identical to GWJET, this manual will still be 

incredibly useful and relevant, even with the occasional inconsistency.



 2

CoNteNts
Section 1 Introduction. . . . . . . . . . . . . . . .  4

What is Gravity Waaaves?   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4

Note on Tone  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4

How to Use This Manual   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4

VSEJET Community Support  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5

Section 2: Quickstart . . . . . . . . . . . . . . . . .  7
What Is All Of This stuff?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  7

How Do I Plug All This Stuff In?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  8

How to Power On and Get Started   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  9

How to Navigate the GUI   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  9

Trackpad .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  9

Keypad  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  10

Midi Controller   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  10

A Brief Intro to the GUI  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  11

What Video Inputs Are Supported?   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  12

Common Video Input Issues  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  12

Quirks and Other Things to Look Out For   .  .  .  .  .  .  .  .  .  .  .  .  13

Signal Flow and BLOCK Structure  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  14

Framebuffers, Video Delay Lines, and Feedback  .  .  .  .  .  .  .  .  15

Section 3: Walkthroughs . . . . . . . . . . . . . .  18
How Do We Label Things  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  18

BEGINNER  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  18

PART 0: Presets and Macros  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  18

PART 1: BLOCK_3   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  20

PART 2: BLOCK_2   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  23

PART 3: BLOCK_1   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  25

INTERMEDIATE  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  27

PART 1: Keying BLOCK_1 into BLOCK_2  .  .  .  .  .  .  .  .  .  .  .  .  .  27

PART 2: Feedback Oscillators in & Color Eq  .  .  .  .  .  .  .  .  .  .  .  29

ADVANCED  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  32



 3

Putting it all together  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  32

Section 4 Glossary & Reference . . . . . . . .  36
GLOSSARY  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  36

Reference  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  38

Section 5 Erratum  . . . . . . . . . . . . . . . . . . .  62



 4

Section 1 Introduction
What is Gravity Waaaves?
From here on out lets just call it GW! GW can be described as 
• a 2 channel video mixer
• an SD video upscaler
• a dual digital video delay processor with delay time up to 4 seconds.
• the flagship VSEJET (Video Synthesis Ecosphere Jetson) video processing tool
• the only video mixer designed specifically for performing with video feedback
• a performance oriented video artist workstation
• and probably more things that all of you will figure out through your personal usage.

Note on Tone
 I1 write manuals in the first person and have a tendancy to use colloquilaisms, idioms, and 
other such folky vernacular informalisms that some folks find to be incredibly inappropriate for 
contexts like this.  I, on the other hand, feel quite strongly that the kind of dry, detached, second/
third person omniscient tone that most manuals use exclusively is radicially hostile towards the 
kinds of useful communication of information that any manual should be striving towards.    
 Consider this a fair warning: if this kind of conversational tone is going to seriously harsh 
your mellow, I’d recommend just reading the Quickstart portion and then skipping right to the 
Glossary to read the definitions and check out the graphs and examples over there.  I would also 
ask you to think and consider why exactly it is that you feel that a dry, impersonal, and emotion-
less tone is somehow inherently superior to a conversational and informal voice for communica-
tion, especially communication of information that is often times hidden behind various forms of 
elitist gate keepers.

How to Use This Manual
There are a couple of different approaches towards reading/writing manuals.
• The Atari Approach: give me the bare minimum of facts needed to get into the world and i’ll 

teach myself the rest through trial and error
• The Engineers Approach: give me an abstract and context free list of every bit of technical in-

formation relevant to operating this as a tool.
• The Older Sibling Approach: give me a conversational and context sensitive walkthrough that 

is centered on achieving goals. 

 In the interests of covering each of these approaches in a hermetic manner, I’ve split up 
this manual into a couple of sections.  QUICKSTART (The Atari Approach) covers the basics of just 
identifying hardware stuffs, plugging things in and powering on, and navigating the GUI.  WALK-
THROUGH (The Older Sibling Approach) is an in depth series of excercises that are intended to 
give you an experiential approach to understanding the most unique aspects of GW’s signal flow, 

1 I am Andrei Jay, the human who designed GW. 



 5

working with dual video delay lines, and the other video processing things that are unique to 
GW.  GLOSSARY (The Engineers Approach) is a vast list of definitions, diagrams, screenshot exam-
ples, and various other reference materials.
 I don’t particularly recommend reading this manual word by word, start to finish, before 
ever turning on your GW2.  The best approach, I think, would be to first read the Quickstart, get 
GW running, and play around with it a bit to start with.  This will give you a good grounding on 
how the GUI is organized for when you read things a little deeper.  At this point you can choose 
to either just keep the GLOSSARY open and use it to fortify your experiments by looking up defi-
nitions whenever you feel like your experiments arent giving you enough information to work 
on,  or work through the WALKTHROUGH and get a detailed introduction to various features, 
quirks, and techniques.

VSEJET Community Support
 Also please get involved in the various online discussion groups available for working with 
GW and the VSEJET!  If you like message boards, check out scanlines.xyz and you’ll find folks 
working with GW as well as other VSE synths.  If you visit andreijaycreativecoding.com you can 
find many various invite links to join the VSE discord if you are more of a fan of that kind of inter-
actions.
 This manual can provide you with many things, but it can’t replace the experience of actu-
ally working together with a large group of like minded folks.  GW is a deep and somewhat fath-
omless system and it seems overwhelmingly likely that the community of users is going to learn 
exponentially more things about how they like to use this instrument than I ever will.  Abstaining 
from participating in the community will only be a handicap to your GW experience.  Plus if you 
email me directly for any help with GW, 99.99 percent of the time I will respond with “Please re-
read the manual or  “Ask around in the forums first,” so probably just a good habit to get in no 
matter what.
 If you would like to assist in funding any future development or upgrades to GW you 
should also consider joining my Patreon.  Aside from tiny bugfixes, any future updates to GW 
are contingent upon community funded support.  Any folks who support my patreon for longer 
than 6 months will be able to vote on what kind upgrades happen as well.  Support from Patreon 
is what even made GW and the VSEJET possible in the first place.  Even if you think GW is perfect 
and could never be improved upon maybe you’d like to see me actually finish up and release the 
video sampler thing I’ve been working on for years now.  Sales of these instruments are not really 
up to the point where I’m able to devote much real time to development and I don’t do pre-or-
ders until shit is 90 percent finished so options are limited.

2 I don’t recommend doing that with any manual whatsoever, unless you are the kind of person 
who read every single footnote in Infinite Jest but never finished the novel itself

https://scanlines.xyz
https://andreijaycreativecoding.com
https://www.patreon.com/andrei_jay


 6



 7



 8



 9

How to Navigate the GUI
You have 3 ways to use GUI, each of which can be used in concert.  You can use the trackpad on 
its own, the keypad, and the midi controller

Trackpad
 You can use the trackpad to navigate by moving the cursor around via the paddy part and 
clicking via the left clicky parts.  Sometimes the actual clickers on the trackpads don’t seem to 
work.  If this applies to you, you can also tap on the pad part itself instead of using the clicker, 
and/or use the ML/MR buttons on the keypad as backup clicking buttons.  
 Please note that if you accidentally move the cursor off of the gui screen and left or right 
click, this will disable your ability to use the keypad to navigate the gui.  So try not to do that, and 
if you accidentally do, just remember to use the trackpad to left click anywhere back over on the 
gui screen to get things working properly.  
 When using the trackpad along with the keypad note that if you have any parameter se-
lected with the keypad you won’t be able to select, alter, or choose anything else with the track-
pad until you deselect the parameter with the keypad.



 10

Keypad
    Arrow keys navigate up, down, left, and right.  The sel (select) key opens tabs, nodes, and drop 
down menus, toggles checkmarks on and off, and activates sliders.  When a drop down menu is 
activated use up and down arrows to choose between the options and press sel again when fin-
ished.  When a slider is activated, you can use the left and right arrow keys to increase or decrease 
the parameter value and press sel again when finished.  You’ll note that with arrow keys you’ll 
only be able to increase and decrease in amounts of .02.  To dial in finer values, use num entry 
key instead of sel and then use the number keys 0 through 9, the decimal point ., and del (delete) 
to manually change the value and then press num entry again.  The rgb on/off key turns on and 
off the color thingies on the keypad itself.  ML and MR are backup Mouse Left Click and Mouse 
Right Click for if there is issues with the trackpad.  You can shut down GW from the keypad using 
alt+7+8+9.  You can exit GW to access display settings and save state management by using ALT+4

Midi Controller
If you’ve updated to v1.5 or later you can now use the Midi Macro menu to assign any GW param-
eter to any of the knobs or sliders on the midi controller.  To check out examples of this try out 



 11

any of the presets.  
 Otherwise the midi controls are context sensitive for each sub menu.  Whenever you 
enter a submenu via a node or tab you see an checkbox labled midi/gui.  If you turn on the 
checkbox (via keypad or trackpad) you can then use the midi controller to control all the slider 
based parameters on each submenu.  The way that onscreen controls map to the midi controller 
is: think of on screen controls as being labled 1,2,3,4 counting from left to right and wrapping 
around each column the same way you read a book in english.  On the midi controller the num-
bers move in the same way, starting from the left hand. 
 Midi controls Latch so that whenever you switch menus back and forth using the midi 
controller, the controls don’t just jump to whatever current positions the knobs and sliders are 
on the physical midi controller.  You should make sure to uncheck the midi/gui box upon leav-
ing a menu to make sure this works.  But probably no one will really care anymore about any of 
this b/c of the macros & presets.

A Brief Intro to the GUI
 The GW GUI is quite vast, so here’s a couple of notes on structure and organization.  Each 
BLOCK, 1 through 3 are given their own Tab.  As each BLOCK works as it’s own little sub mixer 
within GW, you will usually want to make sure you are viewing the same BLOCK that you are 
working in. There is a drop down in the upper left hand corner where you can select BLOCK_1, 
2, 3, or draw all BLOCKS for video outputs.
 Within each BLOCK Tab you will see another series of SubTabs.  The organization of the 
SubTabs from left to right reflects the default layering of video signal flows within the BLOCK.  
For example, in BLOCK_1 you will see from left to right, ch1, ch2, fb1.  This means that by de-
fault, only ch1 will be visible, and that mixing and keying will all start from ch1 and then add bits 
and peices of ch2 and fb1 into BLOCK_1 output based on what you do in ch2 mix and key and 
fb1 mix and key.
 Some SubTabs will also have another set of Nodes within them.  You can check the Glos-
sary for a full system map of Tabs, SubTabs, and Nodes.  Theres no way around it, GW has a rath-
er large number of parameters.  In the interests of not creating any potential fathmoless Marian-
as Trench opportunities for menu divers the vertical heiarchies only get 3 deep.  Unfortunately, 
this means that horizontal heiarchies can sometimes get pretty wide. Most of the time you won’t 
need to access every single submenu.
 The Main Menu will refer to the default GUI you end up on.  The Main Menu contains the 
Global Controls, BLOCK tabs, Save & Load sections, and Midi Macro menu.
 BLOCK tab refers to any of BLOCK_1, BLOCK_2 and BLOCK_3 .
 SubTab: any tab within a BLOCK tab.  SubTabs can contain Nodes or Controls.
 Node: any of the vertically arranged subMenus. 
 Controls will mean a set of parameters, checkboxes, and dropdowns.
 SubMenu will refer to a set of Controls located within a SubTab or Node.  All Nodes will 
be SubMenus but not all SubTabs will be SubMenus.
 Examples: the SubTab fb1 Lfo contains a list of Nodes, each of which contains a set of 
Controls.  The SubTab ch1 Adjust contains Controls.  



 12

What Video Inputs Are Supported?
Analog video:
 NTSC or PAL video signals sent through the yellow rca cables or s-video.  You will probably 
not have great luck sending analog video in directly from circuit bent/glitch video devices.  It is 
also not impossible that you can damage GW with circuit bent/glitch video signals.  Best practice 
is to send the circuit bent/glitched video signal through a Time Base Corrector (TBC) before go-
ing into GW.

Digital video:
 Most any RGB/YCbCr signal up to 4k (3840×2160 at 30Hz).  8/10/12bit color.  Unlike analog 
composite video, there is a very wide range of possible different video digital video signals that 
can be sent over HDMI, and there always exists the outside chance that some piece of video gear 
can have an HDMI video output that is not supported by GW.

Common Video Input Issues
Analog Video
    Black and White Video, Strange Rainbow Banding, No Video At All
 Either you aren’t sending in an NTSC or PAL signal, or the NTSC/PAL signal you are sending 
is underpowered, out of range, or otherwise not a strong enough signal to work.  Most often this 
will happen with a VCR.  Best solution is to use a VCR that has a TCB built in or to use an external 
TBC.  Other issues can occur with poorly built video encoders that don’t work up to video stan-
dard specs.

    Lines and/or Noise at the Top and Bottom of the Video
 This happens most often with signals from VCRs, but you can also notice some strange 
business at the top and bottom borders of any analog video signal.  This is because most every 
monitor that displays analog video signals uses Overscan to automatically crop the boundaries of 
any video signal.  The only solution is to use the input adjust controls inside of GW to crop these 
parts of the video.

    Horizontal/Vertical sync
 Distortion in the horizontal/vertical directions is usually a sign that you are using glitch/
circuit bent video inputs, a VCR playing a degrading VHS tape, or have an issue with the RCA 
cable.  Occasionally it is a sign that there is something going extremely wrong with whatever 
video device you are sending video out from.  There is nothing within GW that can fix issues with 
Horizontal/Vertical sync in a signal, your best bet is to use a TBC.
 
Digital Video
    Inconsistent Signals from Laptop/Desktop Computers
 Taking video out from laptops or desktop computers into GW can be inconsistent.  The 
best way to prevent this is to figure out how to force your laptop/desktop to send out a fixed sig-



 13

nal, like 1280x720p at 60hz.  Please consult documentation for your operating system on the best 
way to achieve this.  
 If you are regularly trying to work with prerecorded clips I would highly recommend 
avoiding laptops and instead invest in building your own R_E_C_U_R, Mp4 Museum, or just learn 
how to use VLC or omxplayer on a raspberry pi to have a dedicated clip launcher on hand. 
  

Analog and Digital Video
    Video Freezes
 This usually happens when the Usb connectors of the Video Adapter become dislodged.  
You can hot swap video cables but you cannot hot swap Usb Video Adapters.  Make sure that the 
Usb connectors all have plenty of slack and are unlikely to get pulled or detached while GW is 
running.  You will have to either power cycle GW or exit GW and start over from the runGravity-
Waaaves.sh file with the Usb cables plugged in firmly and with plenty of slack.
 Long video cables can also be an issue.  It is usually not recommended to run a Compos-
ite, S-Video, or HDMI cable longer than 50 feet without some kind of active amplification of the 
the signal.  Depending on the sheilding and quality of the cable you can sometimes run into 
issues over 15 feet.

Quirks and Other Things to Look Out For
If GW stalls out after the splash screen when powering on or stalls out with a text crawl when power-
ing down
 This seems to be an issue with certain usb extension cables and/or video adapters.  Dou-
ble check that unplugging the extension cable allows GW to either finish booting up or powering 
down to confirm that this is the issue at hand and then try to source replacements from Andrei if 
you have a proof of purchase or from links on the VSEJET DIY website if you’ve built your own.

Not every parameter has effects between -1 and 1
 Example: posterize and kaleid will only have effects between 0 and 1, and within those 
ranges they have stepped, not continuous values.  The visual Parameter values will always be 
between -1 and 1 but the actual ranges scale for each different parameter.  For example x <-> is 
scaled to 640 pixels for live inputs so a visual value of 1 would be an x displacement of 640 pixels.  
You should consult the glossary for a detailed list of parameter ranges.

Not every parameter will show obvious effects immediately
 This is a video mixer and not every Input or Framebuffer delay will be visible if you hav-
en’t adjusted the relevant mix and key menu.  If you adjust fb1 x <-> you won’t notice any effect 
unless you have also adjusted fb1 mix and key to allow some amount of fb1 to be visible.  If you 
are working within BLOCK_2 but are only viewing the output of BLOCK_1 then you won’t see any 
effects of anything you adjust.

Analog and Digital Video Inputs don’t always match up to the same set of input1/input2

https://github.com/cyberboy666/r_e_c_u_r
https://mp4museum.org


 14

 They can switch back and forth between them between power cycling.  Often times they 
will stay the same, but not always.  Is best to not let this take you off guard.  It does not matter 
which usb slots they are plugged into.    

Signal Flow and BLOCK Structure

Each BLOCK has it’s own unique set of video mixing and video processing thingies

BLOCK_1
 Process and mix 2 live inputs with 1 Video Delay Line.
BLOCK_2
 Process and mix either 1 live input or the output of BLOCK_1 with 1 Video Delay Line.
BLOCK_3
 Process and mix the outputs of BLOCK_1 and BLOCK_2 together.



 15

By default, each of the two video inputs (analog and digital) are assigned to BLOCK_1 and 
BLOCK_2, so if you head into BLOCK_3 directly after booting and adjust any mixing values you 
will be mixing between each of the live inputs.

Framebuffers, Video Delay Lines, and Feedback
 A Video Delay Line works very similar to an Audio Delay Line.  A running buffer of the past 
4 seconds of Video Frames is being constantly stored and updated with every new frame.  The 
main difference between Audio and Video Delays is that Audio Delays are typically used primari-
ly for generating effects that only use a limited amount of fiiltered feedback to prevent harsh and 
unpleasant sounds, whereas Video Delays are best used with generous amounts of feedback in 
order to get the most dynamic and aesthetic results.
 A Feedback (instead of Feedforward) Video Delay Line is one in which the output of a 
BLOCK is used as an input to the delay line instead of the input of the BLOCK.  Video Feedback is 
a powerful and dynamic form of video synthesis that allows for a wide range of organic textures 
and patterns, especially when paired up with live video inputs and keyers.  
 Dual Video Delay Lines means that there are two Video Delay Lines that are each stored 
independently.  Fb1 is the video delay line that is fed from the output of BLOCK_1.  Fb2 is the 
video delay line that is fed from the output of BLOCK_2.  BLOCK_3 is processed seperately from 
any Video Delay lines and can only be used to post process video feedback generated within 
BLOCK_1 and BLOCK_2.  You’ll notice that there are many processing features in BLOCK_3 that 
don’t appear in BLOCK_1 or BLOCK_2 and vice versa.  This is because there are a lot of video 
processing techniques that work extremely well within a feedback loop but don’t really do any-
thing outside of one, and many techniques that work wonderfully outside of a feedback loop but 
would result in mostly garbage within one.  
 



 16



 17



 18

Section 3: Walkthroughs
 This section is where you will actually learn how to use GW via a series of excercises that 
will give you an opportunity to craft various ‘patches’ that will give you experiential insight on 
how to use the various Video Delay Lines, processing sub menus, and the overall BLOCK struc-
ture all together.
 These walkthroughs are meant to be worked through in order.  Each one builds upon the 
knowledge and experience you have gained by working through the previous walkthrough.  As a 
result these walkthroughs will start out pretty chatty in the Beginners section and become some-
what more terse as we make our way to Advanced.  This is because you should be experienced 
enough to need less hand holding at every step by the time you’ve gotten that far.
 These walkthroughs will not explore every single permutation of any imaginable GW 
patch. I could easily spend the entire remainder of my life writing this section of the manual and 
still not exhaust all possibilities.  Instead these walkthroughs should provide you with all the 
knowledge you need to then explore further on your own without too much in the way of false 
starts or dead ends to slow you down.
 A secondary purpose of these walkthroughs is to show you a general workflows for ex-
ploring different aspects of not just GW, but any kind of complex video (or even audio!) synthe-
sis system.  When there aren’t too many controls or context sensitive situations it can be easy to 
just try cranking every parameter up to max and min and then get a good idea of whats going on 
fairly quickly.  When working with very large systems like GW tho, its best to start with more of 
a subtle divide and conquor method.  Isolating small parts of each BLOCK, tweaking things, and 
taking notes is the way to go.
 Finally, working with video feedback can be fairly unintuitive for folks who are more used 
to the kinds of linear systems in most other video synthesis systems.  Video Feedback is non-lin-
ear.  In a linear system, if we know what happens when parameter A is set to 1 and parameter B 
is set to .5 each on their own, we will know pretty much exactly what happens when we do them 
both at the same time.  In a non-linear system, we do not have that luxury.  

How Do We Label Things
 BLOCKS are very important and are always capitalized.  For the sake of legibility and conci-
sion, BLOCK_1 and BLOCK_2 are often abbreviated B_1 and B_2 when referred to in Controls.  
 Tabs, eg BLOCK_1, BLOCK_2
 Controls and SubTabs, eg B_1 color eq, finalMixAndKey
 Parameters, Checkboxes, and Dropdowns eg B2 blue, mix type, HSB/RGB
 To notate locations of Controls when necessary BLOCK_3->B_1 parameters (change this 
name)->B_1 color eq means B_1 color eq is a Node located under the SubTab B_1 parameters un-
der the BLOCK_3 Tab

BEGINNER
PART 0: Presets and Macros



 19

 Midi Macros
 Midi Macros are a way that you can choose a set of any 16 parameters to have permanently 
mapped to the midi controller.  Macros are saved along with all the other information in a preset 
so lets first explore one of the preset macros.  
 Open up the midi macro menu and then go up to the load, select filterFreak, and hit load.  
You should see the midi macro menu is now populated.  Try adjusting each of the macros with 
the midi controller and you’ll see that the gui sliders move along with the physical controls.  Yes 
there are knobs on the midi controller but all of the icons are sliders.  This will be ok.  You’ll no-
tice the macros on checkbox will turn on automatically when you load presets too.
 The reset switch in the midi macro menu resets all of the parameters to 0.  The reset assign-
ments switch resets all the assigned macros to null.
 Close the midi macro menu for now and hit reset all up on the top right corner.  Then load 
the same preset once more.  You’ll notice that all the parameters immediately change except for 
fb1 delay time.  If the midi macro menu is closed then all parameters will change upon loading 
except for fb1 and fb2 delay time.  I’ll figure it out eventually but thats just how things are right 
now.
 Open up the midi macros menu once more and you’ll notice that the fb1 delay time jumps 
back up to where it was in the original preset.  Lets put all of that behind us now and try editing 
one of the macros.
 Head over to the top right macro where fb1 posterize is currently assigned.  Lets change 
this to fb1 z <->.  Go down to the select button underneath the slider and navigate through the 
menus.  You’ll notice arrows that imply you should press right on the keypad but then the sub 
menu shows up to the left.  Keep pressing right and more menus show up to the left.  Weird 
I know!  Go through and select fb1 z <->, then navigate back and hit dunzo to exit the menu.  
You’ll notice that fb1 z is now zoomed out a bit!  Parameters jump to wherever the macro slider/
midi control is at when you choose a new one.  
 Another weird thing with the macro select menu: you can’t navigate back to the b1 b2 b3 
part of the menu.  Just hit dunzo button wherever you need to and go back if you selected the 
wrong b.  
 

PART 1: BLOCK_3
 The main purpose of BLOCK_3 is color Eq and mixing.  This block is the most like a normal 
video mixer.
 Controls covered: matrix mixer, final mix and key, B_1/2 color eq,

 Matrix Mixer
 Start out with two live video inputs.  Ignore any aspect ratio stuffs to start with, we are 
mainly concerned with color eq and mixing.  Its best to start with at least one input that has a 
wide range of brightness and at least one input with a wide range of colors.  Everything will be in 
the BLOCK_3 tab.
 Open matrix mixer and lets map



 20

 - B_2 green into B_1 red (top row middle column)
 - B_2 blue into B_1 green (middle row right column)
 - B_2 red into B_1 blue (bottom row left column).  
 Keep values in between -.5 and .5 for now and experiment with different combinations 
of each.
 Once you’ve played around with that for a bit, go up to the drop down in the left 
handcorner labeled matrix mix type and select additive.  go back down and try some different 
settings.  Repeat with each of the different matrix mix types.
 Next go to overflow and select wrap.  Try out some matrix mix values out that go all the 
way to -1 and 1.  Previously mix values would start to clamp out at +-.5, now they wrap around 
from zero creating an interesting topographical style distortion.  Now try all the different mix 
modes once again.  Once finished, select foldover and run through all the mix modes going 
from -1 to 1 again.  Notice that at at values of +-.5 for most mix types they fold back over in a 
negative direction.
 Color Eq
 Reset the matrix mixer via the matrix mixer reset checkbox.  Open up B1 color eq and 
turn it on via the on/off checkbox.  You should see all the video signal lose all saturation as 
the default mode for the colorizer is HSB mode.  Lets try solarizing the video first.  (link to 
solarize description).   In the brightness (bri) column, take band 1 up to 1 and band 2 up to 
.5.  You should see what appears to be an inverted brightness on the darkest half of the video 
output.  
 Next lets explore hue.  We will want to crank up the saturation (sat) first, so turn each 
bands saturation up to 1.  You should see, one by one, each band turning a fully saturated red, 
but with the darker bands (2, 3 and 4) looking toned or shaded.  To see what all bands look 
like without shading or toning, try all bands at bri and sat set to 1.  Explore adjusting the hue 
of each band one by one.  Notice that on full saturation and brightness the rainbow matches 
up to parameter values like so: 



 21

 When adjusting hue on adjacent bands, notice how gradients form between each band.  
 (we should have a little graphic thing that cuts up sections here.  just a slice from one of 
the images we’ve got so far should work)
 Next lets explore sat by decreasing the saturation by drastic amounts on each band.   For 
example set sat for each band like so
 - band 1 to 1
 - band 2 to .2 
 - band 3 to .8
 - band 4 to .4
 - band 5 to 0.  
 You should notice that some bands now have a pastel look to them.  Explore tweaking sat 
values for each band.  It will be more drastic and noticable to start by alternating large and small 
values for each successive band but you should also try things like setting up gradients.
 (graphic breaking thing)
 Lets switch our view to B2 input and try out RGB colorizing on this channel.  Within the 
global BLOCK_3 tab, change final mix order dropdown to BLOCK_2->BLOCK_1 and the final video 
output will switch to your secondary input.
  Open B_2 color eq, check hsb/rgb and on/off, and you will notice that unlike hsb color eq, 
rgb color eq does not show any immediate effects on the output video.  Lets try adjusting only 
the even numbered bands to get a feel for how rgb color eq works.  Unlike hsb color eq where 
we strip all of the saturation and hue information from the video signal and then reassign from 
scratch, rgb color eq keeps all of the color information as is and we use the sliders to offset the 
rgb values on a band by band basis.  
 Go to band 2 and crank red, green, and blue all the way up to 1.  You should see that band 2 
is now almost entirely white, but with some very odd gradients merging into bands 1 and 3.  Next 
try heading up to band 4 and crank red, green, and blue down to -1 and you should see that band 
4 is now almost entirely black, with the same odd gradients merging into adjacent bands.  If band 
4 is a bit too slim for this effect to be clear, try band 5 instead.
 Next explore tweaking different values for red, green, and blue on each of band 2 and 4, 
starting with small changes on each and then more drastic.  The thing to keep in mind here is that 
we are still assigning bands via calculated brightness, but on a per pixel basis per band our con-
trols will appear to be much less uniform than in the hsb color eq mode.  In general, rgb color 
eq is much less intuitive than hsb color eq.  Offsetting values instead of starting from scratch can 
make it fairly difficult to intentionally affect the video unless you are well experienced in navigat-
ing in rgb space.  The plus side to this apparant lack of intentional control is that there are effects 
we can get from this style of color eq that would be impossible in rgb mode.  You shouldn’t think 
of these modes as just two different ways to get the same results, but instead as wildly different 
tools.
 (visual break)
 Final Mix and Key
 Make sure that in B2 color eq we have at least one band totally set to black (all values at -1) 
and in B1 color eq we have a similar setting (brightness value at -1).  Reset final mix order drop-
down to BLOCK_1->BLOCK_2 and open final mix and key.  During this entire section, it might 



 22

be very handy to occasionally switch output mode to draw all BLOCKS; this can be selected in a 
dropdown in the upper left hand side of the global menu.
 First we will explore lumakeying.  Whenever key mode dropdown is set to lumakey,  chang-
ing any one of key red, key green, or key blue will change all of them.  This is a secret peek as to 
how the luma/chroma keyer in GW works under the hood, as always you can check the glossary 
for more info.  You’ll notice that adjusting these key colors won’t actually change anything other 
than the key value color swatch.  The reason is that we use these sliders to select a value to key 
around, but we also have to select a threshold that controls how much luma (or chroma) near the 
key value color will get replaced with the secondary video signal.
 Reset any of key red/green/blue back to 0 so that the key value color swatch is back to 
black.  Adjust key threshold slowly up from 0 until you see about half of B_1 is keyed out.  Notice 
that any alterations you made to in B1 color eq are passed into the keyer.  This can help you out a 
lot in the future, either if you just need to tweak some color values a little bit to get a cleaner key, 
or if you want to do something crazy like have bands 1, 3, and 5 all set to the same brightness and 
key them all out.  
 Next, leaving key threshold at the same value, change the key value via any of key red/
green/blue.  Notice that as the key value color swatch gets brighter, different parts of the video 
get keyed out.  Bring any of key red, key green, or key blue up to 1.0 so that the key value color 
swatch is now white and experiment with changing key threshold.  You’ll notice that now the key-
ing starts at the brightest part of the video signal and threshold adjusts the lower bounds of the 
keyer.
 Lets play a little bit with key soft.  Increase the value and take note of what happens in the 
keyed out portion of output.  You should see a linear fade between the keyed out part of B1 and 
B2, weighted by the brightness value of B1. 
 Next we will experiment with chroma keying.  Select reset in final mix and key.  Lets first 
make sure we have a decent amount of green in B1.  Enter b1_color eq and make sure at least 1 
band is fully saturated fully brightnessified green ( hue at .32, sat at 1, bri at 1).  Head back over to 
final mix and key and change key mode to chromakey.  Now you’ll be able to adjust each of the 
key red, key green, or key blue values individually.  Leave key red and key blue at 0, and turn key 
green up to 1, then start adjusting key threshold higher until you’ve chromakeyed out all of the 
green from B1.  Repeat this process with adjusting values in b1_color eq and then final mix and 
key to key out red, blue, and then any other color you like!
 Finally, lets explore combining mix and different mix modes with the keyer.  When the 
keyer is active, adjusting mix modes affects only the unkeyed portion of B1.  To illustrate this very 
blatantly, switch mix type to difference, overflow to wrap, and slowly adjust mix up to 1.0 and then 
down to -1.0.  Try a bunch of different combinations of mix type and overflow and slowly scrolling 
mix up and down from 1.0 to -1.0 to get a good feel for the different combinations of mix modes 
and overflow.
(break)

 What did you learn?
 -how does the matrix mixer work
 -how does color eq work in hsb and rgb modes 



 23

 -how does the luma and chroma key work
 -how to use color eq to optimize luma and chroma keying

 Further experiments with this patch
 -Try using the color eq in hsb mode in concert with Lumakeying to explore keying into 
more subtle grades between just black and white
 -Try using the color eq in hsb mode in concert with Chromakeying to explore keying first 
into red and green, and then into more subtle colors outside of the primary spectrum.
 -Try doing the same steps as above but with color eq in rgb mode.  
 
PART 2: BLOCK_2
 The main purpose of BLOCK_2 is mixing one input with a feedback buffer.  BLOCK_2 is 
very similar to how Waaave_Pool works.

 Controls covered: BLOCK_2 input adjust, fb2 mix and key, fb2 geo

 For this lesson, it will be best to have an input that is fairly dynamic and controllable both 
in brightness and in motion.  Either a live camera that is pointed at you or a high contrast video 
oscillator based input would work great.
 Open up BLOCK_2 and go to BLOCK_2 input adjust and select your preferred input from 
the drop down menu.  The default aspect ratio is sd (4:3) so if you’ve got an hd aspect ratio, check 
the hd aspect ratio box.  Lets try tweaking a bit of the input parameters.  Adjusting x <->, y <->, 
z <->, and rotate <-> should all be fairly intutive, but do a little experimenting with each to get a 
feel for the ranges involved.
 Once you feel comfortable with these parameters, head over to fb2 parameters and open 
up fb2 mix and key.  Adjust key threshold to .5 and notice that the darkest half of your video input 
should be keyed out and replaced with feedback painting.  Head up to fb2 delay time and start 
adjusting upwards.  You’ll notice pretty drastic changes in the feedback between 1 and 10.  Exper-
iment a bit with different kinds of motion in your input video (waving hands or osc rate) and see 
how these changes flow through the feedback.
 Next lets move to fb2 geo and play around with geometry a bit.  Adjust fb2 delay time back 
to 1 for now and then start moving x <->, first negative, then positive.  You should see some ap-
parant motion in the feedback which gets faster and more distinct the farther x <-> is away from 
0.  Go back up and turn fb2 delay time up to 8 and try tweaking x <-> once again.Now the feed-
back motion should look more scattershot, with a little bit of jerky motion trapped in the buffer 
from when you swept the delay time up.  Hit fb2 framebuffer clear button and with the feedback 
reset you should see the transient jerkiness dissapear.  Play around a bit more with x <-> and 
now y <-> with fb2 delay time kept at 8 until you feel like you have a pretty good handle on how x 
and y displacement work with this length of delay.
B R E A K
 Next lets try out some longer delays.  GW processes video at 30fps, so if we set any delay 
times to 30, we are setting up a feedback loop of 1 second of video.  Controls start to get a little 
confusing here, mainly because it takes a bit of time for effects to ripple through the entire 1 



 24

second loop.  When feedback is in a 1 frame loop. any alterations in the buffer geometry move at 
a frantic pace at rates that register as smooth movement to human perception.  When feedback 
is in loops at 1 second or greater, its a bit more trickier to maintain an attention span to directly 
perceive the effect of each loop. 
 Lets experiment with this a bit.  Adjust fb2 delay time to 30 and increase z <-> to .2.  Over 
the course of about 30 seconds you should see the feedback dwindle into a vanishing point.  The 
exact placement of the vanishing point is wherever x <-> and y <-> are set to.  Bring fb2 delay 
time time down to 1 and then tweak  x <-> and y <-> a bit to see how this works.  Find a nice 
vanishing point that you like and then start tweaking z <-> in a negative direction, up to -.100.    
You should see the feedback ‘zoom in’ and fill the screen.  If you don’t, try centering x <-> and y 
<->. Next adjust fb2 delay time back to 30, and hit fb2 framebuffer clear.  Watch how you can see a 
degradation in each iteration of the feedback as it expands to fill the screen.  
B R E A K
 Now lets play with rotate <->.  Set rotate <-> to .180.  Depending on how fast or slow 
your input is moving, it can be a bit tricky to see what is going on at first, but try waiting about 30 
seconds of observation first before adjusting fb2 delay time back to 1.  You should see feedback 
spirals zooming in.  Change z <-> to .18 and youll see the spiralling going back into a vanishing 
point.  Tweak x <-> and y <-> a bit more to see how rotations, z, x, and y all interact with one an-
other.  Go back and forth between 1 and 30 delay times, clearing the buffer each time to get a feel 
for how longer delay times contrast with short ones.
 What did you learn?
 -how does adjusting geometry work with live inputs
 -how does adjusting geometry work with feedback
 -how does mixing feedback with live inputs work
 -how do different delay times affect feedback patterns and behavior

 Further experiments with this patch
 -try different mixing modes on fb2 mix and key like linear fade, additive, difference, mult,  
and dodge.
 -try going way more extreme with values of x, y, z, and rotate <->.  Experiment with differ 
ent options for fb2 geo overflow as well 
 -try longer delay times, going all the way up to 240 (120??)
 
PART 3: BLOCK_1
 The main purpose of BLOCK_1 is splitting the difference between BLOCK_2 and BLOCK_3.  
BLOCK_1 allows you to mix 2 live inputs with 1 video delay line.  BLOCK_1 is very similar to how 
VIDEO_WAAAVES works.

 Controls used: ch1 adjust, ch2 mix and key, ch2 adjust, fb1 geo, fb1 color

 We want to have two live inputs, each with a nice full range of brightness to work with.  
Lets start with exploring multiplicative mixing.  Multiplicative mixing is handy for creating masks 
with plenty of negative space to work with as any black pixels on either input will map to black 



 25

pixels on the mixed output.
 Head over to ch2 mix and key, set mix type to multiplicative, and mix to .5.  You should see 
that the blackest parts of both inputs are pretty close to black now and that the rest of the col-
ors are a bit chaotic.  Lets try out a variety of inverts on each channel and see how it affects the 
mixed output.  Near the bottom of ch2 adjust you’ll find a row of checkboxes starting with hue 
invert and ending with solarize. One by one, try checking, and unchecking each one of the invert 
buttons to see how it interacts with multiplicative mixing.  When you get to solarize, leave it on.  
Head over to ch1 adjust and run through the same steps, also leaving solarize on when finished.  
You should see a fair amount of negative space in your video output now.
B R E A K
 Now lets start getting feedback involved. Go to fb1 parameters -> fb1 geo and set x <-> to 
.02 and z <-> to -.02.  You shouldn’t see anything changed in the video output yet because we ha-
ven’t mixed fb1 into the output yet!  Head back up to fb1 mix and key and set key threshold to .1. 
You should see a good chunk of the output video keyed out and replaced with feedback.  If you 
arent satisified with this amount try setting key threshold higher. 
 Now that we’ve got some feedback keyed in with a bit of motion, lets explore color.  Open 
up fb1 color and you will see a bunch of controls here for hue (hue), saturation (sat), and bright-
ness (bri), but with different glyphs next to each set of three.  Hue/sat/bri ++ is pedastal or offset 
which means adding or subtracting the parameter value as constant number to the color value. 
Hue/sat/bri ** is attenuversion which means multiplying the parameter value to the color value. 
Hue/sat/bri ^^ is somewhat similar to gamma and involves taking the color value to the expone-
tial power of the parameter value.
 Lets start with ++ to see how offsets work with feedback.  Tweak bri ++ up and down, small 
adjustments at first and then larger ones.  For positive values you should see the feedback trails 
increase in brightness, and negative values should cause the trails to fade away.  Leave bri ++ set 
at .02.  Try the same process with sat ++,  observing how the different numerical values affect the 
saturation of the feedback, and leave it at .02 when satisfied.  Next start to bring hue ++ up.  For 
small values you should see some slow hue cycling in the feedback, larger values should strobe 
and create reaction diffusion patterns in the hue.  Exact values numerical values for ‘smaller’ and 
‘larger’ will depend quite a bit on what kind of video inputs you are working with.
 Try setting hue ++ to some negative values now.  You should see some chaotic results, in-
cluding loss of brightness and saturation in the feedback.  Set hue ++ to -.320 and start tweaking 
sat ++.  Increase sat ++ to 1.0 and you should now see a loss of brightness.  Head over to bri ++ 
and increase to 1, and you should see the feedback fill the screen, but with a lot of desaturated 
white.  The point here is to show that when working with feedback (in GW and also in general),  
altering HSB values individually can result in nonlinear and unintuitive results.  That is, changing 
the values of bri ++ and sat ++ with hue ++ at .320 vs hue ++ at -.320 will have radically different 
effects.  
B R E A K
 Hit reset and lets get started exploring hue/sat/bri **.  Follow the same pattern, first adjust-
ing bri **, then sat **, keeping both bri ** and sat ** and values at least slightly above 0, and then 
adjusting hue **.  We want to keep following this order of adjusting hsb values because we need 
some brightness adjustment in order to see whats going on with saturation, and we need some 



 26

saturation established to get good visual feedback on hue!  Once you feel like you have a good 
handle on attenuversion, hit reset again and head down to to hue/sat/bri ^^ and follow the same 
pattern to try and get a decent appreciation for the different effects that exponential HSB map-
ping offers.
 Once you feel comfortable with each **, ++, and ^^ operations try exploring relationships 
between each set of operators.  For example, try setting all ** to positive values, and all ++ to neg-
ative values, then tweak the ^^ values up and down.  There is not any kind of clear roadmap for 
exploring all possible reaction diffusion patterns in the HSB feedback world, the important thing 
to take away from this part is that this is pretty much an inexhaustable source of new potential 
feedback patterns.

 What did you learn?
 -How to mix inputs and feedback in BLOCK_1
 -How does solarizing, channel inverts, and rgb invert work for live inputs
 -How to work with color in feedback.

 Further experiments with this patch
 -experiment with longer values for fb1 delay time.
 -experiment with larger values of x <-> and y <-> in addition to bringing in z <-> and ro-
tate <-> while playing with color.
 -try different settings in fb1 mix and key like multiplicative or difference mix types and 
different values for mix while messing around with different feedback color settings.  Try out 
switching the value of key order every so often and see what happens.  

INTERMEDIATE
 Here we are going to take a look at chaining two blocks together and using the lfos to au-
tomate modulations

PART 1: Keying BLOCK_1 into BLOCK_2
 In this section we cover using built in geometrical animations as seeds for feedback, auto-
mating parameters using lfos, and explore running feedback from BLOCK_1 into BLOCK_2 .

 Controls used: fb1 geometrical animations, fb1 mix and key, fb1 geo lfo 1, fb1 color lfo, 
BLOCK_2 input adjust, fb2 mix and key, fb2 geo lfo 1, fb2 geo

 Lets start in BLOCK_1.  If we want to test out feedback stuffs we have the option of by-
passing any live inputs and just using some built in geometric animations as a seed.  Head over 
to fb1 mix and key and set mix to .5.  You should see your live input appear to freeze up as it gets 
bypassed and the last frame locked into the framebuffer.  Head down to fb1 geometric animations 
and turn on septagram.  Go to fb1 color and set bri ++ to -.02 and you should see the framebuffer 



 27

feedback fade away very slowly, leaving only trails from the septagram animation.  If you bring bri 
++ back up to 0 and wait about 15 seconds you’ll see why this animation is called ‘septagram.’ Set 
bri ++ back to -.02.
 Head over to fb1 lfo and open fb1 geo lfo 1.  Set x <-> a to .4 and x <-> r to .02 and you 
should see the feedback slowly displace in the x direction first to the right and then to the left.  
Experiment with larger values for rate to see how modulation scales up and down.
 Open fb1 color lfo and set bri ** a to .06, bri ** r to .04, hue ** a to .02, and hue ** r to -.02.  
You should see the feedback slowly fading in and in, with the occasional hue cycling speeding up 
and slowing down.  Try some higher values for rate (r) for both hue and bri to see how lfos inter-
act with the color space in feedback.
 B R E A K 
 Next lets experiment with mirrors and flips.  Head back to fb1 parameters - > fb1 geo and, 
one by one, try turning on and off h mirror and v mirror.  You should notice that feedback will 
dissappear about half of the time whenever it is displaced too far into the half of the screen that 
is being reflected into.  Switch both mirrors off and now try turning on h flip.  You’ll see some 
weird strobing for a second until it stabilizes.  You should that the x displacement lfo  seems to 
have been bypassed.  If you look closely though, you will see that the lfo is still displacing the 
buffer, but since the entire buffer is being flipped around wherever x displacement is set to, 
the movement doesn’t get fed back and result in such large apparent motion.  Do a quick run 
through of adjusting the rest of the parameters on this page to see how each one, from x <->, 
down to x shear interact with the flip.  Turn the h flip on and off every so often to see the differ-
ence between flipped modes and regular modes with all of the different goemetry settings.  
 Try the same process, but with the v flip enabled to get a feel for how geometry works with 
vertical flips.  You’ll notice a similar effect where the y displacement doesn’t seem to work either, 
unless you really squint and concentrate.
B R E A K
 Now lets play around with bringing the output of BLOCK_1 into BLOCK_2 to process it.  
Leave the v flip switched on in fb1 geo and head up to the draw menu at the top of the screen and 
select draw BLOCK2.  At first we will only see the default input for BLOCK_2.  To bring in the out-
put of BLOCK_1 instead open up BLOCK_2->BLOCK_2 input adjust and select BLOCK_1 as input 
and you should now see the v flipped septagram with modulated x displacement feedback.  
 Head over to fb2 parameters and set fb2 delay time to 8.  Open fb2 mix and key and set key 
threshold to .02.  You should now see another layer of feedback kick in with some longish delays.  
Experiment with slightly larger values of key threshold to see how it looks when you key out dif-
ferent amounts of BLOCK_1’s output. 
B R E A K
 Lets explore modulating y displacement in fb2.  Go to fb2 lfo-> geo lfo1 and set y <-> a 
to -.8 and slowly explore bringing y <-> r up from 0 to 1.  You’ll notice something kinda funny a 
when y <-> r is at about .5.  It will seem as though for low values of rate that the y displacement 
seems to be much larger and at higher values the total displacement seems to become very 
small.  This is very strange, because you’ve only been altering rate instead of amp!  The reason 
for that is very simple: whenever you alter a parameter in feedback, the feedback system itself 
has its own ‘intertia’ that will amplify tiny adjustments into larger ones with each iteration.  Not 



 28

only that, but the total length of the feedback loop will affect how the motion works as well.  Set 
y <-> r to 1, head back to fb2 parameters, and set fb2 delay time down to 1 and you’ll see that the 
y displacement gets much larger!  The moral of this story is: nothing is straightforward when you 
are working with feedback loops and intuition can really bite you in the butt sometimes.  
 If you are still feeling confused about this concept I would recommend trying, with just 
one BLOCK active, to set up a patch with one of the geometric animations, and experiment with 
all of the geo1 and geo2 lfos at various amps and rates, and changing up delay time from 1 to 4 to 
8 to 16 to 32 for each setting.  
 Back to the current setup.  Lets keep y <-> r at .8 and start to play with  z <->.  Set z <-> a 
to .4 and z <-> r to .6 and you’ll see feedback first zoom waaay out and then blow waay up, filling 
the screen.  This is because all of GW’s lfos are bipolar sine waves, meaning that if their ampli-
tude is .4, they will curve up to adding .4 and then curve down to subtracting .4 from the parame-
ter value.  Lets figure out how to make the z displacement only modulate in a ‘zoomed out’ kind 
of way, instead of zooming in half of the time.  Head back over to fb2 parameters -> fb2 geo and 
set z <-> to .4 and you should see that this does the trick. At first the zooming was going from 
.4 to -.4, but when we set the z <-> to .4, that offset the lfo to instead go from 0.8 to 0.0.  This is a 
handy way to set any lfo to behave in a more ‘unipolar’ manner.
B R E A K 
 Lets head back to the fb2 lfo -> fb2 geo lfo 1 and start playing with rotations.  Set rotate 
<-> a to 1 and rotate <-> r to .002.  Note that you will need to use the NUM ENTRY button on the 
keypad in order to set rate to such a small value.  You should see a very long and slow rotation in 
the feedback.
 Now that we have some modulated zooms and rotations happening, lets explore the dif-
ferent geometry overflow modes.  Swing back over to fb2 parameters ->fb2 geo and select over-
flow mode toroid.  You should see some messy confetti looking stuff at first until things start to 
stabalize, then you’ll see some fairly hypnotic fractal patterns start to emerge.  To enhance the 
fractal patterns at this part, you’ll want to set z <-> even larger.  Experiment with values all the 
way up to 1 and each time you alter the z displacement, give it about 15-30 seconds to see how it 
works within the inertia of the feedback system.
 Once you’ve had some fun with that mode, try setting geo overflow to mirror, and make 
sure to clear the framebuffer.

 What did you learn?
 - How to layer feedback from BLOCK_1 into BLOCK_2
 - How to use lfos to automate geometry modulations in feedback
 - How to use the built in geometrical animations as seeds for experimenting with feedback
 - The difference between Flips and Mirrors in feedback.
 - How does ‘inertia’ in video feedback interact with lfos
 - How do different geometry overflow modes work 

 Further experiments with this patch
 - Try out longer delay times for both fb1 and fb2.  Make sure to clear the framebuffer each 
time you change delay time.



 29

 - Try out modulating x/y shear and x/y squeeze for both fb1 and fb2 
 - Experiment with fb params - > fb color -> bri invert on both fb1 and fb2 while doing fur-
ther experiments with overflow modes.
 - Explore modulating x/y/z/rotate <-> lfos in BLOCK_2->BLOCK_2 input adjust lfo

PART 2: Feedback Oscillators in & Color Eq
 In this section we learn how to first use color channel inversions and geometry lfos to cre-
ate ‘feedback oscillators’ and then use the color eq in BLOCK_3 as a colorizer.
 
Controls used: fb1 mix and key, fb1 geo, fb1 color, fb1 filters, fb1 geo lfo 2, B_1 color eq, B_1 color eq 
lfo 1, B_1 color eq lfo 3

 At this point in the walkthroughs I think that y’all should be comfortable enough with GW 
and the gui for us to be a bit more terse in our explanations.  If you don’t think you are there 
quite yet, please try going back through a couple of the previous walkthroughs and make sure 
to give yourself plenty of time working through the Further Experiments portions of each walk-
through.

 Lets start out in BLOCK_1 and set up what I like to refer to as a Feedback Oscillator system, 
using no inputs or geometrical animations at all.  Follow each of these steps in order

 - fb1 parameters -> fb1 delay time set to 4
 - to bypass inputs go to fb1 mix and key and set mix to .5
 - fb1 geo -> z <-> to .02
 - fb1 color -> bri invert switch on
 - fb1 lfo -> fb1 geo lfo 2 -> x stretch a to .2, x stretch r to .12

 Using this kind of ‘no input invert mode’ with a slight zooming out via z <-> is a pretty 
handy way to get a feel for how all the geometrical displacements work as it adds parallel outlines 
of movement that can work as vector maps of the displacement.
 Note that our inverted feedback has a lot of greyish space at the vanishing point.  There 
are at least two ways to deal with this.  You can either set z <-> to a higher number, round about 
.2 should do, or go to fb1 color1 and set bri ** to 1.0.  We do want to have some grey in the mix 
tho, so after experimenting a bit set z <-> and bri ** back to .02 and 0 respectively.
 While we have this feedback oscillator system running, lets do a bit of experimenting with 
different delay times.  I think its always good to try basic sequences like 4, then 8, 16, 32, etc but 
you are welcome to try out any variation on this you like, just make sure to clear the framebuffer 
each time you alter the delay time to get a clearer picture of whats going on.  Once again, take 
note of how the inertia of the geometric displacement lfos gets radically changed with larger de-
lay times.
B R E A K
 Lets explore some more of fb1 geo lfo 2.



 30

 - x shear a to -.160, x shear r to -.075
 - y shear a to .280, y shear r to .029

 This is a good time to play around with kaleidoscope lfos (kaleid sl) as well but we’ll need 
to activate it back in fb1 geo before seeing any effect from kaleido sl lfos.  Don’t forget to go 
check out the Glossary for definitions if you want more textual info on things like what these 
mysterious parameters like kaleid sl are actually doing!

 - fb1 geo -> kaleid try slowly bring values up from 0 to 1, then set it to .240
 - you should notice some strobing after that, try setting z <-> to .3 or .4 to smooth it out
 - fb1 geo lfo 2 -> kaleid sl a to .26, kaleid sl r to .06

 Observe how that final step adds extra motion to the pentagonal shape we have set up 
with kaleid.
B R E A K
 We have enough going on in our feedback oscillator system to start playing around with 
color eq!

 - go to BLOCK_3 -> B_1 parameters -> B_1 color eq
 - band 1: hue .74, sat 1, bri 1
 - band 2: hue .5,  sat 1, bri .5
 - band 3: hue .32, sat 1, bri 0
 - band 4: hue .22, sat 1, bri 0 
 - band 5: hue 0, sat 1, bri 0

 You should see the white parts are now replaced with red, the black parts are replaced 
with purple, and some thin greenish and bluish outlines here and there.  At the center where we 
used to have greyish strobing patterns it should now look greenish blue.
 With these color eq settings in place, lets explore what happens when we go back to 
BLOCK_1 and play around with filters!  Using the color eq to offset brightness, saturate every-
thing, and assign each band a radically different color will put us in a good position to see filter 
effects in a more obvious way.
B R E A K
 Head back to BLOCK_1 -> fb1 parameters -> fb1 filters and set temp 1 amt to .4.  you should 
see apparent motion slow down a bit and more of the blue and green color bands represented 
in larger amounts.  Patterns that were formerly greyed out or strobing are now given a chance to 
form.  While you are here, try some different settings for temp 1 q.  Parameter values between -.5 
and .5 will be the most illluminating.  Once finished, set temp 1 q back to 0.
 Next lets play with the two temporal filters in succesion.  Set temp 2 amt to .34.  Note: 
running two temporal filters in succession like so is not equivilant to setting temp 1 to .4+.34=.74.  
Like most things in a feedback loop, they interact with one another in nonlinear ways.  For this 
setting, we want to adjust temp 1 q back up a bit to get more definition in the patterns.  Try bring-



 31

ing temp 1 q  back up to somewhere in between .15-.35 and see how that affects the pattern 
formations in the BLOCK_1.
B R E A K
 Finally lets explore adding lfos to the color eq.  When modulating color eq, a little bit goes 
a long way.  You can certainly modulate everything all the time, but it can be overwhelming when 
the goal is to figure out what is actually happening.  With that in mind, lets start out by modulat-
ing only band 2 and band 5.

 - BLOCK_3 -> B_1 lfo -> B_1 color eq lfo 1
 - band 2 hue a to -.18
 - band 2 hue r to .08
 - band 2 bri a to 1
 - band 2 bri r to .14
 - move to B_1 color eq lfo 3
 - band 5 hue a to 1
 - band 5 hue r to .003
 - band 5 bri a to .5
 - band 5 bri r to .15
 
 See if you are able to pick out the nuances of each individual bands modulation.  Some 
clues to help you see whats going on would be that band 2 is modulating the full range of bright-
ness, so it should go from completely dark to as bright as possible.  On the other hand band 2 is 
only modulating about 20 percent of the total range of hue so we should only see colors ranging 
from about green to indigo.  Band 5 is only modulating about half of the total range of bright-
ness, so it should never go completely black, but it is modulating the full range of hue so you 
should see every color in the rainbow show up at some point.

 What did you learn?
 - Using no inputs, bri invert, and geometry modulations to create a feedback oscillator
 - Working with stretch and shear lfos
 - Working with kaleido in feedback.
 - Using temporal filters to create space for more patterns to form in feedback
 - Using color eq lfos
 
 Further experiments with this patch
 - Using this kind of ‘no input invert mode’ along with every parameter in the fb1 geo lfos
 - color eq -> RGB mode instead
 - Modulating each bands HSB/RGB components one at a time
 - Experiment with blur and sharpen filters combined with temporal filters

ADVANCED
Putting it all together



 32

 In this section we will learn how to use all three BLOCKS together
 Controls used: fb1 mix and key, fb1 geo, fb1 color, fb1 filters, fb1 geo lfo 1, fb1 geo lfo 2, final 
mix and key, B_2 color eq, BLOCK_2 input adjust, 

 Since we would like to explore working with camera feedback you’ll want to have a nice 
camera handy and either a tripod or some other way to hold it steady and pointed at your output 
screen.  It won’t particularly matter if you are using a camera with analog or digital video output 
here.  
 At the top left of the gui select draw all BLOCKS.  This will allow us to preview what we are 
doing in BLOCK_1 and BLOCK_2 while seeing how we mix them together in BLOCK_3.  
 Next go to BLOCK 2 -> BLOCK_2 input adjust and change input to select live camera input 
if it isn’t already showing up here.  Select hd aspect ratio if that applies as well.
 Lets go to BLOCK_1, bypass any inputs, and create another feedback oscillator.
 
 - fb1 delay time to 12
 - fb1 mix and key->mix to .5
 - fb1 geo -> z <-> to .1
 - fb1 color -> bri & sat invert switched on
 - bri ** to 1.0
 - hue ++ to .4
 - fb1 filters -> blur amt to 1, blur rad to .1, 
 - temp 1 amt to .08, temp 1 q to .16, 
 - temp 2 amt .1, temp 2 q .06

 - fb1 lfo -> geo lfo 1 -> z <-> a to -.08, z <-> r to .16
 - geo lfo 2 -> x stretch a to 1, x stretch r to .1
            - y stretch a to 1, y stretch r to .04
        - x shear a to .4, x shear r to .67
        - y shear a to .4, y shear r to .085

This should give you an nice and dynamic feedback oscillator in BLOCK_1.
B R E A K
 Now select draw BLOCK_2 for the moment to do some exploration with GW and camera 
feedback.  Make sure your camera is pointed fairly squarely at the screen to start.  You can use 
BLOCK_2->BLOCK_2 input adjust->rgb invert to match up the camera with the screen.  After that, 
staying within BLOCK_2 input adjust try out:
 - all of the hue/sat/bri ^^ postive and negative amounts
 - posterize postive amounts
 - testing out differences between hue/sat/bri inverts, rgb inverts, and solarize with camera 
feedback
 - blur and sharp filters, first on their own and then together
 - kaleido positive amounts, kaledio slice positive and negative
 - with kaleido active also make sure to try different overflow modes and z <->



 33

 - and with the above all active and z <-> postive try out rotate <->
 - h/v mirror and h/v flips
 - and then head into BLOCK_2 input adjust lfo and try modulating geometries stuffs!
B R E A K
 Select draw all BLOCKS for a moment, head on over to BLOCK_3 and select block-2-
>block1 as final mix order.  Set final mix and key -> key threshold to somewhere around .4-.6 and 
key soft around .1-.2. Try different ranges on both to see how they work with your personal cam-
era and screen setup.  If you are having issues with really crunchy keying, try a bit of blurring and 
sharpening back in BLOCK_2->BLOCK_2 input adjust.
 Now select draw BLOCK_3 and lets tweak the color eq on the camera feedback.  Head over 
to B_2 parameters - > B_2 color eq on, hsb/rgb set to rgb (checked on)
     - play around with mainly band 4 and 5.  Because my camera was getting kind of caught up 
in muddled bluish tones, I set things the following way
     - band 5 red to .12, green to .1, blue to -.36
    - band 4 red to -.3, green to -.38, blue to .06
    - band 3 red to .3, green to, .26, blue to .02
    but depending on how your camera sensor works you might want to try something totally dif-
ferent!
 
    back into BLOCK_3
    final mix and key reset.  
    
 What did you learn?
 - Using Draw All BLOCKS to help with mixing BLOCK_1 and BLOCK_2 into BLOCK_3
 - Using input adjust filters on camera feedback
 - Using color eq RGB mode on camera feedback
 - Mixing camera and internal feedback

 Further experiments with this patch
 -try out mix types difference and multiplicative, values between -.5 and .5, with overflow 
clamp and then with overflow foldover
 -different mix orders with the same mix and key settings
 -color eq hsb on camera feedback



 34



 35



 36

Section 4 Glossary & Reference

GLOSSARY
GENERAL VIDEO TERMS
NTSC/PAL: These were the broadcast video standards for most of the world during the analog 
era.  NTSC has a resolution of 720x480 pixels with a pixel aspect ratio of>>> and frame rate of 
60hz and PAL has a resolution of 720x575 pixels pixel aspect ratio of <<< and frame rate of 50hz. 
Technically these are interlaced fields per second, not frames, and the rates are very (very!) 
slightly slower than those numbers but I’m making the executive decision to say that those facts 
are getting too far in the analog video weeds for this manual

TIME BASE CORRECTOR (TBC):  Video signals need some method of informing monitors (either 
CRTs or LCDs) when a new frame begins and where exactly each pixel is supposed to go.  A Time 
Base Corrector ensures that the parts of an analog signal (horizontal and vertical sync pulses) are 
looking good  

HDMI : HDMI is technically a protocol for a video cable terminator and not exactly a signal itself.  
Most folks just call the signals and cables by their terminators tho.  

OVERSCAN:  Video monitors (both CRT and LCD) 

CRT: Cathode Ray Tube.  The old school bulky and kind of loud display technology.

LCD: Liquid Crystal Display.  An LCDtv is an LCD display that also has video decoders for analog 
video inputs & digital broadcast signals.  

Video Synthesis:  Video which is generated primarily through manipulating video signals via some 
kind of electronic methods.  People can be quite touchy and precise about where the line begins 
and ends between Video Processor and Video Synthesizer.  The answer to the question: “Is GW a 
Video Synthesizer” is pretty up in the air.

Video Feedback: A two dimensional feedback system in which each successive frame is generat-
ed using at least some information from the previous frame.  Camera feedback is when you plug 
a camera into a monitor and then point the camera at that monitor.  Internal Feedback is what 
happens when you plug the output of a video mixer back into an input.  Framebuffer feedback 
is when you store a frame in a system with digital memory and simply use some of the data from 
a previous frame in order to generate a new frame.  GW is inspired by the kind of Internal Feed-
back that folks enjoy using on other hardware video mixers, but uses Framebuffer feedback so 
that you don’t have to choose between live sources and feedback sources.

PIXEL: a pixel is one discrete unit of color information along with (x,y) indexing to locate it with-



 37

in a frame.  In GW, all pixels are ultimately processed as vectors of (Red,Green,Blue), though at 
times it is creatively and intuitively more useful to convert them into parameters of (Hue,Satura-
tion,Brightness).

FRAME: a frame is one discrete unit of video information in time.  A frame consists of a grid of 
pixels.

FRAMEBUFFER: a framebuffer is some method of storing frame information that isn’t just immedi-
ately getting dumped out onto a monitor somewheres.  

FRAME RATE: the number of times frames get updated per second.  The most common frame 
rates are 30, 60, 25, 50, 24, and the PAL/NTSC ones.  GW output frame rate is 60fps but processing 
speed is at 30fps, meaning every other frame is identical.     

FILTER: colloquially one refers to just any kind of video fx as a ‘filter’, however in GW we use the 
term in more of a strict image processing sense.  A filter is an operation on an entire frame of 
pixels that, for each pixel in the frame, requires random access to some neighborhood of pixels 
in order to calculate the value of output pixel.  This is a potentially obnoxiously mathematical way 
to describe it so lets use examples to illustrate what is and is not a filter.  A blur is a filter because, 
for every pixel, we calculate its average with a bunch of neighboring pixels in a grid (diagram).  
RGB invert is not a filter because, for every pixel, we only need to use the value of that input pixel 
to calculate the output.

ASPECT RATIO
 Commonly written as 16:9 or 4:3.  The ratio of the resolution Width to Height.  GW output 
resolution is 1280x720, if you take the fraction 1280/720 and reduce to lowest terms you get 16/9, 
or 16:9 aspect ratio.  Generally speaking, modern HD (hdmi) digital video signals are in some kind 
of 16:9 format.  Aspect ratio (or sometimes DISPLAY aspect ratio) typically only refers to an entire 
frame, however the PAL and NTSC video signals that come into GW will also have a non square 
Pixel aspect ratio to consider.   

RESOLUTION
 The resolution of a video signal is the number of total pixels in each frame written out like 
“number of horizontal pixels” x ”number of vertical pixels”.  GW output resolution is 1280x720.  
The possible input resolutions for SD analog video are NTSC 720x480 and PAL 720x576.  The 
possible input resolutions for HD and/or Digital video signals is much much wider.  GW samples 
all input video at 640x480 30fps and upscales everything to be processed at 1280x720 30fps.  Feed-
back framebuffers are all processed directly at 1280x720.

PIXEL OPERATIONS
color, geometry

FRAME OPERATIONS



 38

filters 

MULTIPLE FRAME OPERATIONS
mixing, keying, delaying

Reference

MIX AND KEY
For this section, lets consider two video sources named A and B.  For most of the mixing and 
keying techniques concerned, order matters, so using the same notation as in the GUI we will 
assume that we are mixing A->B.  If we think in terms of how layers work in image processing 
programs, A is a layer on top of B.

(slime mold is A, cuttlefish is B)

mix type:  (also called Blend Modes in image processing terminology) Mixing specically refers to 
combining two video sources (A and B) in such a way that every single pixel of both A and B is 
combined in the exact same way.  For the examples we will notate mix amount as M.  All mixing is 
done directly in RGB space

overflow: at the output stage, all pixels are considered RGB vectors between (0,0,0) and (1,1,1).  
For the purposes of fun, many of these mixing operations can result in values that go below 0 or 
above 1.  Overflow refers to how we deal with these ‘overflowing’ values. (DIAGRAMS)
CLAMP: everything outside of (0,1) gets squeezed back into 0 if negative or 1 if >1.

wrap: values that go below 0 wrap around to come down from 1.  EG -.2 ->.8.  values that go over 1 
wrap around to pop up from 0.  EG 1.2 -> .2.  Harsh and topographical.

foldover: values below 0 fold back upwards through 0.  EG -.2 -> .2.  values over 1 fold back down 
through 1, EG 1.2->.8. 



 39

(linear fade mix at .25)

linear fade: a linear interpolation of M between A and B is calculated.  The math is f(x) = 
(1-M)*A+M*B.  Imagine that we have a straight line between two points A and B, M refers to 
where exactly we are on that line.  Note that this only makes intuitive sense if we have a value of 
M between 0 and 1, however in GW our mix range is from -2 to 2 so any values below 0 or above 
.5 will be distortions.

(captions for these 4 squares read Top Left, Top Right, Bottom Left, Bottom Right)

(1 foldover, 1 wrap, -.25 foldover -.25 wrap)



 40

(additive mix at .5)

additive:  The sum of A and B weighted by M is calculated. The math is f(x) = A + M*B.  Note that 
for negative values of M, this will subtract B from A.

(upper left to bottom right: -.5 clamp, -1 foldover, -1 wrap, 1 wrap)



 41

(difference mix at .5)

difference:  The absolute value of B weighted by M subtracted from A is calculated.  the math is 
f(M) = abs(A-M*B)

(-.5 fold, -.5 wrap, 1 fold, 1 wrap )



 42

(mult at .5)

multiplicative:  The output is interpolated between A and A*B using M.  The math is f(M) = 
(1-M)*A+M*(A*B)

(-.5 foldover, 1 clamp, 1 foldover, 1 wrap)



 43

(dodge at .5)

dodge:  The output is interpolated between A and A/(1.0-B) using M.  The math is f(M) = (1-M)*A + 
M*(A/(1.0-B))

(-.5 clamp, .5 foldover, -.5 foldover, -.5 wrap)



 44

(lumakey with value black and threshold .26)

key/mix order:  by default we are mixing and keying A->B.  changing key order takes B->A

key type:  keying is choosing between two video sources using some kind of logical operation 
based on the value of each pixel in A.  The chromakey uses any (R,G,B) value while the lumakey 
uses only (R,G,B) values where R=G=B (i.e. greyscale).  When lumakey is selected, changing any 
single one of R G B will affect them all.  When chromakey is selected you can adjust R, G, and B 
seperately to choose any color.  When A->B we can think of A as being ‘on top’ of B, and keying is 
removing pixels from A entirely so that we can see pixels from B underneath.

key value color: changes to show you what color has been selected by adjusting key red, key 
green, and key blue.

key threshold:  selects how much area in the color space around the key value to remove.  If (key 
red, key green, key blue) is (0,0,0) = black, and key threshold is set to .25, that means all pixels with 
luma values betweeen (0,0,0) = black and (.25,.25,.25) = charcoal grey will be keyed out.  If the key 
value is (0,1,0) = green, and key threshold is at .25, then all pixels with fully saturated green down 
to lighly toned green, as well as some values of saturated greenish yellow and greenish blue will 
all be keyed out.  

key soft: adds a linear fade between A and B weighted by the brightness value of pixels in A in 
the parts of the video keyed out.  



 45

MATRIX MIXER:
Every pixel in each frame can be described as a set of Red, Green, and Blue components.  What 
the matrix mixer does is allow you to directly control how much each of the individual Red, 
Green, and Blue components of every pixel in each frame are combined.  

COLOR
for each of these the parameter value will be notated with P



 46

Values of HUE always wrap around.
Values of Saturation and Brightness always clamp at 0 and 1.

DIAGRAMS FOR EVERYTHING
hsb ++:  offset or pedestal.  The math for calculating hue would be f(P)= H+P.  Values are simply 
shifted up or down
hsb **:  attenuation.  The math for calculating is f(P)=H*(1+P).  The entire range of values are 
scaled up or down
hsb ^^:  power mapping. The math for calculating is f(P)=H^(1+P).  Values are shifted differently 
depending on the magnitude of each value.  

hue shaper:  Sends hue into a shaper function.  The math is f(P) = wrap( abs(H) +P*sin(H/3)).  
Helps with guiding more chaotic hue cycling patterns outside of standard rainbow business.

posterize the slime (.2, .5, .78, .98)

posterize:  quantize the colors in RGB space.   



 47

(hue invert, sat invert, bri invert, all hsb inverted)

h/s/b invert: the individual channel is inverted.  Note that inverting all of h, s, and b is NOT the 
same operation as rgb invert and will definitely look different.



 48

rgb invert: the red green and blue values are all inverted.  All color information is inverted, which 
can make for a cleaner look in some situations.

solarize:  the darkest 50 percent of the frame is left alone and the brightest 50 percent is inverted.



 49

ORDER OF COLOR OPERATIONS
HUE SHAPER -> OFFSET -> ATTENUATION -> POWER MAPPING -> INVERT/SOLARIZE -> OVER-
FLOW -> POSTERIZE

GEOMETRY
We will use this image of the cuttlefish for examples of how geometry operations work

(x = .5, y =  -.5, overflow clamp)



 50

x <->: x displace.  moves the entire frame to the left or right.  changing the x position affects the 
vanishing point of z displacement, the center of rotation, and the center point of x stretch

y <->: y displace.  moves the entire frame up or down.  changing the y position affects the van-
ishing point of z displacement, the center of rotation, and the center point of y stretch

(z at .240)

z <->: z displace.  shrinks or blows up the frame.  

rotate: rotates the entire frame around wherever x and y displace are at.  each rotate mode dis-
torts differently?



 51

(x stretch at .5 and -.5)

x stretch: positive values squeeze and negative values stretch the framebuffer along the x axis.  

(.5, -.5)

y stretch: positive values stretch and negative values squeeze the framebuffer along the y axis.  

(.5, -.5)

x shear: the y position of pixels remains unchanged but x value gets displaced at a relative 



 52

amount to its y position.  postive displaces to the right, negative to the left. 

(.5, -.5)

y shear: the x position of pixels remains unchanged but y value gets displaced at a relative 
amount to its x position.  postive displaces up, negative down. 

(1. ka .16, slice .740; 2. ka .16, slice 0)

kaleid amount: simulates the effect of viewing the buffer/camera through a kaleidoscope.  
amount changes how many angles of reflection there are

kaleid slice: changes the portion of live video that is reflected through the kaleidoscope effect



 53

GEO OVERFLOW
overflow in this case is concerned with what happens when the the (x,y) coordinates of the 
framebuffer/live video are shifted ‘off of the screen’

clamp: video is blanked out 

wrap: also known as toroidal universe, things move off the screen on the left x side and pop up 
back on the right x side, and vice versa.  things move off the top of the screen, show up on the 
bottom, and vice versa

mirror: things are reflected coordinates overflow

h mirror: everything on the right half of the screen is replaced with a reflection from the left half 
of the screen



 54

v mirror: everything on the bottom half of the screen is replaced with a reflection from the top 
half

h flip: all x coordinates are reversed

v flip: all y coordinates are reversed

ORDER OF OPERATIONS 



 55

flip->mirrors->kaleidoscop->XYdisplace->Zdisplace->rotate->stretch & shear->overflow

FILTERS

(amt 1 rad .2; amt -1 rad .6)

BLUR: performs an average on each pixel with a neighborhood selected by radius.  Blur is per-
formed directly in RGB

blur amount: linear fade between original and blurred video.  Negative values for blur amount 
will perform a sharpen in RGB.

blur radius: selects the radius of how far away the neighborhood is.  at 0 this is 1 pixel away, and 1 
this is 10 pixels away

(amt .5 rad .26 boost 0; amt 1 rad .5 boost .84)

SHARPEN: accentuates areas of high contrast by taking each pixel and subtracting a weighted 
value of the sum of neighboring pixels.  Sharpen is peformed in HSB and primarily affects Bright-
ness and Saturation.  It is necessary to use filter boost along with larger values of sharpening,



 56

sharp amt: controls how much sharpening is applied to the brightness channel.  Large values 
perform edge detect

sharpen radius: selects how far away the neighborhood is.  0 is 1 pixel away, 1 is 10 pixels away

filter boost: at extreme values of blur or sharpen amount, a significant amount of brightness and 
saturation is lost.  filter boost can be used to bring a little bit (or a lot of bit) back into the output.

TEMPORAL FILTER: a linear fade between the current frame and the previous frame.  NOTE that 
temporal filters will affect the output video no matter if fb1/fb2 is mixed or keyed in.  Temporal 
filters are difficult to capture in a screenshot as they filter in TIME moreso than SPACE.  
  
temporal filter amount: the amount of fading.  Values between 0,.5 will look like an afterimage/
trails style effect, .5,1 will be clamped out looking digital feedback, and between 0,-1 will look a 
bit like a strange, colorful, mildly strobing sharpen.

temporal filter q: the amount of amplification of the brightness and saturation in the temporal 
filter.  

COLOR EQ
What makes Color eq different from the color controls covered earlier?  HSB based offset, atten-
uate, and powmapping are centered around tweaking the existing colors of a frame in ways that 
work well with framebuffer feedback.  Color EQ is more about radically transforming the color 
space entirely. 
BANDS:
Whether in HSB or RGB mode, color eq controls are based in dividing the total color space of a 
frame up into 5 bands, each of which is interpolated with its surrounding bands.  The division of 
bands is based on dividing the brightness space so that band 1 controls affect the darkest 20% of 
a frame, band 2 the slightly less darkest 20%, all the way up to band 5 being the brightest 20%.

(hsb mode 1)



 57

HSB mode:
All information regarding Hue and Saturation is discarded.  For each of the 5 bands Hue and Sat-
uration is added in manually and the Brightness is offset based on parameter values.  

RGB mode:
The Red, Green, and Blue values of each pixel are offset for each band.  

RANGES
All parameters seem to be in ranges of -1 to 1.  On the internal processing side of things, every-
thing is scaled relatively for each parameter set.  You’ll have to do a bit of experimentation and 
refer to this documentation to figure things out properly.  FOR EXAMPLE: mix amount p(0,1): 
means mixing is usually only defined for values between 0,1.  ALL(-2,2) means that this parameter 
gets multiplied by 2 before getting applied.  Thus to mix ‘normally’ would be keeping the param-
eter between 0 and .5.  All other values will result in various kinds of ‘distortions.’



 58

 
Ranges for fb parameters are usually much different from input parameters.  
For each set of ranges there will be several sets of numbers.  P(x,y) is the total parameter range.  
ALL(xy) is the range for both IN and FB if the same but different from P.  IN(x,y) is range for input, 
FB(x,y) is range for feedback.  ALL, IN, or FB only appear if the parameter range isnt the same as 
the  

RANGES AND FEEDBACK.  tiny parameter changes have extreme effects in feedback loops.  

MIX AND KEY
mix amount P(0,1).  0 is no mixing at all, 1 is completely mixed.  ALL(-2,2).  Values below 0 and 
greater than 1 cause various kinds of distortions.  Clamp, Wrap, or Foldover for distortions

key red/key green/key blue P(0,1).  The color value for keying is a point defined by (R,G,B) in the 
RGB color cube.

key threshold P(0,cubeRoot(3)) The farthest distance that any two points in the RGB cube can be 
from one another is any diagonal line (i.e black to white, red to cyan, blue to yellow, green to 
magenta).

key soft P(-1,1)

GEOMETRY
GEOMETRY PIXELS are interpolated.  Meaning if a x <-> is set to displace 5.5 pixels, an average 
between pixel 5 and pixel 6 will be used instead of a quantised value of either 5 or 6.

x <-> P(-1280,1280), IN(-640,640), FB(-80,80)  in pixels

y <-> P(-720,720), IN(-360,360), FB(-80,80) in pixels

z <-> P(0,2), IN(0,2), FB(.5,1.5) in scaling pixels, 0 is zoomed in completely, 2 is zoomed out so far 
you can see nothing.

rotate <-> P(-PI,PI) in radians,  (PI=180 degrees) 

x stretch P(0,2), IN(), FB(.75, 1.25)

y stretch P(0,2), IN(), FB(.75, 1.25)

x shear P(-1,1), IN(-1,1), FB(-.25,.25)

y shear P(-1,1), IN(-1,1), FB(-.25,.25)



 59

kaleidoscope P(0,21).  Kaleidoscope is quantized to integer values. This means that only integer 
values 1,2,3,4 etc will affect the signal.

kaleidoscope slice P(-PI,PI)

COLOR all color values are 0-1.  Reference values for RGB: (0,0,0) = BLACK, (1,1,1)= WHITE, 
(1,0,0)=RED, (0,1,0)=GREEN, (0,0,1)=BLUE, (1,1,0)=YELLOW, (0,1,1)=CYAN, (1,0,1)=MAGENTA.  refer-
ence values for HSB: (H,S,0) is black no matter what H,S.  (0,0,1)=WHITE (H,1,1) is a full saturation 
pure Hue for every value of H.  (H,S,1) for S<1 is a tint (color mixed with white).  (H,1,B) for B<1 is 
a tone or shade (color mixed with some kind of grey or black)
List of rainbow values in H:
0 red
.06 orange
.14 yellow
.32 green
.66 blue
.74 purple
.84 pink
1.0 red

hsb ++ P(-1,1), FB(-.25, .25)
hsb ** P(0,2), FB(.75,1.25);
hsb ^^ P(0,2.0), FB(.9,1.1);
hue shaper P(-1,1), FB(-1,1);
posterize P(1,16).  In levels of quantisation.  Only integer values 1, 2, 3..affect posterization levels  

FILTERS
Filter radius pixels are interpolated.  If blur radius is set to 5.5 pixels, an average between pixel 5 
and pixel 6 will be used instead of the quantised value of either 5 or 6.
blur radius P(0,10), ALL(0,10) in pixels
blur amt P(-1,1), ALL(-1,1)
sharpen rad P(0.10)
sharpen amt P()
temp f amt P(-2.2)
temp f q P(-1,1)

COLOR EQ
no coefficients here.  For HSB mode, Brightness values are retained and parameters offset and 
Hue and Saturation values are dialed in with the parameters.  For RGB mode the parameters off-
set the existing RGB values.

MATRIX MIXER
basically the same as mix amount, but on the individual RGB pixels instead of combined.



 60



 61



 62

Section 5 Erratum (for DSK)

- number one thing to keep in mind is that this is, first and foremost, a Video Mixer built around 
the UVC standard.  If you have no video devices (either hardware usb or virtualcam softwares) 
working on your system, you shouldn’t expect to see anything happen right away.  if you have a 
lot of video devices working you’ll want to use the settings page to choose which ones in par-
ticular you want to run.  you should have at least 2 hardware or virtualcam video inputs working 
and ready to use before starting GWDSK

- otherwise if you insist on not using video inputs for some reason, try searching through the 
presets and you’ll find stuff pretty quickly that works fine with zero inputs.

- there are really kind of a lot of free ‘virtualcam’ softwares out there that you can use to get video 
from your desktop into .  try using a search engine that isn’t google to find one that works best 
for you.  OBS virtual cam actually isn’t really the best one unless you really, seriously, know what 
you are doing.

- mouse pointer: the mouse pointer dissapears when its over the output window.  this is normal 
and expected behavior

PASSWORDS AND REGISTRATION
- you must enter your 
 - username (email address with which you bought GWDSK)
 - the machine you are registering on (i.e windows11AcerLaptop, osx14macbookPro2021, 
enough information to identify this specific version you are registering)
 - and your password to verify your version of gravity waaaves
- no whitespaces anywhere
- you can only run your purchase of GWDSK on up to 3 different machines.  if you absolutely 
need to run things all the time on a larger number of computers for some reason, contact andrei 
directly via email.
- if you ever need a support ticket you’ll also need to make sure you’ve registered your purchase 
online with your username and registered machine before any support can be given. (this point 
is kind of moot for all of you kickstarter people for now until i’ve got the official registration 
forms ready)
- if you are updating GWDSK and want to keep your registration and save states, simply install to 
a different folder, and copy the reg.json file and your entire presets folder.  i recommend backing 
up any presets you are saving for now somewhere separate too b/c each new update will come 
with more presets



 63

SETTINGS PAGE:
- most of these things are fairly self explanatory and will result in obvious visible changes if you 
mess around with them.  The most important thing is that you can Save the majority of things you 
tweak on this page.  you do have to manually save them yourself, and choose whether or not any 
particular one is default.  nothing gets auto-saved.

INPUTS
you cannot assign the same UVC source to both input1 and input2.  you will be prevented from 
changing inputs or saving init settings if you’ve selected the same source for both input1 and 
input 2. 
- you should be able to change the PROCESSING resolution on the fly.  note that this won’t 
change anything about the output resolution, that is controlled by the window size.  it will make 
a difference tho if your processing resolution and the output window are different aspect ratios, 
either stuff will get cropped width wise or there’ll be pillarboxing.
- if input video and processing resolutions aren’t the same aspect ratio then the default is to 
center input video and fill the processing buffers with video.  you will notice that if you move the 
input video using ‘x <->’ controls in the relevant adjust menu that nothing is actually cropped, 
and if you prefer letterboxing to cropping thats just a matter of tweaking ‘z <->’

OUTPUT VIDEO
- drag and resize the screen, the output will resize to automatically maximize height.  it should 
only pillarbox, never letterbox.  stuff will get cropped width wise but never height wise
- you can also manually change the position and size of output screen (and gui) from the settings 
page and save these in init files. multiple displays are treated as one continuous virtual display 
here, so if you’ve got a laptop and an external monitor, both with 1920x1080 resolutions, and you 
want to put the output video on the 
-fullscreening: make sure the output window is on the correct screen you want it to full screen 
on.  you can either press the fullscreenToggle button on the gui or click anywhere on the output 
window and press the ‘f’ key.  If you went and fullscreened your output window over the gui (try 
not to do this), click back on it (potentially difficult b/c you can’t see yr mouse pointer on the 
output window) and press the ‘f’ key again.  

PRESETS
- rename files when you save them every time for now, unless you are just saving the exact same 
preset in the exact same slot with the exact same name.  just do it!  in fact you are forced to by 
default and cannot turn it off.
- you cannot save over any of the presets in 01-basics
- the preset queue is set up so you can have a bunch of presets ready to roll at any point.  say 
if you wanted to have a ‘fade to black’ preset made you don’t need to search thru everything to 
load it up right away.  the main thing to keep in mind is that the preset queue points to specific 
slots in directories, so if you a working on a preset thats currently in the queue and save it in a 
different slot, the queue won’t point to the new slot you saved in.



 64

KNOWN THINGS
- changing anything about inputs takes like 2 seconds to complete and involves said input freez-
ing, then blanking.  this is why the inputs only will actively change if you hit the button, not just 
from any random messing around with resolutions or sources.
- changing processing resolution takes about 1 second or less but is noticeable
- saving/loading input2 in initFiles doesn’t work at the moment
- if you move or resize either window, the output video freezes.
- macro controls:  either you can control them via nk2 set to the usual VSERPI/VSEJET scene set-
ting (visit website for instructions on that) with the ‘macros on’ checkbox on or via mouse/key-
pad/keyboard with ‘macros on’ checkbox off.
- gui text size loads really small for the first couple seconds then gets larger.
- there will yet be another update coming in the next week.  I know that there are some things 
going funky and that not everything promised in the release is totally working at the moment.  
Please do feel free to report bugs using the support forms here
 https://videosynthesisecosphere.com/support 
tho!

https://videosynthesisecosphere.com/support


 65


	Section 1 Introduction
	What is Gravity Waaaves?
	Note on Tone
	How to Use This Manual
	VSEJET Community Support

	Section 2: Quickstart
	What Is All Of This stuff?
	How Do I Plug All This Stuff In?
	How to Power On and Get Started
	How to Navigate the GUI
	Trackpad
	Keypad
	Midi Controller
	A Brief Intro to the GUI
	What Video Inputs Are Supported?
	Common Video Input Issues
	Quirks and Other Things to Look Out For
	Signal Flow and BLOCK Structure
	Framebuffers, Video Delay Lines, and Feedback

	Section 3: Walkthroughs
	How Do We Label Things
	BEGINNER
	PART 0: Presets and Macros
	PART 1: BLOCK_3
	PART 2: BLOCK_2
	PART 3: BLOCK_1
	INTERMEDIATE
	PART 1: Keying BLOCK_1 into BLOCK_2
	PART 2: Feedback Oscillators in & Color Eq
	ADVANCED
	Putting it all together

	Section 4 Glossary & Reference
	GLOSSARY
	Reference

	Section 5 Extras

