
Proofbase: A Proof-Based Blockchain for Low-Latency,
Scalable, Multichain, Zero-Knowledge Applications
Lurk Lab Systems

Febuary 7, 2025

Low-latency, trustless, and cost-efficient validation of zero-knowledge
proofs unlocks unbounded innovation in privacy, functionality, user-
experience, and interconnectivity for blockchain-based applications.
Blockchains today impose application design limitations: expensive on-
chain compute, indiscriminately public processed information, and the
ability to reason only about their own state. However, although zero-
knowledge proofs are widely accepted as the solution, the complexity,
cost, and rapid evolution of zero-knowledge protocols compounded
by the limitations of today’s blockchains make integration and deploy-
ment challenging.

We propose a new sovereign proof-of-stake Layer-2 network,
called Proofbase with native support for Lurk, a safe, performant,
and upgradable zero-knowledge abstract machine, compatible with
many high-level functional languages, including JavaScript, Lisp, and
OCaml.

Proofbase serves as a universal settlement layer for proofs, being
proving system-agnostic, while supporting Lurk as its recommended
framework. With Lurk, a high-performance programming language
specifically designed to efficiently generate interrelated proofs, Proof-
base provides a fast and cost-effective solution comparable to a smart
contract language for proof generation.

To enable scalable, low-latency, private state applications, Proofbase
employs a sharded state actor-based network model that allows the
asynchronous progression of single-owner proofchains without re-
quiring global consensus. The result is a network topology that neatly
aligns with proof-based application design to provide a platform for
highly scalable, low-latency private applications.

Unlike other blockchain layers, Proofbase does not require asset
migration or associated infrastructure. Instead, it acts as a command-
and-control layer for Web3, issuing proof-based certificates that fa-
cilitate asset movement on other chains. This approach ensures the
consistent and secure management of the interconnected state histories
that justify each cross-chain action, with Proofbase operating as a high
performance stateful verification layer for multichain settlement.

In this paper, we also reintroduce Lurk not only as a minimalistic
and secure model for proof generation but also as a polyglot frame-
work that provides the tools necessary to reason about privacy and
concurrency for application design. With adaptability across program-
ming languages, Lurk surpasses traditional ISA-based zkVMs in both
security and performance and can be reimplemented on any crypto-
graphic prover, making it the best safe and futureproof approach to
decentralized proof generation.



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 2

Contents

The Problem With Proofs 3

Lurk: The Optimal Zero-Knowledge Language Stack 5

Content-Addressed Code And Data 6

Abstract Machine: an Optimal Model 7

Loam & Memoset: An Optimal Lookup-Centric Architecture 7

Implementation & Portability 8

Performance 9

Irreproachability & Formalization 9

The Problem With Using Proofs 11

Fragmentation 12

Cost 13

State Management 13

Proofbase: A Proof-Based Asynchronous Blockchain 14

Proof Certificates: Indirect Versus Direct Proof Verification 17

Why a ZK Rollup: Bootstrapping Meaningful Security 18

Why the Proofbase Protocol is a Good Fit for Proof Verification 19

Manipulating State with Proofs 19

Proofbase’s Ad-hoc Sequencing Service 20

The Proofbase Protocol Allows Pricing Transaction Storage Differently 21

Conclusion: Applications of Proofbase 22

Use Cases 22



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 3

1 Another issue is that those DSLs do
not yield the intuitive runtime charac-
teristics of a regular program: circuits
represent the trace of a computation,
rather than the computation itself. In
other terms, circuits fit within a non-
uniform model of computation [Savage,
1998], and to compute the unbounded
set of functions computed by a Turing
machine, a family of circuits is needed.
The consequences of this mismatch are
explored in the Lurk paper [Amin et al.,
2023].

ISA VM

RISC-V Jolt, RiscZero, Succinct SP1,
Nexus

MIPS o1 Labs o1VM, ZKM
WASM Polygon/Near zkWASM,

Delphinus zkWASM
custom
CPU-style

Cairo, Valida, zkSync Era,
Polygon Miden

Table 1: ISAs supported by various
zkVM projects

The Problem With Proofs

Zero-knowledge proof technology has the potential to revolutionize
the blockchain application design space and user experience. It al-
lows developers to create offchain application logic of any complexity
while providing privacy to users at the cost of adding proof verifi-
cation to their onchain application smart contract. This potential is
widely recognized, which begs the question: Why don’t we see ZK
proofs used widely today for onchain applications? Simply put, it
boils down to the difficulty in writing and deploying proof-based
applications, which has kept the barrier of use out of reach for most
developers and application types.

There are 3 primary problems to solve in the domain of proofs:

• Proofs are hard to write

• Proofs are hard to agree on

• Proofs are hard to make safe

The first point has been the primary focus of many in the space.
The creation of many ”zkDSL”s has sought to lower the entry barrier
for developers by abstracting domain-specific concepts behind com-
mon languages and semantic practices. The core issue of this is that
it requires a buy-in to both the language and the particular back-end,
as well as the prover stack that supports it. As cryptographic proving
systems seem to be on a progress curve not unlike hardware progres-
sion in the heyday of Moore’s law, these backends quickly fall behind
the state-of-the-art wave.1

To solve the language issue, others have built general-purpose
zkVMs which model CPU architectures, such that users can compile
commonly used languages into an assembly language consumable
and provable by this simulated machine. This enables generality and
customizability in the proving system to obtain lowest barriers for
onboarding users. Where those zkVMs allow defining custom “pre-
compiles”, this also offers a manageable overhead for performance-
critical operations.

This has the benefit in that it reduces the requirement on users
to learn new languages and programming paradigms but creates
subsequent critical issues.

First, modeling a CPU requires designing proving systems to emu-
late the entire instruction set, including the hardware architecture. As
modern CPUs become more complex, their instruction sets expand to
allow developers to leverage the underlying hardware features. How-
ever, concrete performance of zkVM proof systems directly depends



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 4

2

On average [. . .] developers
take 11.16 months for GCC
and 13.55 months for LLVM
to fix an optimization bug.

(Zhou et al. [2021])
3 Xavier Leroy, Sandrine Blazy, Daniel
Kästner, Bernhard Schommer, Markus
Pister, and Christian Ferdinand.
Compcert-a formally verified optimiz-
ing compiler. In ERTS 2016: Embedded
Real Time Software and Systems, 8th
European Congress, 2016

4 Compcert is licensed for non-
commercial use only.

on the complexity of modeling these instructions. For example, reg-
ister and memory accesses represent distinct hardware paths with
different performance profiles. Proving systems that emulate this
distinction, by separately proving operand storage in registers or
memory, may introduce unnecessary complexity, especially when
the relevance of these minutiae to the end-user’s proof is question-
able. Moreover, this approach undermines the role of the compiler.
The performance characteristics of cryptographic hardware emula-
tion diverge significantly from those of the physical hardware being
modeled, making it uncertain whether traditional hardware-specific
optimizations will carry over effectively to the zkVM. This disconnect
complicates auditing, formal verification, and the assurance of prover
correctness, all of which are critical for security-sensitive applica-
tions. Even as methods to reduce instruction costs improve, hardware
emulation will remain fundamentally ill-suited for proof generation.

Second, a proof alone provides little insight into its validity. For
a verifier to trust the result, the proof must be verified within the
context of the statement it supports. In many SNARK systems, this
involves generating a verifier key during a preprocessing step, which
serves as a cryptographic commitment to the program’s statement.
The verifier must be able to independently reproduce this key to
confirm that the proof corresponds to the original program.

However, in zkVMs that use CPU architectures, the process is
more complex. These systems depend on the correctness of the com-
piled bytecode as well as the CPU’s execution, which can introduce
a gap in verifiability. The verifier must not only reproduce the compi-
lation process, but also ensure that the compiler has correctly translated
the high-level code into the low-level representation. This makes safe and
reproducible compilation essential across the entire tool chain, from
the high-level source code to the final proof.

Common compilers, such as LLVM, are optimized for hardware
performance but do not prioritize reproducibility and have frequent
correctness gaps [Lopes et al., 2015, Zhou et al., 2021]. These long-
lived compilation bugs2 are extremely hard to detect in the proving
context: the point of zero-knowledge proofs is often to hide the in-
puts and outputs that would allow us to sanity-check the compiled
code. On the reproducibility front, factors like the target OS or even
the compiler user’s home path can influence the compiled output,
making it difficult to consistently reproduce binaries without a con-
trolled environment. Ensuring that a compiler produces correct and
reproducible code is a significant challenge, particularly when mod-
ern compilers are not designed for formal verification. Certified
compilers 3 can offer stronger assurances of correctness but are of-
ten slower and less accessible4, and they typically do not address



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 5

Abstract ma-
chine based VM
(Lurk)

ISA-based VM Compilation to
circuit

Trusted Com-
puting Base a

Abstract ma-
chine

Compiler + ISA
VM

Circuit compiler

User interface Specific lan-
guage (Lurk)

High-level
language compi-
lable to the ISA

Specific DSL
(Noir, Circom,
Leo)

Perf. over-
head b

Medium High Low

Developer
productivity

High High Low

a Cryptographic prover excepted. b Precompiles excepted.

Table 2: Comparison of VM Models

5

Existing container technolo-
gies (like Docker) do not
provide reproducibility: they
are neither deterministic nor
portable, as many details of
the host OS and processor
microarchitecture are directly
visible inside the container.

(Navarro Leija et al. [2020])

This section establishes the following
key points:

• Lurk content-addresses data and
programs, and proves the validity
of program evaluations by directly
processing the high-level pro-
gram, making proof interpretation
straightforward.

• Lurk implements a functional
reduction machine, abstracting
away hardware-specific behavior,
a general, minimalistic model for
programming language semantics.
Consequently, Lurk can be extended
to support other programming
languages.

• Lurk maximizes the use of lookup
arguments and minimizes arith-
metization, enabling efficient proof
implementation and facilitating
lightweight VM reimplementation
in different cryptographic proving
systems.

• Lurk employs a systematic, rule-
based approach to proof design,
programmatically deriving proofs
from clear rules, linking specifica-
tion and implementation to enable
auditability and formal verification.

nondeterminism in the compilation process.
In the context of zkVMs, ensuring that the low-level assembly

matches the high-level program’s intent is critical. The verifier must
reproduce the prover’s verification key to confirm the proof’s accu-
racy, which requires a reliable and reproducible compilation process.
This is complicated by variations in compiler behavior [Bjäreholt,
2017], configurations, and environmental factors, all of which can
affect the final binary.

Addressing these challenges involves using tools for formal veri-
fication and reproducibility, such as certified compilers [Leroy et al.,
2016], reproducible containerization 5, and advanced package man-
agers [Batten et al., 2022]. Although these tools can help, they come
with trade-offs, particularly between performance and reproducibil-
ity. Achieving reliable zkVMs requires careful management of the
entire toolchain to ensure that the high-level code is faithfully repre-
sented in the final proof.

Lurk: The Optimal Zero-Knowledge Language Stack

Lurk presents a refined approach to zkVM design through its use of
an abstract functional reduction machine, the CEK machine, which
underpins the source language semantics. This abstract machine ab-
stracts hardware-specific behavior to focus on the essential operations
of the language 6. Unlike hardware-based models, Lurk’s abstract
machine uses a minimal and consistent set of state transitions to de-
scribe program execution, making it hardware independent, simple
to formalize, and portable across backends. The size and simplicity
of the machine, consisting of only 12 rewrite rules, make it easy to
reimplement, easy to audit, and efficient to optimize. These qualities
are central to Lurk’s auditability and support for formal verification.



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 6

6 Nada Amin, John Burnham,
François Garillot, Rosario Gennaro,
Chhi’mèd Künzang, Daniel Ro-
gozin, and Cameron Wong. Lurk:
Lambda, the ultimate recursive knowl-
edge (experience report). Proc.
ACM Program. Lang., 7(ICFP), aug
2023. doi: 10.1145/3607839. URL
https://doi.org/10.1145/3607839

7 Lisp was chosen as the initial target
for its simplicity and core commonality
with other functional languages and is
not the final target language.

Language Abstract Machine

Lisp SECD [Landin, 1964],
CEK [Felleisen and Fried-
man, 1983]

Ocaml ZINC [Leroy, 1990]
Haskell STG [Jones, 1992]
µLua CESK variant [Midtgaard

et al., 2013]
Prolog WAM [Warren, 1983]
JavaScript JAM [Van Horn and Might,

2011]
Erlang BEAM [Hausman, 1994]
Coq KAM variant [Coquand and

Huet, 1986]

Table 3: Some programming languages
and their abstract machine models

Lurk’s functional reduction model offers further advantages. Pro-
grams are interpreted directly as a cascade of function “reductions,”
constructing navigable data structures such as linked lists or trees
of dependent expressions. This enables semantic correctness from
code to evaluation, with a one-to-one relationship between the source
program and its execution. The verifier can thus independently con-
firm the correctness of the execution by checking only the program’s
content, rather than relying on complex hardware instructions or
multiple layers of translation. Lurk’s abstract machine follows in
the tradition of abstract machines, such as the SECD and CEK ma-
chines [Landin, 1964, Felleisen and Friedman, 1983], which have
provided foundational models for evaluating functional programs.

Indeed, most functional programming languages are modeled us-
ing closely related minimalistic abstract machines, specific to their
language (see table 3). These machines are not radically different,
but they do reflect the particular semantics of each language, making
the transition to new language models straightforward and efficient.
Supporting a new language does not require building an entirely
new abstract machine from scratch but rather extending the existing
model to accommodate different high-level constructs. This modu-
larity ensures that new languages can be integrated into Lurk with
minimal overhead.

Lurk itself is implemented as a Turing-complete dialect of Lisp 7,
chosen for its expressiveness, simplicity, and its well-established sta-
tus in functional programming. In Lurk, as in Lisp, code and data are
interchangeable, which enables seamless programmatic interaction
and data sharing. The language’s emphasis on composability means
that proofs and outputs from one Lurk program can be reused as in-
puts in another, supporting the construction of complex, interrelated
proof systems.

Content-Addressed Code And Data

Lurk introduces content addressing for both code and data, using
cryptographically secure hash functions to create constant-sized com-
mitments of 256 bits. These cryptographic commitments are integral
to the language, enabling succinct zero-knowledge proofs while en-
suring data privacy and interoperability. By allowing commitments
to be blinded with secrets, Lurk provides robust mechanisms for se-
curely managing private data, all while minimizing storage overhead
for large or complex structures.

https://doi.org/10.1145/3607839


proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 7

8 P. J. Landin. The next 700 program-
ming languages. Communications of
the ACM, 9(3):157–166, March 1966.
ISSN 0001-0782, 1557-7317. doi:
10.1145/365230.365257

9 Why not develop an abstract machine for
Python or Rust straight away?
Lurk’s abstract machine supports
Lisp-style functional reductions today.

In functional languages, abstract
machines often define authoritative
semantics by convention: If the im-
plementation diverges, the machine’s
semantics prevail. For non-functional
languages like Rust or Python, however,
an abstract machine represents no such
consensus, and must match the refer-
ence implementation through extensive
conformance testing, maintained as the
language evolves.

As Lurk evolves to support new
languages, it builds on previous capa-
bilities, making extending to complex
languages in the future a simpler task,
moving step by step from Lisp toward
more intricate language constructs.
10 The lookup singularity seeks to trans-
form arbitrary computer programs into
“circuits” that only perform lookups.
See [Whitehat, 2022]

Abstract Machine: an Optimal Model

Lurk’s abstract machine, the CEK machine, is a functional reduction
machine that evaluates each input expression into a corresponding
output expression in a predictable and deterministic manner. The
machine’s evaluation process is defined by a small set of reduction
rules, which are applied iteratively until a fixed point is reached,
ensuring that each function application is resolved. The simplicity of
these rules makes the evaluation both efficient and easy to verify.

Moreover, this approach is a standard for authoritatively defin-
ing the semantics of functional languages. It follows in the lineage
of abstract machines proposed by P.J. Landin 8, which introduced
a hardware-independent framework to understand how programs
evaluate. The CEK machine in Lurk builds upon this tradition, adapt-
ing the model to support zero-knowledge proofs and cryptographic
commitments.9

One of the defining characteristics of Lurk’s abstract machine is
its composability. As a content-addressed functional expression lan-
guage, Lurk naturally supports the composition of proofs, allowing
complex systems of proofs to be constructed from smaller, indepen-
dent components. This makes Lurk an ideal platform for building
scalable and efficient zero-knowledge applications.

Loam & Memoset: An Optimal Lookup-Centric Architecture

Lurk embraces a lookup-centric approach at every level, aiming to
transform arbitrary computer programs into circuits that perform
mostly lookups10. Central to this architecture are two key compo-
nents: the Lurk Algebraic Intermediate Representation (Lair) and the
Lurk Ontological Abstract Machine (Loam).

Lair is a finite-field-oriented language that helps generate arith-
metization, the low-level language of zero-knowledge (ZK) proofs,
by translating high-level expressions into field element-based con-
straints. This arithmetization ensures that Lurk’s performance re-
mains competitive while providing a clear path for compiling pro-
grams to cryptographic backends.

Building on Datalog [Green et al., 2013], Loam is a rules description
language that allows the decomposition of computations correspond-
ing to complex relations into smaller atomic relations that comprise
them. These atomic (or irreducible) relations correspond to steps in a
proof and serve multiple purposes:

• They require that other steps be fulfilled elsewhere.

• They lay out constraints that must be verified for their own proof
fragment to be meaningful (using Lair).



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 8

11 Memoset generalizes lookup argu-
ments to extend beyond shallow table
or function evaluations. Its provide
and require primitives precisely define
semantics, allowing programs to instan-
tiate finite instances of infinite virtual
circuits.
12 Memoset is so named because it
allows transparent memoization of
function calls, eliminating redundant
computation. Memoset’s provenance
annotation ensures the soundness of
arbitrary mutually recursive function
calls.

13 Chris Okasaki. Purely Functional
Data Structures. Cambridge Uni-
versity Press, Cambridge, 1998.
ISBN 978-0-521-63124-2. doi:
10.1017/CBO9780511530104

• They explicitly provide (support) a proof statement.

Loam encodes high-level programs as formal relations correspond-
ing to the tuples provided and required by the Memoset lookup [Ca-
parica et al., 2025].11

Not only is the Lurk VM itself implemented as a minimal weave
of lookups implementing its reduction rules, but those lookups (in
memoized form) become a feature accessible to user programs via
implicit memoization12. Even the most naive implementation of the
Fibonacci function achieves performance on the order of best-in-class:

!(defrec fib (lambda (n)

(if (< n 2) 1 (+ (fib (- n 2))

(fib (- n 1))))))

Loam implements optimal, externalizable, functional memory and
compiles high-level reduction rules to lookup rules using Memo-
set’s provide and require primitives. Because Loam memory relies on
Memoset, it radically generalizes the idea of immutable memory:
Any pure function invocation can serve as an ’address’. Loam uni-
fies this generalized memory with content-addressing so that purely
functional data structures 13 can be externalized as Merkle DAGs
when necessary, but represented internally as cheaply allocated and
manipulated references.

Implementation & Portability

The Lurk Stack is designed to work with any modern backend prov-
ing system, leveraging the flexibility of both Loam and Lair. Loam,
relying on Memoset and minimal arithmetization, can be compiled to
pure lookups, requiring only a trivial subset of Lair’s sophisticated
arithmetization capabilities. However, when dense arithmetic or com-
plex circuit-level optimizations are needed, Lair can be embedded
within Loam programs and inlined into the chips that implement the
leaf rules of the final Loam program.

Loam includes:

Data-definition specification which declaratively specifies the char-
acteristics of Loam memory.

Data-transition specification which defines the provable transition
rules for a Datalog program representing Lurk reduction.

Since the data-transition language is fully relational, it effectively
simulates Lair’s unidirectional functional semantics. Lair compiles
to the data transition language and serves as the top-level program



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 9

14 For example, matrix multiplication
of statically-sized matrices will likely
cost less if the arithmetic operations are
inlined directly. NxN matrix multiplica-
tion should therefore be implemented
as a primitive operator, even if invoca-
tions use lookups

15 The latest implementation of Lurk
is based on Sphinx, a small-field
STARK prover [Ben-Sasson et al.,
2018] equipped with a LogUp-based
lookup argument [Eagen et al., 2022,
Haböck, 2022], derived from a modified
open-source zkVM project [Succinct
Labs, 2024]

source, supplemented by data definition. This setup allows the com-
piler to adjust the arithmetization versus lookup trade-off based on
the program’s performance characteristics (see Performance below).

To port Lurk to a new backend, the Lurk team only needs to en-
sure:

• Lair extends to support the backend’s novel arithmetization.

• Memoset is implemented efficiently, taking advantage of Lair
where possible.

• Loam Memory operates through constrained memory chips that
prevent prover equivocation.

Performance

A Lurk implementation, comprising the evaluator, witness generator,
prover, and verifier, compiles a program specification into compo-
nents that seamlessly interact with lookup (Loam) and arithmetization
(Lair). This architecture allows heavily optimized coprocessor circuits
to interact without the need for hand-authoring error-prone arith-
metic circuits. While most circuits can translate into pure lookups,
Lurk manages these lookups with sophistication.

However, decomposing dense arithmetization into lookups can be-
come inefficient beyond a certain point. This tradeoff arises naturally
from the cost model of virtual circuits14.

Lurk supports efficient implementations of lookup relation providers
through Lair, a uniform high-level expression language whose
compilation pipeline requires auditing only once. When perfor-
mance, development time, or audit confidence demand, Lurk pro-
grams can also wrap efficient circuits written in a more primitive
arithmetization-specification language.

Lurk version 0.5 is the second implementation of Lurk15.
and includes a benchmark suite to compare the performance of

Lurk with different proving systems. The top-line benchmark results
are reproduced in figure 1 on the next page. Despite using a rela-
tively simple prover implementation, these results already demon-
strate that Lurk reduction is competitive with other provers in terms
of prover time. Avoiding work modeling irrelevant hardware details
takes less time.

Irreproachability & Formalization

Lurk’s self-contained and deterministic design guarantees that every
phase of the VM setup remains reproducible (see table 4 on page 11).



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 10

Lurk Sphinx SP1 RiscZero Jolt
0

10

20 19.42 20.63
18.57

27.24

15.9515.77

10.79
13.05

16.02 16.45
19.92

Pr
ov

in
g

Ti
m

e
(s

)

Fibonacci Benchmark

Default Lite Turbo

Lurk Sphinx SP1 Risc0 Jolt
0

0.5

1

1.5

0.53

1.34 1.38

0.98
0.75

0.47

1.27

1.71

0.47

1.28
1.45

Pr
ov

in
g

Ti
m

e
(s

)

Fast Fibonacci Benchmark

Lurk Sphinx SP1 RiscZero Jolt
0

200

400

600

18.61

221.43
275.73

596.71

178.45

15.88
82.7

222.92

16.15

106.91

292.38

Pr
ov

in
g

Ti
m

e
(s

)

Sum Benchmark

Lurk Sphinx SP1 RiscZero Jolt
0

10

20

7.94

20.17

9.55

27.17

15.74

7.31
9.48

12.33

6.7

15.68
19.06

Pr
ov

in
g

Ti
m

e
(s

)

Longest Common Subsequence Benchmark

Lurk Sphinx SP1 RiscZero Jolt
0

50

100

7.94

47.35 43.42

96.83

32.34

7.31
19.54 24.19

6.7

36.77
46.02

Pr
ov

in
g

Ti
m

e
(s

)

Longest Common Subsequence v2 Benchmark

Figure 1: Proving time comparison for
Lurk, Sphinx, SP1, RiscZero, and Jolt
across four benchmarks. Benchmarks
are detailed in the Lurk 0.5 benchmark
blog post [Argument Computer Corpo-
ration, 2024]. In all benchmarks, lower
is better. The Fibonacci benchmark is a
simple iterative implementation of the
Fibonacci sequence. The Fast Fibonacci
benchmark is an implementation of the
same as a 2x2 matrix multiplication.
The Sum benchmarks a sum of 1000 in-
tegers passed as an input. In all longest
common subsequence benchmarks, we
measure against an implementation
where the RISC-V based VMs imple-
ment memoization in the high-level
source.

The benchmark parameters primar-
ily manage shard size and memory-
performance trade-offs. Both “Lite”
and “Turbo” configurations disable
memory-saving mechanisms to boost
performance, storing intermediate data
in memory instead of recalculating or
writing to disk. This setup requires
more memory but accelerates proof
generation, as long as the prover has
sufficient RAM.

The main difference lies in shard
parallelism: “Lite” uses smaller, more
numerous shards, increasing paral-
lelism and prover efficiency but at
the cost of higher verifier workload.
“Turbo,” with larger shards, reduces
verifier costs and limits parallelism.
Essentially, “Lite” trades higher verifier
overhead for more parallelism, while
“Turbo” optimizes for fewer shards
with less impact on the verifier.



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 11

Audit req. Description

Proving sys-
tem

Although this falls outside the scope of the lan-
guage itself, Lurk facilitates correct usage of the
backend proving system through higher-level con-
structs like Loam and Lair, simplifying the audit
process.

Program-
specific
circuit

Lurk simplifies this by breaking it down into an au-
dit of the language semantics (without cryptographic
components) and the cryptographic correctness of
Loam, Lair, and MemoSet.

Proof state-
ment

The specific proof statement associated with pub-
lic inputs requires auditing. In Lurk, the program
source and low-level representation are identical, so
only the source needs auditing.

Provenance
& correctness
of Public
inputs

This is a property of a system of interoperating ap-
plication programs. Lurk’s composability allows
systems of interoperating programs to be treated
as single programs, streamlining audits in environ-
ments like blockchains.

Table 4: Auditability requirements and
their descriptions in Lurk.

Furthermore, because the VM directly proves Lurk programs, veri-
fying the equivalence between the source program and the artifact
used as VM input becomes trivial. Lurk can also adopt more efficient
internal representations and implement a compilation pass. Impor-
tantly, these optimizations maintain irreproachability by treating
them as provable transformations from the source, implemented as
first-class operations within the VM.

Finally, formal verification provides the strongest guarantees of
auditability and irreproachability. Lurk’s design, grounded in well-
defined and well-understood theory, makes it particularly suited
to formalization. Each stage of the compiler pipeline leading to the
prover and verifier, as well as individual application programs, re-
mains self-contained and modular.

This simplicity allows not only one-time formalization, but it re-
duces the maintenance required when the language evolves, and
supports incremental formalization for new backends. Lurk Lab val-
ues strong proofs and commits to eventually formalizing Lurk.

The Problem With Using Proofs

Even with an optimal proving stack, deploying proof-based appli-
cations as consumer products remains nontrivial, particularly in the



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 12

context of blockchain-based applications. Blockchains, by design,
are resource-constrained distributed systems, making applications
slow, costly, and cumbersome. Zero-knowledge (ZK) proofs offer a
mechanism to separate application state into onchain and offchain
components, enabling the complex and expensive computations to
happen offchain, with only the verification happening onchain, sig-
nificantly reducing costs. This has made ZK a critical technology for
scaling blockchains by adding verifiable execution layers, where the
state is proven valid and settled on the Layer-1 blockchain. However,
perhaps the larger opportunity lies in ZK enabling novel applications
and UX in blockchain application design. Using ZK, new applica-
tions in privacy, compliance, AI and Web2 interaction, can verifiably
interact with blockchains, pulling application UX away from the
blockchains they are built upon while increasing the capabilities of
these systems. This potential could massively amplify blockchain’s
role as society’s permissionless, trustless financial layer of the In-
ternet. Despite this potential, the realization of these opportunities
remains limited.

Using proofs for blockchain applications faces three key chal-
lenges:

• Proving systems and verifiers are not standardized and are evolv-
ing rapidly,

• Verifying proofs onchain remains expensive,

• Applications require interaction with a chain-managed state.

• Synchronous blockchains limit the practical scalability and UX of
proof-based applications.

Fragmentation

Proving systems have evolved rapidly over the last eight years,
driving innovation in cryptography, system design, and applica-
tions. However, this rapid pace of iteration has often resulted in
incompatible systems, requiring full-stack redesigns of verifiers.
Blockchains, being slow to add functionality, have largely stuck
with the 2016 State-of-the-Art: Groth16 proofs [Groth, 2016] over
the BN254 pairing-based curve. The small proof size of Groth16 (256

bytes) remains attractive for resource-constrained blockchains.
Although modern proving systems have outpaced Groth16 in per-

formance and usability, the need for Groth16 compatibility onchain
neutralizes much of this progress. Modern proving systems, having
diverged from R1CS [Benarroch et al., 2019] and elliptic curve-based
commitments, require expensive “wrapping” of newer proofs to fit



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 13

16 Additionally, many blockchains do
not even support Groth16 verification,
forcing developers to deeply under-
stand various proving systems and
decide which blockchain to target for
building and verifying proofs.

17 This issue creates severe limitations
on proof-driven applications in some
blockchains, which limit the state to just
a few field elements worth of storage
and require applications state update to
be commutative, see https://github.

com/o1-labs/o1js/issues/265.

within Groth16, adding significant latency and stalling innovation in
proof-based applications.16

Cost

Even when a blockchain supports the chosen verification method, the
challenges persist. Verifying any ZK proof remains prohibitively ex-
pensive for many use cases, even though it is cheaper than executing
applications directly onchain. For example, verifying a Groth16 proof
on Ethereum or other blockchains typically incurs a cost in the range
of tens of USD per instance, which is significantly more expensive
than simple transactions.

This expense may not seem like a major issue at first glance, but
many applications require frequent proof verifications as part of their
regular user interactions. For instance, an application that needs
to verify one proof every 5 minutes would face an annual cost ex-
ceeding a million dollars, a burden too high for many business uses.
This cost barrier often makes proof-based applications commercially
unviable, either forcing these costs onto users or requiring heavy
subsidization by developers, stifling innovation in the space.

State Management

Most applications require managing a use case rather than execut-
ing a one-off transaction. This means they need to create a stream
of valid states that represents the evolving state of the use case as
reflected on the blockchain. For example, this could be the state of
redemptions in an airdrop, successive block headers validated by a
verifying bridge, or the board state in a game like chess or battleship.

This continuous stream of state updates cannot be handled ef-
fectively by stateless proof verification (such as ZK coprocessors) or
recursive proofs. While recursive proofs allow building on top of ex-
isting proofs, they would require proving, with every interaction, that
the new proof is the legitimate successor of the previous one, a task
that is essentially the role of a blockchain: managing state sequenc-
ing.

The better approach is to allow users to manage the state directly
on the blockchain. However, traditional blockchains treat the state
as shared among all users, which complicates state management.
If two users submit a proof of a valid state transition based on the
same initial state, the second proof to be processed will be considered
invalid because it conflicts with the earlier transition.17

To address this, we introduce a blockchain that eliminates this
problem allowing for conflict-free state management while still lever-
aging the benefits of zero-knowledge proofs.

https://github.com/o1-labs/o1js/issues/265
https://github.com/o1-labs/o1js/issues/265


proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 14

Proofbase: A Proof-Based Asynchronous Blockchain

We present Proofbase, a proof-based execution layer designed as a
Proof-of-Stake (PoS) zero-knowledge (ZK) layer 2 blockchain built
on Ethereum. Taking advantage of its lineage from the Linera and
FastPay protocols [Baudet et al., 2020, Linera team, 2023], Proofbase
offers several distinct advantages over other proof-based blockchains,
especially in latency, reactivity, scalability, and cost-efficiency.

• Low latency: As proofs in proof-based applications can only op-
erate on state they can change, Proofbase can execute most trans-
actions in a BFT-resistant manner without requiring consensus.
This allows simple transactions to be processed almost instanta-
neously, making Proofbase ideal for applications that demand fast
and efficient state updates.

• Highly reactive and cost-effective: As proof-based applications
do not inherently interact with one another, neither do their states,
so Proofbase supports parallel transaction processing, ensuring that
the verification of one proof does not delay the execution of oth-
ers. This parallelism leads to lower fees and more predictable
pricing for users. Furthermore, Proofbase introduces the concept
of ephemeral transactions, where transaction data are stored for a
customizable amount of time, enabling more efficient proof verifi-
cation and avoiding the high costs associated with long-term data
retention seen in other blockchains. Furthermore, by moving proof
verification outside of blockchain execution, proof verification
costs are not subject to execution cost or data storage cost models
that make proof verification in other blockchains prohibitive.

• Anchoring proofs in state: Proofbase is designed to anchor proofs
within a continuous chain of state manipulations, making it par-
ticularly well suited for applications with stateful management of
blockchain-based assets utilizing complex offchain logic. By encap-
sulating proofs in a verifiable blockchain state, Proofbase simplifies
the deployment and maintenance of proof-based applications, en-
hancing both the capabilities of blockchain-based applications and
their scalability.

• Externally verifiable application state: As a result of Proofbase’s
unique design, users submit transactions and proofs directly
validators which attest to the validity of proofs and the applica-
tion states, sending attestation directly back to the user. As each
proofchain’s state is verifiable independent of the rest of the net-
work, these attestations can be made without any validator-to-
validator communication or consensus. Not only does this result



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 15

18 Proofbase aims to support the
Plonky3 ecosystem (Succinct SP1,
Lita Valida, and others) as the initial
first-class citizen.

19 This doesn’t have to be the case,
as the protocol does allow for the
proofchain to be owned by a collection
of users with the requirement that the
proposer order is defined as part of the
application, resulting only 1 owner at
any given time.

in a very low time-to-finality, and highly scalable network, but
these attestations are aggregated user-side to result in a “proof
certificate” which is verifiable externally to the network without
needing a global state oracle, enabling applications on Proofbase
to cheaply interoperate with external blockchains without adding
latency.

Proofs in Proofbase can be Lurk proofs, which have a richer in-
teraction with the underlying protocol of the chain, or they can be a
proof using any proof system supported by Proofbase18. The Proof-
base protocol enables low-latency proof verification, even for proofs
that are too expensive for most blockchains.

Proof-based applications on Proofbase operate on the model of
bulwarked state, inherited from the Linera [Linera team, 2023] proto-
col. In this model, the state of the blockchain is sharded into low-
granularity fragments that are shared between carefully managed
sets of users, and the “shards”, called “proofchains”, can commu-
nicate through asynchronous message passing. This enables the
validators to parallelize the verification of proofs relating to different
proofchains, lowering the latency of the sequencing protocol, and
gives users strong guarantees that their proofs will not be invalidated
through sequencing conflicts. We’ll touch more on this on page 20.

This results in a model where each proofchain is owned by a sin-
gle owner 19. This owner can be either the application or a single
user. In the case of the application owner, state update sequencing
would be conducted offchain. In the case of single-owner chains,
global application state is sharded across user-owned proofchains for
that application type. Cross-proofchain interaction is accomplished
via asynchronous messaging (as outputs of proofs and are therefore
verifiable), enabling asynchronous, multi-user, trust-gapped applica-
tions. This model introduces novel application design to yield new
possibilities in user-controlled, highly scalable, private state applica-
tions without introducing latency.

As each proofchain’s state and transactions are processed and
maintained independently from others in the network, Proofbase is
highly horizontally scalable, only requiring validators to increase
hardware capabilities to add additional capacity. This network ar-
chitecture has been shown to scale to support sustained throughput
above 100,000 transactions per second in laboratory settings [Baudet
et al., 2020] [Blackshear et al., 2024]. This level of scalability makes
Proofbase uniquely suited for mass-adoption scale private applica-
tions.

In Proofbase, proofchain owners submit transactions contain-
ing the proposed state transitions and proof directly to the valida-



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 16

tors. Validators independently verify and attest to the validity of
the proofs and the application states (see figure 2 on the next page),
sending attestations back to the submitter. This process, which occurs
in one round trip of communication (less than 1 second in practice),
enables users to aggregate attestations to construct “proof certifi-
cates” that are cheaply verifiable as a substitute for direct proof
verification, allowing applications on Proofbase to interact with
blockchains and assets externally. Developers can use Proofbase
certificates –whose authenticity is easy to demonstrate– to “settle”
application state updates across multiple chains, eliminating the need
to build entire applications within Proofbase or have users interact
directly with smart contracts. This model supports native multichain
applications, offering a seamless and blockchain-less user experi-
ence without sacrificing access to existing user groups, assets, and
liquidity.

By incorporating Lurk as the smart contract and data language,
proof-based applications have well-defined semantics for program
I/O and messages, allowing applications in Proofbase to interact
asynchronously across proofchains. This feature is not only a require-
ment for multi-user, user-controlled applications, but also creates
novel possibilities in concurrent proving, permissionless and config-
urable privacy and access control, as well as composable ZK appli-
cations. As a result of Lurk being natively provable, all proofs, smart
contract logic and state transitions are also provable in the aggregate:
Proofbase periodically compresses the global blockchain state into
succinct verifiable checkpoints through proof recursion. This allows
Proofbase to function as a full ZK layer-2, with its state verifiably
settled on Ethereum.

A common concern of ZK users is the ability to keep up with the
latest state-of-the-art proving system and not be locked into any one
language or VM. Because of this, Proofbase will support verifiers
of the most popular zkDSL and zkVM, allowing maximum flexibil-
ity for developers. As proof verification is handled at the validator
client level in Proofbase, incorporating new proving systems, prover
networks and maintaining pace with the developments in proving
system backends, is of low complexity. As Lurk is designed to be
portable to proving system backends, these developments do not
pose any risk for Proofbase to lag in performance to newer gener-
ation networks. While we are confident that the power of Lurk to
simplify and abstract the complexity of developing ZK applications
will result in Lurk being the preferred ZK stack, this agnostic ap-
proach minimizes touch points with Lurk to just those for managing
onchain state, which ensures Proofbase’s success is not dependent on
the wider adoption of Lurk.



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 17

Client
(or intermediary)

Proofbase
Validator 1

Proofbase
Validator 2

... Proofbase
Validator n

Node
(another blockchain)

C
er

ti
fic

at
e

Ve
ri

fic
at

io
n

Ve
ri

fic
at

io
n

Ve
ri

fic
at

io
n

Tr
an

sa
ct

io
n

Proof

Signatures

assemble certificate

make transaction

single WAN roundtrip

Figure 2: Proofbase Proof Verification
Sequence Diagram (happy path).
All inter-validator communication is
represented on this diagram. Once the
client’s signature has been apposed to
the proof, the client can be replaced
by an untrusted third-party. “happy
path” means that the user submits the
proof at a moment where they can be
verified to be the designated next writer
of the proofchain by a super-majority
of validators. This is the most common
use case for Proofbase, and it is also the
most efficient one.

Proof Certificates: Indirect Versus Direct Proof Verification

In Proofbase, proof certificates play a crucial role in optimizing proof
verification while maintaining security and interoperability across
blockchains. These certificates distinguish between indirect and direct
proof verification, offering flexibility in proof-based applications.

Direct proof verification involves validating proofs by executing the
underlying cryptographic algorithms. While this ensures the highest
security level, it is computationally expensive and time-consuming,
making it impractical for many use cases, especially in resource-
limited environments. The costs are particularly burdensome when
frequent or rapid proof validation is required, such as in complex
dApps or applications where proof generation happens at the rate of
user interaction.

To address this, Proofbase introduces proof certificates, a more ef-
ficient alternative. A decentralized verification network (DVN),
consisting of independent validators, produces these certificates.



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 18

Validators verify proofs and generate certificates that attest to their
validity, allowing the certificates to be used in place of direct proof
verification. This approach provides a cost-effective and time-efficient
solution, while enabling the use of Proofbase as a stateful verifier
layer in parallel with other blockchains.

The key advantages of proof certificates include:

1. Cost Efficiency: Certificates significantly reduce onchain costs
compared to direct proof verification, lowering the computational
burden and transaction fees, thus lowering the barrier for applica-
tions.

2. Low latency: The expected overhead of getting a certificate for the
validity of a proof is less than half a second (over the milliseconds
needed to run the native proof verification). This metric is resistant
to Proofbase congestion, as a Proofbase validator tasked with
parallel proof verification can scale horizontally.

3. Verifier Standardization: Certificates offer a standardized mech-
anism for proof verification, simplifying proof-based application
development, and ensuring consistent security across the network.

4. Economic Security Model: Besides the guarantees provided by
their BFT-resistant blockchain protocol, certificates also operate
within a larger crypto-economic security model, leveraging eco-
nomic incentives and a base chain (L1) bonding to maintain their
integrity. This ensures that potential attacks are economically un-
feasible.

Unlike traditional proof aggregation, where multiple proofs are
combined to reduce verification costs, Proofbase’s proof certificates
focus on cost and latency reduction through attestations. These cer-
tificates are portable across blockchains, providing developers with a
versatile tool for multichain applications without introducing latency.
But unlike other proof attestation layers, Proofbase’s proof certificates
attest to both the state and proof, enabling the stateful, cost-effective
interaction from Proofbase to external domains.

In summary, Proofbase’s proof certificates strike a balance between
cost, efficiency, and security, making them essential for scalable,
interoperable applications while managing the trade-offs between
direct and indirect verification.

Why a ZK Rollup: Bootstrapping Meaningful Security

Proof certificates in Proofbase unify the computational capabilities
and assets of multiple blockchains into a single application layer, po-
tentially serving as the cornerstone of security for applications man-



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 19

aging large sums of value across various blockchains with private,
offchain data and logic. This requires robust economic guarantees
from the Proofbase network, ensuring that proof certificates remain
secure.

Building Proofbase as a PoS Layer 1 blockchain using a native
asset for security could achieve this, but it also introduces risks for
early users dependent on a new asset.

However, with innovations such as EigenLayer, economic security
can be bootstrapped from established assets and validator sets. This
method enables the security growth to outpace the security risks of
applications built on Proofbase and proof certificates. Furthermore,
by using Ethereum to verify check-pointed Proofbase state, economic
security becomes time-windowed from the issuance of the proof
certificate to its verification on Ethereum.

Thus, we plan to build Proofbase as a ZK layer 2 on Ethereum,
using ETH-denominated assets to establish the Proofbase validator
set using EigenLayer, ensuring both security and compatibility with
Ethereum’s robust ecosystem.

Why the Proofbase Protocol is a Good Fit for Proof Verification

Manipulating State with Proofs

The Proofbase protocol is a fully Byzantine-resistant blockchain pro-
tocol that allows for the manipulation of state. This capability is often
underestimated in the zero-knowledge (ZK) proof ecosystem, yet it
significantly expands the potential applications of ZK proofs. Many
examples of ZK proof usages have thus far been limited to one-round
protocols, where the exchange concludes after a single message:
proof of identity (zkPassport), proof of humanity (Worldcoin), vari-
ants of anonymous credentials (zkLogin, keyless login), and proof of
ownership of a credit score.

However, most applications are multi-user and require a regular
stream of proofs operating over complex state, such as payments,
rollups, social applications, games, or maintaining a portfolio of
financial assets in a privacy-preserving yet compliant manner. The
Proofbase blockchain enables the proving of state updates involved in
this stream of proofs, tying the proofs to an onchain sharded state.

For example, proving the 50th move in a game requires:

1. Proving the state after the first 49 moves.

2. Proving that one’s current move is valid.

3. Agreeing with a counterpart that the first 49 proven moves corre-
spond to the same game they have played so far.



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 20

20

In order to have a shielded
chain, you need to have
some kind of composable
state. You need to have the
the state of the chain split
up into all these little frag-
ments [. . .] When you look
at what people actually like
to do with blockchains [. . .],
they need to have some kind
of late binding capability.
In a sense, this is a similar
problem as having a kind
of cross-rollup communica-
tion: If every user is doing
their own independent state
transition on their own user
device, [. . .] we need to have
some model to perform asyn-
chronous ZK execution via
message passing.

(de Valence [2023])

A recursive proof can efficiently handle the first two elements, but
leaves the last point as an exercise to the reader. In other words, a
ZK rollup could prove the valid sequencing and execution of their
blocks from their genesis to the latest block height. However, it is up
to the underlying Layer 1 (L1) that receives that proof to tie it to the
ZK rollup state it verified until then if it wants to ensure there was no
reversion or hard fork. Proofbase serves as that Layer 1, not only for
rollups, but for games, portfolio management, and other applications
that require sequencing states over time.

Proofbase’s Ad-hoc Sequencing Service

The Proofbase protocol enables ad-hoc sequencing through indepen-
dently sequenced proofchains, involving only the participants of each
proofchain. This approach eliminates concerns about block fill rates
and congestion, focusing instead on whether validators can scale
transaction processing power to handle punctual loads. Decades of
server management practices affirm the feasibility of this approach,
as soon as we accept the idea of moving beyond home staking setups.

This scalability comes with a trade-off: proofchain participants
operate segmented from the rest of the network. While they can
asynchronously transmit assets and messages to and from other
proofchains, external users cannot directly modify a proofchain’s
state where they are not a valid writer. In some cases, such as main-
taining an auditable key directory, a single participant may suffice.
However, larger use cases, like operating a fully public automated
market maker (AMM) based on proofs, introduce more complex-
ity 20.

This is unavoidable, as proofs have always faced the challenge
of managing shared state when multiple provers attempt to edit it
simultaneously. In such cases, both provers might try to transition
the same state, but only one proof can be sequenced, rendering the
other invalid. The Proofbase protocol addresses this by encoding
a designated-participant model within a proofchain, for instance
through an exclusive participant configuration or a strict round-
robin system among authorized proposers. This structure ensures
no proofchain becomes stale involuntarily, as each proposer is linked
to the next transaction with precise granularity, unlike traditional
blockchains, which update global protocol states.

Additionally, Proofbase equips proofchains with a messaging
model that enables communication with other chains or users, sup-
porting batch flows for admitting new users or transactions.



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 21

21 See https://etherscan.io/

chartsync/chaindefault.

The Proofbase Protocol Allows Pricing Transaction Storage Differently

The Proofbase protocol introduces a unique approach to pricing
transaction storage. Blockchains typically store both the continually
updated state and historical transactions, with the latter often con-
suming the majority of storage.

In traditional blockchains, validators and full nodes exchange
transactions rather than the current state. Full nodes re-execute trans-
actions to verify correctness, which prevents tampering and holds
validators accountable to the blockchain’s protocol, but necessitates
storing vast amounts of transaction data. High-throughput chains
and Layer 2s (e.g., Optimism, Arbitrum, Avalanche, Solana) typi-
cally run out of storage quickly and must either increase hardware
requirements or shed transaction data. As a result, these chains in-
troduce an “event horizon,” after which older data becomes available
only through archival nodes, creating an artificial limit on data acces-
sibility.

This model of “forever” re-executable transactions is thus a flawed
security promise: full nodes inherently limit throughput or restrict
data availability past a certain point. In fact, the cost of storage for
placing a transaction remains the same, but the transaction’s “shelf
life” shrinks: access to the data on full nodes diminishes over time,
requiring users to depend on archival nodes for historical informa-
tion. 21

Classical blockchains price transaction storage uniformly and can-
not trade this against reduced data availability while managing the
security implications of such decisions. Proofbase, however, can. Us-
ing asynchronous message passing between proofchains, Proofbase
allows proofchains to accept messages only from proofchains with
equivalent or better transaction storage durations. This flexibility en-
ables Proofbase to offer ephemeral transaction storage at a lower cost
while ensuring that the security boundaries between proofchains are
not violated.

This model not only makes sense for short-lived applications (e.g.,
ZK battleship) but also allows larger proofs, such as STARKs, to function
practically as transactions. STARK proofs are faster to produce and
equally fast to verify than SNARKs, though typically larger (40-
100KB minimally compressed). In most blockchains, using them as
transactions is prohibitively expensive. Proofbase overcomes this
limitation by configuring proofchains to accommodate such proofs,
bypassing the need for costly recursive proving steps.

https://etherscan.io/chartsync/chaindefault
https://etherscan.io/chartsync/chaindefault


proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 22

22 Foteini Baldimtsi, Konstantinos Kryp-
tos Chalkias, Yan Ji, Jonas Lindstrøm,
Deepak Maram, Ben Riva, Arnab Roy,
Mahdi Sedaghat, and Joy Wang. zk-
Login: Privacy-Preserving Blockchain
Authentication with Existing Creden-
tials, January 2024

23 Mathieu Baudet, Alberto Sonnino,
Mahimna Kelkar, and George Danezis.
Zef: Low-latency, Scalable, Private
Payments. arXiv:2201.05671 [cs],
January 2022

Conclusion: Applications of Proofbase

Proofbase functions as a decentralized stateful verification network
that provides users with certificates (effectively multisigs) after
each transaction. These certificates are not limited to the Proofbase
ecosystem; they are designed to be portable and usable across any
blockchain. Using the decentralization of Proofbase and its Ethereum
backstop, the certificates are secured in a two-tiered system: Proof-
base has the decentralization of an L1, on top of which Ethereum
acts as a backstop, which will make Proofbase a full ZK rollup. Un-
like traditional scalability-focused L2s, however, Proofbase’s focus
is on creating certificates that are widely acceptable across different
blockchain environments. This broad acceptance will be supported
by the EigenLayer restaking mechanism.

All Proofbase transactions are themselves proofs, making Lurk the
ideal smart contract programming language for Proofbase. Lurk’s
flexibility enables developers to write proofs for various applications,
but verification on Proofbase is not limited to Lurk-based proofs.
The system is designed to verify and issue certificates for a range of
specialized proofs, such as zkOAuth proofs based on Groth16

22.
This opens up powerful new use cases. On any blockchain that

supports multisig verification, developers can write contracts that ac-
cept Proofbase certificates as proof of validity. For instance, a contract
can accept a Proofbase certificate verifying a zkOAuth proof, making
Sui’s zkLogin app-—where you send funds to a user who doesn’t
have a blockchain account—-available on all chains, even those that
do not natively support proof verification or provide precompiles for
it.

The broad applicability of Proofbase is further enhanced by Lurk’s
programmability. Developers can write proofs for entirely new ap-
plications, such as complex onchain games, user-controlled private
applications, and providing mechanisms for the web to interact with
blockchains.

Use Cases

The flexibility of Proofbase’s verification network makes it suitable
for a range of high-impact use cases:

• High-volume proofs: Proofbase ’s scalable verification network
can handle large volumes of proofs efficiently, making it ideal for
applications that require continuous or frequent proof generation.

• Extensible Anonymous Payment: the Proofbase model natively
supports anonymous credentials 23, and can correspondingly
provide high levels of privacy to its users.



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 23

• Private state applications: Proofbase enables private, decentral-
ized applications, with private payments being one of the most
promising use cases. These applications maintain confidentiality
while ensuring verifiability through Proofbase certificates.

• Revolutionizing blockchain UX across all blockchains: By acting
as an “OpenID for all blockchains,” Proofbase can simplify user
onboarding and interaction across multiple chains. Users can
interact with any blockchain securely, without needing blockchain-
specific credentials, thanks to Proofbase certificates.

• Trustless onchain games: Proofbase enables a world of onchain
gaming with verifiability without UX tradeoffs. Games like poker,
which rely on the trust of the randomness, privacy on user’s cards
and the ability to use assets in-game, can be implemented as asyn-
chronous applications with verifiable and private state. Trust-
gapped actors (through trusted execution environment) isolate
shared private information without requiring application-level
cryptographic design. With Lurk on Proofbase, these applications
become a simple encoding of rules as the primitives for privacy
and verifiability exist today.



proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 24

References

Nada Amin, John Burnham, François Garillot, Rosario Gennaro,
Chhi’mèd Künzang, Daniel Rogozin, and Cameron Wong.
Lurk: Lambda, the ultimate recursive knowledge (experience
report). Proc. ACM Program. Lang., 7(ICFP), aug 2023. doi:
10.1145/3607839. URL https://doi.org/10.1145/3607839.

Argument Computer Corporation. Lurk 0.5 Benchmarks.
https://argument.xyz/blog/perf-2024/, September 2024.

Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Yan Ji, Jonas Lind-
strøm, Deepak Maram, Ben Riva, Arnab Roy, Mahdi Sedaghat, and
Joy Wang. zkLogin: Privacy-Preserving Blockchain Authentication
with Existing Credentials, January 2024.

Christopher Batten, Pjotr Prins, Efraim Flashner, Arun Isaac, Jan
Nieuwenhuizen, Ekaitz Zarraga, Tuan Ta, Austin Rovinski, and
Erik Garrison. The Case for Using Guix to Enable Reproducible
RISC-V Software & Hardware. In Sixth Workshop on Computer
Architecture Research with RISC-V (CARRV), June 2022.

Mathieu Baudet, George Danezis, and Alberto Sonnino. Fast-
Pay: High-Performance Byzantine Fault Tolerant Settlement.
arXiv:2003.11506 [cs], November 2020.

Mathieu Baudet, Alberto Sonnino, Mahimna Kelkar, and George
Danezis. Zef: Low-latency, Scalable, Private Payments.
arXiv:2201.05671 [cs], January 2022.

Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev.
Scalable, transparent, and post-quantum secure computational
integrity, 2018.

Daniel Benarroch, Kobi Gurkan, Ron Kahat, Aurélien Nicolas, and
Eran Tromer. zkinterface, a standard tool for zero-knowledge
interoperability. In 2nd ZKProof Workshop. https://docs. zkproof.
org/pages/standards/acceptedworkshop2/proposal–zk-interop-zkinterface.
pdf, 2019.

Johan Bjäreholt. RISC-V Compiler Performance:A Comparison between
GCC and LLVM/Clang. Biekinge Institute of Technology, 2017.

Sam Blackshear, Andrey Chursin, George Danezis, Anastasios
Kichidis, Lefteris Kokoris-Kogias, Xun Li, Mark Logan, Ashok
Menon, Todd Nowacki, Alberto Sonnino, Brandon Williams, and
Lu Zhang. Sui Lutris: A Blockchain Combining Broadcast and
Consensus, August 2024.

https://doi.org/10.1145/3607839


proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 25

Gustavo Caparica, François Garillot, Adrian Hamelink, Chhi’mèd
Künzang, and Winston Zhang. Memoset: Sound functional
lookups for mutual recursion. in preparation, 2025.

T. Coquand and Gérard Huet. Concepts mathematiques et informatiques
formalises dans le calcul des constructions. report, INRIA, 1986.

Henry de Valence. Shielded Transactions Are Rollups, July 2023. URL
https://www.youtube.com/watch?v=VWdHaKGrjq0.

Liam Eagen, Sanket Kanjalkar, Tim Ruffing, and Jonas Nick. Bullet-
proofs++: Next Generation Confidential Transactions via Recipro-
cal Set Membership Arguments, 2022.

Matthias Felleisen and Daniel P. Friedman. Control Operators, the
SECD Machine, and the Lambda-calculus. Formal Description of
Programming Concepts, III:193–219, 1983.

Todd J. Green, Shan Shan Huang, Boon Thau Loo, and Wen-
chao Zhou. Datalog and recursive query processing. Found.
Trends Databases, 5(2):105–195, nov 2013. ISSN 1931-7883. doi:
10.1561/1900000017. URL https://doi.org/10.1561/1900000017.

Jens Groth. On the Size of Pairing-Based Non-interactive Arguments.
In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in
Cryptology – EUROCRYPT 2016, Lecture Notes in Computer Sci-
ence, pages 305–326, Berlin, Heidelberg, 2016. Springer. ISBN
978-3-662-49896-5. doi: 10.1007/978-3-662-49896-5_11.

Ulrich Haböck. Multivariate lookups based on logarithmic deriva-
tives, 2022.

Bogumił Hausman. Turbo Erlang: Approaching the Speed of C. In
Evan Tick and Giancarlo Succi, editors, Implementations of Logic
Programming Systems, pages 119–135. Springer US, Boston, MA,
1994. ISBN 978-1-4615-2690-2. doi: 10.1007/978-1-4615-2690-2_9.

Simon L Peyton Jones. Implementing lazy functional languages
on stock hardware: The Spineless Tagless G-machine Version
2.5. Journal of Functional Programming, 2:127–202, July 1992. doi:
10.1017/S0956796800000319.

P. J. Landin. The Mechanical Evaluation of Expressions. The Computer
Journal, 6(4):308–320, January 1964. ISSN 0010-4620, 1460-2067. doi:
10.1093/comjnl/6.4.308.

P. J. Landin. The next 700 programming languages. Communications
of the ACM, 9(3):157–166, March 1966. ISSN 0001-0782, 1557-7317.
doi: 10.1145/365230.365257.

https://www.youtube.com/watch?v=VWdHaKGrjq0
https://doi.org/10.1561/1900000017


proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 26

Xavier Leroy. The ZINC Experiment : An Economical Implementation of
the ML Language. Report, INRIA, 1990. URL https://inria.hal.

science/inria-00070049/.

Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer,
Markus Pister, and Christian Ferdinand. Compcert-a formally
verified optimizing compiler. In ERTS 2016: Embedded Real Time
Software and Systems, 8th European Congress, 2016.

Linera team. Linera: A Blockchain Infrastructure for Highly Scalable
Web3 Applications version 2. Technical report, Linera, August
2023.

Nuno P Lopes, David Menendez, Santosh Nagarakatte, and John
Regehr. Provably Correct Peephole Optimizations with Alive. ACM
SIGPLAN Notices, 50, March 2015. doi: 10.1145/2813885.2737965.

Jan Midtgaard, Norman Ramsey, and Bradford Larsen. Engineer-
ing definitional interpreters. In Proceedings of the 15th Symposium
on Principles and Practice of Declarative Programming, PPDP ’13,
pages 121–132, New York, NY, USA, September 2013. Associa-
tion for Computing Machinery. ISBN 978-1-4503-2154-9. doi:
10.1145/2505879.2505894.

Omar S. Navarro Leija, Kelly Shiptoski, Ryan G. Scott, Baojun
Wang, Nicholas Renner, Ryan R. Newton, and Joseph Devi-
etti. Reproducible Containers. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 167–182, Lausanne
Switzerland, March 2020. ACM. ISBN 978-1-4503-7102-5. doi:
10.1145/3373376.3378519.

Chris Okasaki. Purely Functional Data Structures. Cambridge Uni-
versity Press, Cambridge, 1998. ISBN 978-0-521-63124-2. doi:
10.1017/CBO9780511530104.

John E Savage. Models of computation, volume 136. Addison-Wesley
Reading, MA, 1998.

Succinct Labs. Introducing SP1: A performant, 100% open-source,
contributor-friendly zkVM. https://blog.succinct.xyz/introducing-
sp1/, February 2024.

David Van Horn and Matthew Might. Pushdown Abstractions of
JavaScript, December 2011.

D. H. Warren. An Abstract Prolog Instruction Set. Technical Report,
1983.

https://inria.hal.science/inria-00070049/
https://inria.hal.science/inria-00070049/


proofbase: a proof-based blockchain for low-latency, scalable, multichain,
zero-knowledge applications 27

Barry Whitehat. Lookup Singularity, November 2022. URL https:

//zkresear.ch/t/lookup-singularity/65.

Zhide Zhou, Zhilei Ren, Guojun Gao, and He Jiang. An empirical
study of optimization bugs in GCC and LLVM. Journal of Sys-
tems and Software, 174:110884, April 2021. ISSN 0164-1212. doi:
10.1016/j.jss.2020.110884.

https://zkresear.ch/t/lookup-singularity/65
https://zkresear.ch/t/lookup-singularity/65

	The Problem With Proofs
	Lurk: The Optimal Zero-Knowledge Language Stack
	The Problem With Using Proofs
	Proofbase: A Proof-Based Asynchronous Blockchain
	Why the Proofbase Protocol is a Good Fit for Proof Verification
	Conclusion: Applications of Proofbase

