
Small-Scale Speech Recognition on a
Microcontroller

Sanjana Subramanian, ss6169 Mechanical Engineering, Fu Foundation School of Engineering and Applied Science
Columbia University
New York City, USA
ss6169@columbia.edu

Abstract—The implementation and advancing of speech recog-
nition functionality in various consumer technologies has been
made possible via the development of signal processing, machine
learning, and low-cost embedded processors. The purpose of
this project was to implement a rudimentary speech recognition
system onto a low-cost microcontroller. This would allow for
greater accessibility in everyday machines, greater access to
communication and education for children and adults who
cannot read or write, and easier communication across language
barriers. A simple ”yes” ”no” speech recognition system was
set up with an Adafruit Circuit Playground Bluefruit and a
corresponding TFT Gizmo, which was able to process and
respond to audio samples in a reasonably short amount of time,
if it was not as accurate as hoped for.

I. INTRODUCTION

Speech recognition, also known as automatic speech recog-
nition (ASR), is a technology that allows computers to tran-
scribe spoken language into written text. This technology
has a wide range of applications, from virtual assistants to
transcription services, and has the potential to revolutionize
how humans interact with machines and each other.

In the past few decades, speech recognition has proved to
be much more than a novelty. One study, by Fu et. al., shows
that drivers who text with voice-to-text technology or a virtual
assistant are less in danger of a head-on collision than drivers
who text manually [1]. Natural and efficient communication
between humans and machines is not only convenient, but
life-saving.

Speech recognition is also important via its potential to
improve accessibility for individuals with disabilities. For
example, individuals who have difficulty typing or using a key-
board due to physical limitations may find speech recognition
to be a more convenient and accessible way to communicate
with computers. In addition, speech recognition can also be
used to transcribe spoken language into text for individuals
who are deaf or hard of hearing, allowing them to access
written content more easily. Accessibility is also increased for
able-bodied people. Portable and easily accessed transcription
services allow for easier translation between people who speak
different languages, and children too young to read and write
effectively on their own are able to self-educate and discover
via speech-to-text search systems.

While generally we see speech recognition utilized on
purely software-based platforms, he new prevalence of low-
cost processors, largely on microcontrollers, and an increase

in accessible educational resources on speech recognition and
embedded systems means we can hope to leverage speech
recognition implementation in new and exciting ways.

Using microcontrollers in system design has various key
benefits. On major benefit is how small and inexpensive
microcontrollers components are. Since all components are
integrated onto one chip, boards are relatively cheap and easy
to manufacture. Microcontrollers are also incredibly modular,
and their RAMs, ROMs, and I/O ports can easily be adapted to
any specific project. However, microcontrollers do come with
drawbacks. The amount of memory available for program data
and supplementary material is limited, and microcontrollers
cannot directly interface with high-power devices. Nonethe-
less, it is useful to examine how we may be able to use
microcontrollers to add speech recognition as an element in
more complex integrated systems, as in mechatronics and
robotics–this integration has the potential to make machines
both more accessible and more interactive. This paper seeks
to explore rudimentary implementation of speech recognition
in inexpensive microcontrollers.

II. SPEECH RECOGNITION FRAMEWORK

Most speech recognition systems follow a similar workflow:
1) Pre-processing: The audio signal is first pre-processed

to remove noise and enhance the signal-to-noise ratio.
This can involve filtering, normalization, and other tech-
niques.

2) Feature extraction: Next, the system extracts a set of
features from the audio signal that are relevant for
recognizing the spoken words. These features might
include the spectral content of the signal, the pitch
and duration of the spoken sounds, and other acoustic
characteristics.

3) Modeling: The system then uses these features to build
a statistical model of the spoken language. This model
is typically a probabilistic model, such as a Hidden
Markov Model (HMM), which represents the probability
of different sequences of words being spoken given the
observed features.

4) Decoding: Once the model is trained, it can be used
to decode the spoken words by finding the most likely
sequence of words that corresponds to the observed fea-
tures. This is typically done using algorithms such as the
Viterbi algorithm or the forward-backward algorithm.

Homayoon Beigi
I would have liked to see more about the hardware, the coding, limitations, etc. Also I would have liked to see recommendations for future improvements to allow for more complex speech systems.

Homayoon Beigi
95



5) Post-processing: Finally, the system may apply various
post-processing techniques to improve the accuracy and
fluency of the transcribed text. This can include tech-
niques such as language modeling, which uses the statis-
tical properties of the language to predict the most likely
words or phrases given the context of the transcribed
text.

A. Phonemes, HMMs, & GMMs

Speech recognition can be performed at signal, phoneme,
and word levels. Statistics, Fast Fourier Transforms, and com-
plex mathematical models are used to extract features of audio
data and return probabilities of intended words and phrases.
One of these models is the Hidden Markov Model, or HMM.
In the context of speech recognition, an HMM represents the
process of generating speech sounds. When humans speak,
they produce a stream of sounds that can be broken down into
a sequence of distinct units called phonemes. For example, the
word ”cat” is composed of three phonemes: /kæt/.

The hidden states in the HMM correspond to the phonemes
in the word, and the observations correspond to the speech
sounds produced when the word is spoken. By training an
HMM on a large dataset of speech sounds, it is possible to
learn the probability distribution over phonemes given the
observations, which can then be used to recognize spoken
words.

A Gaussian mixture model (GMM) is a statistical model that
represents a distribution over a set of observations as a mixture
of multiple Gaussian distributions. In the context of speech
recognition, GMMs can be used to model the distribution
of speech sounds, such as phonemes, produced by different
speakers.

To use GMMs for speech recognition, we first need to
train the model on a large dataset of speech sounds from
multiple speakers. This involves estimating the parameters of
the Gaussian distributions that make up the mixture, such as
the mean and covariance, based on the observations in the
training data. Once the GMM is trained, we can then use it to
classify new speech sounds by computing the probability of
the observations given the model. By comparing the probabil-
ities computed by the GMM with a set of known phonemes,
we can determine which phoneme is most likely to have been
spoken based on the observed speech sounds. Using GMMs
and HMMs in tandem improves the accuracy of a speech
recognition system.

B. Mel Frequency Cepstral Coefficients (MFCCs)

After obtaining an audio sample, we need to extract cer-
tain features to identify key components of the audio and
reduce background noise. Mel frequency cepstral coefficients
(MFCCs) are commonly used as such features. To compute
them, a Fourier transform is performed on the audio to convert
it from a time domain to a frequency domain. The resultant
spectrogram is then transposed to the Mel scale, which mimics
the human auditory system–sounds that show up as equidistant
on the Mel scale would seem the same distance away to the
human ear. As MFCCs are low-dimensional, we can use them

to fairly easily separate background noise from the speech
signal [2].

Fig. 1. Mel Scale Spectrogram

C. Linear Predictive Coding

Linear predictive coding (LPC) is a method for representing
a digital signal as a set of linear equations that can be used to
predict the signal’s future values. The goal of LPC is to model
the signal in a way that allows it to be reconstructed with a
minimal amount of error.

LPC is useful because it can be used to compress the size
of digital audio or speech signals, which can be useful for
storage or transmission. It works by representing the signal as
a set of coefficients that describe the relationship between the
signal’s current and past values, rather than storing the signal’s
actual values. This allows the signal to be reconstructed with
a minimal amount of data, resulting in a smaller overall size.

D. Arduino IDE Libraries

So far, we have covered how speech recognition can be
done ”from scratch”, or purely mathematically. However,
as computer science and machine learning becomes more
accessible, this work does not need to be done from scratch.
The primary library used in this project was TensorFlow, an
open-source library for machine learning and artificial intelli-
gence. TensorFlow Lite is a lightweight version of TensorFlow
designed for mobile and embedded devices. TensorFlow Lite
was developed to enable the deployment of machine learning
models on-device, meaning no cloud connection is necessary.
It is designed to be fast and lightweight, with a small footprint
and low latency, making it well-suited for real-time applica-
tions.

III. MECHANICAL SYSTEM OVERVIEW

In this project, speech recognition was added to a decorative
wall-mounted sculpture. The sculpture was manufactured with
a FormLabs resin 3D printer, and consisted of a humanoid
face, a digital model of which is shown in Figure 2. The
end goal was to control the sculpture backlight using ”yes”
and ”no” keywords, although the speech recognition function
was tested using a TFT microcontroller screen and set of
microcontroller-mounted neopixels. Figure 3 shows the printed
sculpture with a white backlight.

An electronics components holder was integrated into the
face to secure all circuit elements. The table below shows the



Fig. 2. Mechanical Design Rendering

Fig. 3. Mechanical Design

electronic components and quantities to be incorporated into
the robot circuit.

Item Quantity
Adafruit Circuit Playground Bluefruit 1
TFT Gizmo 1
Battery Holder 4xAA 1

The Adafruit Circuit Playground Bluefruit (CPB) is a mi-
crocontroller development board based on the popular Adafruit
Circuit Playground platform, and is equipped with a variety of
sensors and input/output (I/O) devices, such as a microphone,
a speaker, and 10 programmable neopixels. The CPB is
programmed using the Arduino programming language, but
also supports CircuitPython [3].

The microphone in the Circuit Playground Bluefruit acts as
a biometric, and captures the speech signal for processing.
The amplifier inside the microphone amplifies the electric
signal to increase the Signal-to-Noise ratio, and then sends
the amplified signal to the analog-to-digital converter in the
CPB for sampling and segmentation. Each segment, or frame,
is then processed to obtain various parameters for comparison.
According to the literature, it can be expected with components
of these specifications (or comparable specifications) that the
system will process frames in around 60ms and, therefore,
will reach a verification decision in as little as 4 times the

duration of the speech signal. The Circuit Playground Bluefruit
is shown in Figure 4.

Fig. 4. Circuit Playground Bluefruit

The TFT Gizmo, as shown in Figure 5, is a small, portable
display device that uses Thin Film Transistor (TFT) technol-
ogy to display images and text. The Gizmo is specifically
designed to be compatible with Circuit Playgroung microcon-
trollers. TFT displays are known for their high quality, wide
viewing angles, and fast refresh rates, making them well-suited
for use in a variety of applications. In this project, the TFT
Gizmo was used as an intermediate visual interface to test
program function [4].

Fig. 5. TFT Gizmo

During intermediate testing, the expected outcome was for
the TFT Gizmo to display a bitmap of either the word ”yes”
or the word ”no”, and for the CPB neopixels to light up green
or red (respectively) in response to the word being said. Three
question marks would appear on the Gizmo if the audio was
too noisy or unrecognizable.

IV. METHODS

For programming on the Adafruit Circuit Playground
Bluefruit, some setup was required. Reference [5] provides
some guidance on how to do that, specifically for TF Lite
implementations. Aside from downloading the latest Arduino
IDE and the Adafruit nRF52 support packages, various
libraries needed to be installed for either ML implementation
or graphical outputs. Libraries are listed as follows:

1) Adafruit Arcada
2) Adafruit NeoPixel
3) Adafruit FreeTouch
4) Adafruit Touchscreen
5) Adafruit SPIFlash
6) Adafruit Zero DMA



7) Adafruit GFX
8) Adafruit LIS3DH
9) Adafruit Sensor

10) Adafruit ImageReader
11) ArduinoJson
12) Adafruit ZeroTimer
13) Adafruit TinyUSB
14) Adafruit WavePlayer
15) SdFat (Adafruit Fork)
16) Adafruit Fork

While it is necessary for all these libraries to be installed,
the Arcada, NeoPixel, SPIFlash, and GFX libraries were
especially important in this project as they allowed for control
over image output, bitmap reading, and access to digital pins
on the board.

The TensorFlow Lite library also needed to be downloaded.
For this project, the 1.15.0 version was used (not the pre-
compiled option), as it is very well documented. It can be
installed with the following line in the command prompter:

pip install tensorflow=1.15.0

Of course, this needs to be installed in the libraries directory
of the Arduino folder. For Macs, the path usually looks like

Users\[USER]\Documents\Arduino\libraries

.
A pre-trained model from TensorFlow was used for this

project. It can be found at the following link:

https://github.com/tensorf
low/examples/tree/master/lite/examples
/sound_classification

Bitmaps and detection files were taken from Reference [5].
After compressing the TensorFlow model using TensorFlow
Lite, an Arduino program was written to respond to various
results with visual outputs. Code from Reference [6] was
referenced for troubleshooting and guidance.

V. EVALUATION

The program was able to run fairly successfully on
the Circuit Playground Bluefruit. It was tested using the
CPB/Gizmo mechanical design in a computer lab, where
background noise was especially prominent. In a test run of
thirty trials, the program was able to recognize key words as
according to the information in the table below. ”Yes” and
”No” were each key words for ten out of thirty trials. The
remaining ten trials were random simple monosyllabic words
(can, pet, lid, etc) that were not key words.

Key Word % Accuracy
Yes 80%
No 40%
Not a Keyword 90%

In the noisy setting, it was much more likely for the program
to accurately respond to ”yes” than ”no”. It is possible that the
experiment was biased towards the word ”yes” because it is
simply easier to say and recognize (even as a human, much less
as a program). The word ”no”, when said while congested or
with certain conversational inflections, can very easily sound
like /dō/. This is one intuitive explanation for the program’s
miscalculation. It is possible that using an online recording
of the key words, rather than a live person, would have
rendered the program more accurate. It is worth noting that it
would only be more accurate for that online recording, though,
which is not a viable use-case for any speech recognition
implementation.

Fig. 6. ”Yes” Recognition, Gizmo

Fig. 7. ”No” Recognition, Gizmo

Fig. 8. Indeterminate Recognition, Gizmo



Testing was redone in a quiet setting, with almost no
background noise. This time, instead of using the Gizmo as
a graphical interface, the resin sculpture/neopixel mechanical
design was used. The neopixels would provide a red backlight
in recognition of ”no”, a green backlight in recognition of
”yes”, and white background for indeterminate results, as seen
in Figure 3. Once again, thirty trials were performed in the
same manner as they were for the noisy setting. The results
for these trials are displayed in the table below.

Key Word % Accuracy
Yes 90%
No 70%
Not a Keyword 100%

In the quiet setting, the program was far more accurate than
in the noisy setting. Intuitively, a reduction in background
noise would result in a significant difference between ”fea-
ture” signals and ”non-feature” signals. In the noisy setting,
important signal features were more likely to get confused with
background noise, especially on a program with a low-power,
rather than high accuracy, prioritization in its first iteration.

Fig. 9. ”Yes” Recognition, Neopixels

Fig. 10. ”No” Recognition, Neopixels

To statistically guarantee the noisy trials and the quiet
trials were truly two separate sets of data indicating varying
performance, a Two-Sample Independent t-Test was performed
via equations 1 and 2. If the magnitude of texp was greater
than the magnitude of tα/2,ν , the null hypothesis that the
performances were statistically the same could not be rejected.

texp =
x̄1 − x̄2√
S2
1

N1
+

S2
2

N2

(1)

ν =
(
S2
1

N1
+

S2
2

N2
)2

(
S2
1

N1
)2

N1−1 +
(
S2
2

N2
)2

N2−1

(2)

Because the magnitude of texp was less than the magnitude
of tα/2,ν , the program was statistically proven to have varying
accuracies in different environments.

Another key thing to note about the performance was the
response time. Because the key words were all monosyllabic,
it took around .2 seconds for a human speaker to say them.
Based on noisy trial video footage timestamps, it took around
1 second after the end of a key word being spoken for the
program to response with a ”yes”, ”no”, or indeterminate
bitmap and correlating neopixel color. A processing time of
around 5 times the duration of the speech signal is fairly
quick, especially for circumstances involving only monosyl-
labic words or commands.

VI. LIMITATIONS & FURTHER INNOVATION

A significant roadblock to the effectiveness of this project
was background noise. A noise suppression filter to enhance
speech recognition may have proven helpful. Especially be-
cause microcontrollers have limited power and resources to
effectively manage and run speech recognition programs,
recognition errors are more likely to occur when the envi-
ronment is noisy.

Speech recognition on microcontrollers can be used in a
wide variety of applications, including in assistive technology,
in human-machine interaction, and in educational settings.
Speech recognition can also be used to build assistive tech-
nology for people with disabilities, such as devices that allow
people with mobility impairments to control devices using
their voice; it can be used to build more natural and intuitive
interfaces for interacting with machines, such as robots or
industrial equipment. As machine learning and embedded
systems technologies become more and more accessible, the
accuracy of low-cost, low-power embedded speech recognition
systems is likely to rise. This will continue to render ASR as
not just a novelty, but as a tool to develop equity and education
on a global scale.

VII. REPRODUCIBILITY INFORMATION

For the UF2 to be successfully flashed onto the Circuit
Playground Bluefruit, Circuitpython needs to be flashed onto
the board first. A helpful tutorial for doing this is available at
the following link:

https://learn.adafruit.com/welcome-to-
circuitpython/installing-circuitpython [7].



REFERENCES

[1] X. Q. Fu R, Chen Y, “A comparative study of accident
risk related to speech-based and handheld texting during
a sudden braking event in urban road environments.”
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459486/.

[2] Librosa, “Feature extraction.” https://librosa.org/doc/main/.
[3] A. Industries, “Circuit playground bluefruit - bluetooth low energy.”
[4] M. Leblanc-Williams, “Adafruit circuit playground tft gizmo.”

https://learn.adafruit.com/adafruit-tft-gizmo?view=all.
[5] L. Ada, “Tensorflow lite for circuit playground bluefruit quickstart.”

https://learn.adafruit.com/tensorflow-lite-for-circuit-playground-bluefruit-
quickstart?view=all.

[6] G. L. Callie Yim, Diana Chou, “Voice recognition on simple microcon-
trollers.” http://www.cs.umd.edu/ dchou/papers/818wpaper.pdf.

[7] K. Rembor, “Welcome to circuitpython!.” https://learn.adafruit.com/welcome-
to-circuitpython/installing-circuitpython.


