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Abstract. In our previous paper on frames of continuous functions, the
classical adjunction between topological spaces and frames was generalized
to a setup in which an arbitrary topological frame replaces the two element
chain. The relevant composition of adjoints yields an endofunctor on topolog-
ical spaces which in general fails to be idempotent. In this paper we prove
a formula for iterations of this functor under certain conditions. We apply
our result to the construction of finite free distributive lattices and Boolean
algebras.
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1. Introduction

Algebraic logic dates back at least to the nineteenth century with the work
“The laws of thought” by Boole. It took another century before lattice theory was
developed as a mathematical subject in the work of Birkhoff among others. A
particularly important subclass of lattices is formed by the distributive lattices,
encompassing the Boolean algebras. Birkhoff’s famous representation theorem can
be phrased as a duality of categories between finite posets on the one hand and
finite distributive lattices on the other hand [2]. This result can be obtained as a
special instance of a more general (opposite) adjunction between topological spaces
and frames [11]. In this adjunction a key role is played by the two element frame
2 = {0, 1} with 0 ≤ 1, which can be endowed with the Sierpinski topology for which
{1} is open. In this case, we will denote it by S.

In [10] this adjunction was extended to a situation where 2 is replaced by a more
general topological frame F, yielding (opposite) adjoint functors

OF : Top→ F/Frm : X 7−→ Top(X,F)
and

SpecF : F/Frm→ Top : L 7−→ F/Frm(L,F )

between the categories of topological spaces and of F-frames respectively, as recalled
in section 2. In case F = 2, we have 2-Frm ∼= Frm, the category of frames. In this
case for a topological space X, we have O2(X) ∼= open(X), and for a frame L we
have Spec2(L) ∼= Spec∧(L), the ∧-spectrum of L.

It was observed in [10] that, in contrast to the classical case F = 2, in general
the compostion

SpecFOF : Top −→ Top

is not idempotent and does not yield an “F-sobrification” of topological spaces.
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The main goal of the current paper is the investigation of this functor SpecFOF
restricted to sober exponential spaces X and where F = Top(Y, S) with Y expo-
nential and sober. In our main theorem 3.1 for such X and F we construct a
homeomorphism

(1) SpecF(OF(X))→ Top(Y,X).

In order to appreciate this result it is instructive to look at the case F = S =
Top({1},S). On the left-hand side of (1), we obviously have SpecS(OS(X)) ' X
and on the right-hand side we immediately obtain Top({1}, X) = X.

For a more general F = Top(Y, S) note that the right-hand side of (1) is consid-
erably simpler than the left-hand side.

In section 4 we elaborate two applications of our main theorem. First we denote
the three element chain by 3. Taking F = 3 = Top(S,S) in (1), in Theorem 4.5 we
prove that the iteration

(Spec3O3)
n(S)

is homeomorphic to the free distributive lattice on n generators. Recall that the
number of elements of this lattice is known as the n-th Dedekind number and that
these numbers have been established up to n = 8, [5], [9].

Secondly we again consider S and denote � = 2× 2. Taking F = � = Top(A2,S)
in (1), with A2 the discrete topological space on two elements, in Theorem 4.8 we
prove that the iteration

(Spec�O�)n(S)
is homeomorphic to the free Boolean algebra on n generators.

Acknowledgement. The authors express their profound gratitude to Eva Colebun-
ders for all the topology they have learned from her throughout the years. The first
named author thanks her in particular for several illuminating conversations while
working on this project, especially on the topic of exponential topological spaces,
as well as for help with references.

2. Preliminaries

We recall the concept of a topological frame [10], which plays a central role in
this paper as it allows to represent a topological space X by a frame of functions
on X with values in such a topological frame.

For (F,≤) a frame endowed with a topology TF we call (F,≤, TF) a topological
frame provided that the operations

∧ : F× F→ F : (a, b) 7→ a ∧ b

sup
i∈I

: FI → F : (ai)i∈I 7→ sup
i∈I

ai

are continuous. We will also simply write F to denote a topological frame.
Given (F1,≤1, T1) and (F2,≤2, T2) topological frames a map f : F1 → F2 is

called a topological frame morphism if f : (F1, T1) → (F2, T2) is continuous and
f : (F1,≤1)→ (F2,≤2) is a frame homomorphism.

Let F be a topological frame. Let Top be the category of topological spaces
with continuous maps and let Frm be the category of frames with frame homo-
morphisms. Let F/Frm denote the comma category. Objects of F/Frm are frame
homomorphisms F → L and are called F-frames. The frame F is considered to be
an F-frame endowed with the identity. A morphism between (L, γL : F → L) and
(L′, γ′L : F→ L′) in F/Frm is a frame homomorphism h : L→ L′ such that

hγL = γ′L.
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Next we explain the functors

OF : Top→ F/Frm : X 7−→ Top(X,F)

and
SpecF : F/Frm→ Top : L 7−→ F/Frm(L,F )

from [10].
For a topological space X, there is a natural frame homomorphism

(2) F→ Top(X,F) : a 7→ ca,

where ca : X → F : x 7→ a is the constant function with value a. The F-function
frame OF(X) of X is the frame Top(X,F) (for the pointwise order) endowed with
(2).

Let (L, γL : F→ L) be an F-frame. Consider the set FrmF(L,F) = (F/Frm)(L,F)
of frame homomorphisms ψ : L→ F with ψγL = 1F and the source of maps

(evl : FrmF(L,F)→ F : f 7→ f(l))l∈L.

The F-spectrum of L is the set

(3) SpecF(L) = FrmF(L,F)

endowed with the initial topology for the source (evl)l∈L.
For more details on frames we refer the reader to [11], [12] or [6].

Next we recall some known facts on exponential objects in Top, [4], [8], [7], [6], [3].
Let X be an object in a category with finite products. Then X is called exponential
if the functor −×X has a right adjoint, usually denoted by (−)X .

Our main theorem deals with exponential objects in the category Top. In Top
the right adjoint to −×X is denoted by Top(X,−).

Explicitely X exponential in Top means that for any topological space Z, the set
of all continuous functions from X to Z underlies a canonical topological function
space Top(X,Z) such that the evaluation map

(4) ev : Top(X,Z)×X → Z : (f, x) 7→ f(x)

is continuous and for every topological space Y and continuous map f : Y ×X → Z
the map

(5) f∗ : Y → Top(X,Z)

is continuous, where
f∗(y) : X → Z : x 7→ f(x, y),

making the following diagram commute:

(6) Top(X,Z)×X ev // Z

Y ×X.

f∗×1X

OO

f

99

For g ∈ Top(Y,Top(X,Z)) we denote the composition with the evaluation map

(7) g = ev(g × 1X).

Concretely this means
g(y, x) = g(y)(x).

The correspondences between maps in (5) and (7) define a homeomorphism

(8) Top(Y,Top(X,Z)) ' Top(Y ×X,Z),
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known as the first exponential law. The second exponential law applies the fact
that Top(X,−), as a right adjoint functor, preserves products

(9) Top(X,
∏

Zi) '
∏
i

Top(X,Zi).

Following [6] we call a topogical space X locally compact, if for every point x of
X and for every neighborhood of V of x there exists a compact neighborhood K of
x such that x ∈ K ⊆ V.

Sober spaces are exponential if and only if they are locally compact, as was
shown in [6], [7]. For locally compact spaces the canonical topological function
space is given by the compact-open topology, see Proposition 1.1 in [3]. Hence we
can conclude that for X,Z topological spaces, with X sober and exponential, the
canonical topological function space Top(X,Z) is the set of continuous functions
endowed with the compact-open topology, with subbasis given by sets of the form

(10) MK,O = {f ∈ Top(X,Y ) | f(K) ⊆ O},
with K ⊆ X compact and O ⊆ Y open. For more information on categorical
concepts we refer to [1].

Finally we agree to use the following notations. We will write ' to denote homeo-
morphism between topological spaces, ≈ to denote isomorphism between frames and
∼= to denote simultaneous homeomorphism of spaces and isomorphism of frames (via
the same morphism, whenever appropriate). In particular for topological frames ∼=
means isomorphism of topological frames.

3. The main theorem

In this section, we will prove that, under certain conditions, and for the topo-
logical frame F = Top(Y, S),

SpecF(OF(X)) ' Top(Y,X).

Theorem 3.1. Let X be a sober exponential topological space, F the topological
frame F = Top(Y,S) for some sober exponential space Y . Then SpecF(OF(X)) and
Top(Y,X) are homeomorphic.

Proof. In order to reach our goal, we first show the auxilliary claim that

Frm(Top(X,F),F) ' Top(Y,X)× Top(Y, Y )

and then consider the appropriate embedding

FrmF(Top(X,F),F) ↪→ Frm(Top(X,F),F).
First note that by the first exponential law (8)

Top(X,F) = Top(X,Top(Y,S)) ' Top(X × Y,S)
since X and Y are exponential in Top. Further since both spaces are endowed with
compatible pointwise orders we actually have an isomorphism as topological frames

Top(X,Top(Y,S)) ∼= Top(X × Y,S).
Hence

(11) Frm(Top(X,F),F) ' Frm(Top(X × Y, S),Top(Y, S)),
where we endow both sides of the form Frm(L,F) with the initial topology for the
source

(evl : Frm(L,F)→ F : f 7→ f(l))l∈L.

Since X × Y, as a product of two sober spaces, is sober [6], the map

O : Top(Y,X × Y )→ Frm(Top(X × Y, S),Top(Y, S)) : f 7→ O(f)
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is bijective, with O(f)(h) = hf .
We now consider the composition O of O and the relevant homeomorphism in

(11). By definition, O(f) makes the diagram

Top(X × Y, S)
O(f) // Top(Y, S)

Id
��

Top(X,F)

·

OO

O(f) // F

commute. Concretely we thus have

(12) O(f)(g) = O(f)(g) = gf

We now prove that the map O is a homeomorphism.
Obviously, the sets of the form

NK,{1} = {h ∈ Top(Y,S) | h(K) = {1}}
with K compact in Y form a subbasis for the topology on F = Top(Y,S). Hence the
pre-images ev−1g (NK,{1}), with g ∈ Top(X,F) constitute a subbasis on Frm(Top(X,F),F).

The topology on Top(Y,X × Y ) is generated by the subbasis consisting of sets
of the form

MK,O = {f ∈ Top(Y,X × Y ) | f(K) ⊆ O},
with K compact in Y and O open in X × Y.

Using (6) and (5), consider 1O ∈ Top(X × Y, S), for O open in X × Y and the
corresponding map 1∗O : X → F. Then

O(MK,O) = {O(f) | f ∈ Top(Y,X × Y ), f(K) ⊆ O}
= {O(f) | f ∈ Top(Y,X × Y ), 1O(f(K)) = {1}}
= {O(f) | f ∈ Top(Y,X × Y ),O(f)(1∗O)(K) = {1}}
= {ϕ ∈ Frm(Top(X,F),F) | ϕ(1∗O)(K) = {1}}
= ev−11∗O

(NK,{1}).

Hence O maps subbasic open sets to subbasic open sets and is therefore an open
bijection.

To see that O is continuous, consider the source (evg)g∈Top(X,F) defining the
initial topology on Frm(Top(X,F),F). We prove that evgO is continuous for every
g ∈ Top(X,F). Observe that evgO coincides with the function Top(Y,X × Y ) →
Top(Y,S) : f 7→ gf which is obtained by considering the action of the right adjoint
functor Top(Y,−) on g : X × Y → S.

Next, since Y is exponential, by the second exponential law (9), we have

Top(Y,X × Y ) ' Top(Y,X)× Top(Y, Y ).

Consider the canonical embedding

i : FrmF(Top(X,F),F) ↪→ Frm(Top(X,F),F) ' Top(Y,X)× Top(Y, Y ).

We will now determine the image Im(i).
Consider (f1, f2) ∈ Top(Y,X)×Top(Y, Y ) and the corresponding f ∈ Top(Y,X×

Y ) with f(y) = (f1(y), f2(y)). Then (f1, f2) ∈ Im(i) if and only if O(f) is an F-
frame homomorphism. This means that for every h ∈ F the constant map ch ∈
Top(X,F) satisfies

O(f)(ch) = h.

By (12) and (7) we have

O(f)(ch) = chf = hpr2f = hf2,
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for pr2 : X × Y → Y . Hence (f1, f2) ∈ Im(i) if and only if hIdY = hf2 for every
h ∈ F.

Since Y is sober it fulfills the T0 separation property, whence this is equivalent
to f2 = IdY .

Consequently the map

pr1i : SpecF(OF(X)) = FrmF(Top(X,F),F)→ Top(Y,X)

is bijective, for pr1 : Top(Y,X)×Top(Y, Y )→ Top(Y,X). The fact that it is also a
homeomorphism easily follows from the diagram

Top(Y,X) oo //
� _

��

SpecF(OF(X))� _

��
Top(Y,X)× Top(Y, Y ) oo // Frm(Top(X,F),F)

and this concludes the proof. �

4. Applications to iterated spectra

In this section we elaborate two applications of our main theorem. These appli-
cations deal with finite distributive lattices with the Scott topology [6]. Note that
in the finite case the Scott topology coincides with the Alexandroff topology for
which the open sets are the upsets. Since all spaces used in this section are finite
and satisfy the T0 separation property, they are exponential and sober.

In order to apply our main theorem 3.1, the Scott topology and the compact
open topology have to coincide on function spaces. This will follow from two more
preliminary results.

Proposition 4.1. Let X,Y be topological spaces with X finite. Then the compact-
open topology on Top(X,Y ) coincides with the initial topology for the source

(evx : Top(Y,X)→ Y )x∈X .

Proof. The compact-open topology has a subbasis consisting of the sets of the form
MK,O = {f ∈ Top(X,Y ) | f(K) ⊆ O} with K ⊆ X and O ⊆ Y open.

A subbasis for the initial topology on the other hand, is given by sets of the form
ev−1x (O) = {f ∈ Top(X,Y ) | f(x) ∈ O} with x ∈ X. Since X is finite,

MK,O =
⋂
x∈K

M{x},O =
⋂
x∈K

ev−1x (O)

is a finite intersection and hence both topologies coincide. �

Proposition 4.2. Let L,F be finite distributive lattices endowed with the Scott
topology. Then Top(L,F ) = Ord(L,F ) and the Scott topology and the initial topol-
ogy on Top(L,F ) determined by the source (evl : Top(L,F )→ Fl)l∈L, coincide.

Proof. That Top(L,F ) = Ord(L,F ), the set of all order preserving maps L → F,
follows since a continuous map f ∈ Top(L,F ) is always order-preserving and an
order-preserving map f ∈ Ord(L,F ) clearly preserves upsets.

Note that Top(L,F ) is a subset of FL and hence can be endowed with the trace
of the product topology as can be compared to the previous theorem. Ord(L,F )
is a lattice for the pointwise order which can be endowed with the Scott topology.
As we deal with finite products, it is an easy consequence of Theorem II-4.13 in [6]
that both topologies coincide. �
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For the first application we consider the three element chain 3 = Top(S,S). In
Theorem 4.5 below we prove that the iteration

(Spec3O3)
n(S)

is homeomorphic to the free distributive lattice on n generators. Recall that the
number of elements of this lattice is known as the n-th Dedekind number and that
these numbers have been established up to n = 8, [5].

Before we can make the link between generalized spectra and free distributive
lattices, we need an intermediate step through monotone Boolean functions.

Definition 4.3. A monotone Boolean function of n variables is a non-decreasing
map {0, 1}n → {0, 1} where {0, 1}n is endowed with the pointwise order. The set
of monotone Boolean functions of n variables is denoted by Mn.

Note that Mn = Ord(Sn,S) = Top(Sn,S). Moreover, note that

Top(1,3) = 3→ Top(S,S) :


0 7→ (0, 0)

1 7→ (0, 1)

2 7→ (1, 1)

constitutes an isomorphism of posets and hence of spaces, proving that 3 ∼= Top(S,S).
The following result can be found in, e.g., [2].

Theorem 4.4. The lattice of monotone Boolean functions of n variables is iso-
morphic to the free distributive lattice on n generators.

Theorem 4.5. (Spec3O3)
n(S) and Mn are homeomorphic for n ≥ 1.

Proof. We will give a proof by induction. Applying Theorem 3.1 with X = S,
F = 3 = Top(S,S) we can see that this is true for n = 1.

So assume that (Spec3O3)
n−1(S) and Top(Sn−1,S) = Mn−1 are homeomorphic

for some n ≥ 2. Applying Theorem 3.1 with X = Top(Sn−1,S) and F = 3 =
Top(S,S), and the first exponential law (8), we get

(Spec3O3)
n(S) = Spec3O3((Spec3O3)

n−1(S))
' Spec3O3(Top(Sn−1,S))
' Top(S,Top(Sn−1,S))
' Top(Sn,S) 'Mn,

which finishes the proof. �

Since all finite lattices in this theorem were endowed with the Scott topology,
we get the following result.

Corollary 4.6. Mn and (Spec3O3)
n(S) are isomorphic lattices for n ≥ 1.

For a second application let An denote the antichain on n elements. We start
again from S and denote � = S× S = Top(A2,S). Taking F = � in Theorem 3.1 we
prove that the iteration

(Spec�O�)n(S)
is homeomorphic to Bn, the free Boolean algebra on n generators.

Lemma 4.7. For n ≥ 1, Top(A2n−1 , �) ∼= Ord(A2n−1 , �) ∼= Bn.

Proof. Since the discrete and the Scott topology on An coincide it follows that
Ord(A2n−1 , �) = �2n−1

. �

Theorem 4.8. (Spec�O�)n(S) and Bn are homeomorphic for n ≥ 0.
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Proof. For n = 0, this is trivial. By Lemma 4.7, we already know that Top(A2n−1 , �)
and Bn are homeomorphic for any n ≥ 1. We will now prove by induction that
(Spec�O�)n(S) and Top(A2n−1 , �) are homeomorphic for n ≥ 1.

For n = 1 we take X = S, F = � = Top(A2,S) in 3.1. It follows that

Spec�O�(S) = Top(A21 ,S) = � = Top(A20 , �).
Next assume that (Spec�O�)n−1(S) and Top(A2n−2 , �) = Bn−1 are homeomor-

phic for some n ≥ 2. Applying Theorem 3.1 with X = Top(A2n−2 , �) and F = � =
Top(A2,S), Lemma 4.7 and the first exponential law (8),

(Spec�O�)n(S) = Spec�O�((Spec�O�)n−1(S))
' Spec�O�(Top(A2n−2 , �))
' Top(A2,Top(A2n−2 , �))
' Top(A2n−1 , �) ' Bn,

which is what we wanted to show. �

Once again, since all finite lattices in this theorem were endowed with the Scott
topology, we get the following result.

Corollary 4.9. Bn and (Spec�O�)n(S) are isomorphic lattices for n ≥ 0.
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