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1. Introduction

This paper is the first one in an ongoing project to develop the deformation theory of 
triangulated categories with t-structure. The current paper is intended as the foundation 
for [9,10] in which the actual deformation theory is developed. Taken together these 
papers should be viewed as sequels to [17,16] which are about the deformation theory 
of abelian categories. An abelian category can always be viewed as the heart of the 
tautological t-structure on its (triangulated) derived category and this provides the link 
of the current “triangulated” setting with the earlier “abelian” setting.

To be more concrete let k be a field and let A be a k-linear abelian category. In [16]
the last two authors defined the Hochschild cohomology HH∗(A) of A and showed that 
HH2,3(A) provides an obstruction theory1 for the (suitably defined) deformations of A. 
Restricting ourselves for simplicity to first order deformations we have in particular that 
HH2(A) parametrizes the deformations of A over the dual numbers D0 := k[ε]/(ε2).

1 The methods in [16] may also be used to give natural deformation theoretic interpretations for the lower 
groups HH0,1(A).
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It seems natural to look for a deformation theoretic interpretation of the higher 
Hochschild cohomology groups of A. Indeed based on general principles the Hochschild 
cohomology groups HHn(A) for n ≥ 2 “should” correspond to deformations of A over the 
DG-algebra D2−n = k[ε]/(ε2) where now |ε| = 2 − n. However it is impossible to realize 
this objective in the abelian world as there is no sensible notion of a D2−n-linear abelian 
category. But we will show that it is possible do it in the triangulated world! Indeed the 
theory developed in the current paper allows one to associate to a class in η ∈ HHn(A)
for n ≥ 3 a triangulated category D+(A)η with t-structure (whose heart happens to 
be also A) which is linear over D2−n and which for all practical purposes behaves as a 
deformation of D+(A) corresponding to η (see [9]). In a subsequent paper [10] we will 
show that this procedure is in fact reversible and that all deformations of D+(A) over 
D2−n (for a suitable notion of deformation) are of the form D+(A)η.

Note however that it may appear that we are actually solving a non-problem. Indeed, 
unsurprisingly the abstract theory of triangulated categories is too weak for us and we 
work instead with pretriangulated dg-categories [3] which have in particular a standard 
notion of Hochschild cohomology. So let A be a pretriangulated dg-category. If η̃ is a 
Hochschild cocycle representing a class η ∈ HH∗(A) then we may use it to deform the 
DG-category A [14]2 much in the same way as we deform algebras, and so in particular 
the presence of a t-structure seems to be irrelevant! The catch however is that in general 
η̃ will have curvature and hence the same will be true for the corresponding deformation 
of A (roughly speaking d2 �= 0) [6,15]. Homological algebra over curved dg-categories is 
possible [6,18] but presents rather serious technical difficulties. One may attempt to solve 
this “curvature problem” by replacing A by a Morita equivalent dg-category A′ (which 
has the same Hochschild cohomology as A) such that over A′, η may be represented by 
a cocycle without curvature but this appears not to be possible in general [12]. Part of 
the motivation for the papers [9,10] is now precisely to show that the curvature problem 
can be solved in a natural way for triangulated categories with t-structure.

Now we describe more concretely the content of the current paper. Let us first recall 
the abelian setting [17,16]. Assume that A is an abelian category with enough injectives 
and let

E = InjA . (1.1)

Then E has weak cokernels and it particular the category of finitely presented left E-
modules (denoted by mod(Eop)) is abelian (in other words E is left coherent). Moreover 
the restricted Yoneda functor A �→ E(A, −) gives an equivalence of categories

A ∼= mod(Eop)op . (1.2)

2 We are skipping some technicalities. Either one has to replace A by a cofibrant model, or else one has 
to use A∞-categories.
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Furthermore the relations (1.1) and (1.2) are in fact reversible. In other words we may 
start with a Karoubian additive coherent category E, put A := mod(Eop)op and then we 
find E ∼= InjA. Elaborating on this one finds that there is an equivalence of categories

{Abelian categories with enough injectives, with functors possessing an exact
left adjoint}

∼= {Karoubian additive coherent categories} (1.3)

and this provides a natural path towards the deformation theory of abelian categories. 
For example if A is linear over a field k then we put HH∗

k(A) := HH∗
k(E).

The main result in the current paper is an analogue of (1.2) in the triangulated 
setting. From now on we fix a ground field k and all objects will be k-linear. Let T
be a triangulated category equipped with a t-structure with heart T♥. We say that T
has enough derived injectives if T♥ has enough injectives and for every injective I in 
T♥ there exists an object L(I) ∈ T such that T(−, L(I)) ∼= T♥(H0(−), I). From this 
definition it is clear that the category of derived injectives in T is closed under (existing) 
products.

We now state our main results. They are triangulated analogues of the results outlined 
above in the abelian case.3

Proposition 1.1 (Dual version of Lemma 6.10, Definition 5.8). Assume that T is a tri-
angulated category with t-structure which has enough derived injectives and furthermore 
that it is “enhanced” in the sense of [3]. I.e. T = H0(A) where A is a pretriangulated 
dg-category4 (see §2.1). Let J be the full sub-dg-category of A spanned by the derived 
injective objects.

The dg-category J is (left) homotopically locally coherent (hlc). I.e.

• J is cohomologically concentrated in nonpositive degrees: for all A, A′ ∈ J, we have 
Hi(J(A, A′)) = 0 for all i > 0.

• H0(J) is an additive, left coherent k-linear category.
• For all i ∈ Z and all A ∈ J, the left H0(J)-module Hi(J(A, −)) is finitely presented.

Moreover the category H0(J) is Karoubian.

The following theorem provides a method for constructing triangulated categories 
with a t-structure and with enough - prescribed - derived injectives.

3 For compatibility with the abelian case we state our results here under the assumption that there are 
enough derived injectives. However in the body of the paper the results will be stated for triangulated 
categories with enough derived projectives.
4 Note that the notation H0 denotes both the ordinary linear category associated to a dg-category and 

the cohomological functor associated to a t-structure. Since both notations are quite standard this dual use 
appears difficult to avoid.
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Theorem 1.2 (Dual version of Theorem 7.1: “construction”). Let J be a hlc dg-category 
such that H0(J) is Karoubian. Then the dg-category Tw+(J) = Tw−(Jop)op of bounded 
below twisted complexes over J (see §4) has a non-degenerate t-structure whose heart 
is the category mod(H0(J)op)op, has enough derived injectives, and the dg-category of 
derived injectives is the closure of J ↪→ Tw+(J) under isomorphisms in H0(Tw+(J)).

Moreover, if H0(J) is closed under countable products, then the t-structure on Tw+(J)
is closed under countable products, that is, the aisles Tw+(J)≥M are closed under count-
able products.

If B is a dg-category then we denote by h-proj(B) the category of h-projective (see 
(2.1)) right B-modules. Theorem 1.2 is established by showing that the totalisation dg-
functor induces a quasi-equivalence:

Tot: Tw+(J) → h-proj−(Jop)hfp,op,

where the dg-category h-proj−(Jop)hfp is given by

h-proj−(Jop)hfp

= {M ∈ h-proj(Jop) : Hi(M) ∈ mod(H0(Jop)) ∀ i,Hi(M) = 0 for i 	 0}.

The following theorem explains how a pretriangulated dg-category may be reconstructed 
from its category of derived injectives.

Theorem 1.3 (Dual version of Theorem 7.2: “reconstruction”). Let A be a pretrian-
gulated dg-category with a non-degenerate left bounded t-structure, with enough de-
rived injectives, and which is closed under countable products (namely, the aisles
H0(A)≥M are closed under countable products). Let J be the dg-category of derived 
injectives. The restricted Yoneda-functor

Aop → h-proj−(Jop) : A �→ A(A,−)

is t-exact and induces a quasi-equivalence between the dg-categories Aop and
h-proj−(Jop)hfp ≈ Tw−(Jop). In particular we obtain a quasi-equivalence between A
and Tw+(J).

The above “construction” and “reconstruction” theorems can be enhanced to a func-
torial correspondence. We denote by Hqe the homotopy category of (small) dg-categories, 
namely the localization of the category of (small) dg-categories along quasi-equivalences. 
We further define categories as follows (dual versions of Definition 7.7 and Definition 7.9):

• The category HqeDGInj has objects the dg-categories J which are (left) hlc and such 
that H0(J) is Karoubian; a morphism F : J → J′ in HqeDGInj is a morphism in Hqe
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such that for all J ′ ∈ J′, the H0(Jop)-module H0(J′)(J ′, F (−)) is finitely presented. 
We also denote by HqeDGInj

Π the full subcategory of HqeDGInj of dg-categories J such 
that H0(J) is closed under countable products.

• The category Hqet+ has objects the dg-categories A endowed with a non-degenerate 
left bounded t-structure with enough derived injectives; a morphism in Hqet+ is a 
morphism in Hqe which has a t-exact left adjoint. We also denote by Hqet+

Π the full 
subcategory of Hqet+ of dg-categories A with a t-structure which is closed under 
countable products (i.e. the aisles H0(A)≥M are closed under countable products).

Then, we have the following theorem.

Theorem 1.4 (Dual version of Theorem 7.12: “correspondence”). The mapping J �→
Tw+(J) for J ∈ HqeDGInj gives rise to a fully faithful functor

Tw+ : HqeDGInj → Hqet+,

which induces an equivalence of categories

Tw+ : HqeDGInj
Π → Hqet+

Π .

The inverse is given by taking derived injectives:

DGInj : Hqet+
Π → HqeDGInj

Π .

2. Preliminaries

We fix once and for all a ground field k. Every category will be assumed to be k-linear. 
Moreover, we shall work within a fixed universe U , and every category A, B, Q, . . . we 
shall fix will be U-small.

2.1. Dg-categories

We assume the reader to be acquainted with triangulated categories and dg-categories, 
see for example [11] or [24]. We recollect here some notation and terminology we shall 
need throughout the paper.

2.1.1. The (locally U-small) dg-category of U-small cochain complexes over k is de-
noted by Cdg(k).

For any pair of dg-categories A and B, we have the (U-small) dg-category of dg-
functors Fundg(A, B), which is the internal hom in the symmetric monoidal category 
dgCat of (U-small) dg-categories, namely it satisfies the natural isomorphism:

Fundg(A ⊗ B,C) ∼= Fundg(A,Fundg(B,C)),
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for all A, B, C ∈ dgCat. The dg-category A ⊗ B is the tensor product of A and B, and 
it is U-small.

The dg-category of (right) A-dg-modules is defined by

Cdg(A) = Fundg(Aop,Cdg(k)),

whereas left A-dg-modules are by definition Aop-dg-modules. Moreover, we set:

C(A) = Z0(Cdg(A)),

K(A) = H0(Cdg(A)).

The derived category D(A) of A is the localization of C(A) (or equivalently K(A)) 
along quasi-isomorphisms. We remark that Cdg(A), C(A), K(A), D(A) are all U-locally 
small.

Normally, we shall use the symbol “≈” meaning “isomorphic in the homotopy category 
H0(B)” of a suitable dg-category B. In particular, for two given M, N ∈ Cdg(A), we 

write M ≈ N whenever M ∼= N in K(A) and sometimes M
qis≈ N whenever M ∼= N in 

D(A).

2.1.2. A dg-functor F : A → B between dg-categories is a quasi-equivalence if it in-
duces quasi-isomorphisms between the hom-complexes, and H0(F ) : H0(A) → H0(B)
is essentially surjective. The category dgCat of U-small dg-categories has a model struc-
ture whose weak equivalences are the quasi-equivalences (see [22]). We denote by Hqe
the homotopy category of dg-categories, namely the localization of dgCat along quasi-
equivalences. Two dg-categories are quasi-equivalent if they are isomorphic in Hqe. We 
also say that a dg-category A is essentially U-small if it is quasi-equivalent to a U-small 
dg-category.

2.1.3. A dg-module P ∈ Cdg(A) is h-projective if

K(A)(P,X) = 0, (2.1)

for all acyclic A-dg-modules X; equivalently, if the localization functor K(A) → D(A)
induces an isomorphism

K(A)(P,X) ∼−→ D(A)(P,X), (2.2)

for all X ∈ Cdg(A). The full dg-subcategory of Cdg(A) of h-projective dg-modules is 
denoted by h-proj(A). The restriction of the localization functor

H0(h-proj(A)) → D(A)

is an equivalence, so h-proj(A) is a dg-enhancement of D(A).
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Notice that for any A ∈ A, the representable dg-module A(−, A) is h-projective by 
the dg-Yoneda lemma. So, the Yoneda embedding gives rise to a dg-functor

hA : A ↪→ h-proj(A), (2.3)

which in turn induces the so-called derived Yoneda embedding:

H0(A) ↪→ D(A). (2.4)

2.1.4. Denote by pretr(A) the smallest full dg-subcategory of Cdg(A) which contains 
(the Yoneda image of) A and is closed under taking shifts of dg-modules and mapping 
cones of closed degree 0 morphisms. We say that A is strongly pretriangulated (respec-
tively, pretriangulated) if the Yoneda embedding

A ↪→ pretr(A)

is a dg-equivalence (respectively, a quasi-equivalence). The dg-category pretr(A) is itself 
strongly pretriangulated and it is called the pretriangulated hull of A. We remark that 
pretr(A) is essentially U-small: in fact, it is equivalent to the U-small dg-category of 
bounded one-sided twisted complexes on A (see [4, Definition 4.6]). A is a strongly pre-
triangulated dg-category if and only if it is closed under pretriangles, which are sequences 
of the form

A
f

B
s

j

C(f)
i

p

A[1], (2.5)

where f : A → B is a closed degree 0 morphism in A. The object C(f) ∈ A is the cone
of f , and A[1] ∈ A is the shift of A. They are objects representing respectively the usual 
mapping cone of f∗ : A(−, A) → A(−, B) and the shift of A(−, A) in Cdg(A). The shifts 
A[m] of A come with closed invertible degree n −m maps (“shifted identity morphisms”)

1(A,n,m) : A[n] → A[m] (2.6)

which satisfy 1(m,n,A) ◦ 1(n,m,A) = 1(A,n,n) = 1A[n] The maps i, j, p, s characterise the 
cone (and the pretriangle) as follows: they are of degree 0 and they describe C(f) as the 
biproduct A[1] ⊕B in the underlying graded category of A. Moreover, they satisfy:

dj = 0, dp = 0, di = jf1(A,1,0), ds = −f1(A,1,0)p.

This allows us to use matrix notation as follows when describing maps to and from a 
cone:
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u = (u1, u2) : C(f) → D,

v =
(
v1
v2

)
: D → C(f).

We can also write down explicit formulas for the differentials:

du = (du1 − (−1)|u|u2f1(A,1,0), du2), dv =
(

dv1
dv2 + f1(A,1,0)v1

)
, (2.7)

where |u| is the degree of u.

2.2. Quasi-functors

The morphisms in the localization Hqe of dgCat along quasi-equivalences can be de-
scribed as isomorphism classes of quasi-functors (see [23] and [5]). Roughly speaking, 
quasi-functors are “homotopy coherent dg-functors”, and they are defined as particular 
dg-bimodules.

2.2.1. Let A and B be dg-categories. An A-B-dg-bimodule is a right B ⊗ Aop-dg-
module, namely a dg-functor

T : Bop ⊗ A → Cdg(k).

We shall sometimes use the “Einstein notation”, writing

T (B,A) = TB
A ,

putting the contravariant variables above and the covariant ones below. We shall also 
write:

TA = T (−, A) ∈ Cdg(B),

TB = T (B,−) ∈ Cdg(Aop).

For any dg-category A we have the diagonal bimodule h = hA ∈ Cdg(A ⊗Aop), defined 
by

hA
B = A(A,B).

This notation is consistent with the chosen name hA for the Yoneda embedding of A: 
in fact, the Yoneda embedding is precisely the functor which maps

A �→ hA(A) = A(−, A) = hA, A ∈ A.
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2.2.2. A quasi-functor T : A → B between two dg-categories is a dg-bimodule T ∈
Cdg(B ⊗Aop) with the property of being right quasi-representable, namely: for all A ∈ A, 
there exists an object F (A) ∈ B such that TA

∼= hF (A) in D(B). From this, we see that a 
quasi-functor T induces a genuine functor H0(T ) : H0(A) → H0(B). Two quasi-functors 
T, S are isomorphic if they are isomorphic in the derived category D(B ⊗Aop). As already 
said, isomorphism classes of quasi-functors can be identified with the morphisms in the 
homotopy category Hqe of dg-categories. From the general model-categorical machinery, 
we also know that a morphism A → B in Hqe can be represented by a dg-functor 
whenever the domain dg-category A is cofibrant; moreover, any dg-category A has a 
cofibrant replacement Q(A) which comes with a quasi-equivalence Q(A) → A.

2.2.3. There is a notion of adjunction of quasi-functors, investigated in [8]. Given two 
quasi-functors T, S : A � B, we see that T � S if and only if there is an isomorphism in 
D(k)

Cdg(B)(Q(T )A, hB)
qis≈ Cdg(A)(hA, SB) ∼= SA

B , (2.8)

“natural” in A and B, in the precise sense that the bimodules

(A,B) �→ Cdg(B)(Q(T )A, hB),

(A,B) �→ Cdg(A)(hA, SB) ∼= SA
B

are isomorphic in D(A ⊗Bop). Here Q(T ) is an h-projective resolution of T as an A-B-
dg-bimodule. Recall from [5, Lemma 3.4] that in particular Q(T )A ∈ h-proj(B) for all 
A ∈ A. It is worth mentioning that in case T is such that TA ∈ h-proj(B) for all A ∈ A, 
there is an isomorphism in D(k)

Cdg(B)(Q(T )A, hB)
qis≈ Cdg(B)(TA, hB),

“natural” in A and B, so the adjunction T � S is given by an isomorphism in D(k)

Cdg(B)(TA, hB)
qis≈ Cdg(A)(hA, SB) ∼= SA

B .

3. Homotopy colimits and t-structures

3.1. Homotopy colimits in triangulated categories

We start by recalling the notion of homotopy colimit of a sequence in a fixed k-linear 
triangulated category T. We shall tacitly assume that any coproduct (direct sum) we 
write exists in T.
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Definition 3.1. Let (An
jn,n+1−−−−→ An+1)n≥0 be a sequence of maps in T. The homotopy col-

imit holim−−→n
An is defined as the object (uniquely determined up to isomorphism) sitting 

in the following distinguished triangle:

⊕
n

An
1−μ−−−→

⊕
n

An → holim−−→
n

An, (3.1)

where μ is the map induced by

An
jn,n+1−−−−→ An+1

incln+1−−−−−→
⊕
n

An.

A homotopy limit is defined as a homotopy colimit in Top. Explicity, assume that 
every direct product we shall write exists in T, and let (An+1

πn+1,n−−−−→ An)n≥0 be a 
sequence of maps in T. Then, the homotopy limit holim←−−n

An is defined as the object 
(uniquely determined up to isomorphism) sitting in the following distinguished triangle:

holim←−−
n

An →
∏
n

An
1−ν−−→

∏
n

An, (3.2)

where ν is the map induced by

∏
n

An

prn+1−−−−→ An+1
πn+1,n−−−−→ An.

In the following discussion we shall concentrate on homotopy colimits; changing T
with Top gives the formal analogous facts about homotopy limits.

Being defined as C(1 − μ) in T, the homotopy limit is not functorial. Still, it satisfies 
a weak universal property involving existence but not unicity. First, there are natural 
maps jn : An → holim−−→An such that the diagram

An

jn,n+1

jn

An+1

jn+1

holim−−→n
An

(3.3)

is commutative: these maps are just the components of the map ⊕nAn
⊕jn−−→ holim−−→n

An, 
and the above commutativity is equivalent to saying that the composition

⊕
n

An
1−μ−−−→

⊕
n

An
⊕jn−−→ holim−−→

n

An

is zero. Moreover, for any family of maps fn : An → X such that the diagram
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An

jn,n+1

fn

An+1

fn+1

X

is commutative (that is, the composition

⊕
n

An
1−μ−−−→

⊕
n

An
⊕fn−−−→ X

is zero), there is a map f : holim−−→n
An → X such that fn = f ◦ jn for all n:

An

fn

jn

X

holim−−→n
An.

f
(3.4)

Such f is obtained non-uniquely by observing that in the exact sequence

T(holim−−→
n

An, X) (⊕jn)∗−−−−→ T(
⊕
n

An, X) (1−μ)∗−−−−→ T(
⊕
n

An, X)

the element (fn) ∈ T(
⊕

n An, X) is in ker(1 − ν)∗ = Im((⊕jn)∗).

3.2. Homotopy colimits in dg-categories

Now, let A be a dg-category. First, we discuss strictly dg-functorial homotopy (co)lim-
its of dg-modules.

Definition 3.2. Let (Mn+1
pn+1,n−−−−→ Mn)n≥0 be a sequence of closed degree 0 maps in 

Cdg(A). Its (strictly dg-functorial) homotopy limit is defined as the shifted mapping 
cone holim←−−n

Mi = C(1 − ν)[−1], sitting in the following pretriangle:

holim←−−
n

Mn →
∏
n

Mn
1−ν−−→

∏
n

Mn,

where ν is the (closed, degree 0) map induced by
∏
n

Mn

prn+1−−−−→ Mn+1
pn+1,n−−−−→ Mn.

Dually, let (Nn
jn,n+1−−−−→ Nn+1)n≥0 be a sequence in Cdg(A). Its (strictly dg-functorial) 

homotopy colimit is defined as the mapping cone holim−−→n
Nn = C(1 − μ), sitting in the 

following pretriangle:
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⊕
n

Nn
1−μ−−−→

⊕
n

Nn → holim−−→
n

Nn,

where μ is the (closed, degree 0) map induced by

Nn
jn,n+1−−−−→ Nn+1

incln+1−−−−−→
⊕
n

Nn.

It is immediate to check that there are (strict) isomorphisms of complexes:

Cdg(A)(X, holim←−−
n

Mn) ∼= holim←−−
n

Cdg(A)(X,Mn),

Cdg(A)(holim−−→
n

Nn, X) ∼= holim←−−
n

Cdg(A)(Nn, X),
(3.5)

both natural in X ∈ Cdg(A).
The homotopy (co)limits holim←−−n

Mn and holim−−→n
Nn are defined as mapping cones in 

Cdg(A), so we know how to describe maps to and from them. In particular, let X ∈
Cdg(A) and let

X
(kn)

(fn)∏
n Mn

1−ν ∏
n Mn,

be a diagram where (fn)n is closed of degree i and (kn)n is of degree i − 1 such that 
d((kn)n) + (1 − ν) ◦ (fn) = 0, namely

dkn = pn+1,n ◦ fn+1 − fn.

Then, there is an induced closed degree i morphism

holim←−−
n

(fn, kn) : X → holim←−−
n

Mn. (3.6)

Dually, let Y ∈ Cdg(A) and let

⊕
n Nn

1−μ

⊕ln

⊕
n Nn

⊕gn

Y,

be a diagram where ⊕gn is closed of degree i and ⊕ln is of degree i − 1 such that 
d(⊕ln) = (−1)i(⊕gn) ◦ (1 − μ), namely:
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dln = (−1)i(gn − gn+1 ◦ jn,n+1).

Then, there is an induced degree i morphism

holim−−→
n

(gn, ln) : holim−−→
n

Nn → Y. (3.7)

We can now give the following definition.

Definition 3.3. Let (An
jn,n+1−−−−→ An+1)n≥0 be a sequence of closed degree 0 maps in A, and 

let holim←−−n
A(An, −) be the strictly dg-functorial homotopy limit of the induced sequence 

(A(An+1, −) 
j∗n,n+1−−−−→ A(An, −))n in Cdg(A). The (dg-functorial) homotopy colimit of 

(An → An+1)n is an object holim−−→n
An together with an isomorphism

A(holim−−→
n

An,−) → holim←−−
n

A(An,−)

in the derived category D(Aop).

Remark 3.4. Let (An
jn,n+1−−−−→ An+1)n≥0 be as in the above Definition 3.3, and let B ∈ A. 

An element in Zi(holim←−−n
A(An, B)) is explicitly given by a family (fn, kn)n≥0 where 

fn : An → B is closed of degree i and kn : An → B is a “homotopy” of degree i − 1 such 
that dkn = fn+1jn,n+1 − fn for all n. In other words, the diagram

An

jn,n+1

fn

An+1

fn+1

B

is commutative up to dkn. By the Yoneda lemma, giving (fn, kn)n ∈ Zi(holim←−−n
A(An, B))

is the same as giving a closed degree i morphism in Cdg(Aop):

holim←−−
n

(f∗
n, k

∗
n) : A(B,−) → holim←−−

n

A(An,−). (3.8)

Again by the Yoneda lemma, note that we have natural isomorphisms:

K(Aop)(A(B,−),holim←−−
n

A(An,−)[i]) ∼= D(Aop)(A(B,−),holim←−−
n

A(An,−)[i])

∼= Hi(holim←−−
n

A(An, B)).

Hence, we can restate the definition of homotopy colimit as follows. The homotopy colimit 
of (An

jn,n+1−−−−→ An+1)n≥0 is a pair
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(holim−−→
n

An ∈ A, [(jn, hn)n] ∈ H0(holim←−−
n

A(An,holim−−→
n

An)))

such that the induced map

holim←−−
n

(j∗n, h∗
n) : A(holim←−−

n

An,−) → holim←−−
n

A(An,−),

is a quasi-isomorphism. This means that whenever we are given B ∈ A with a class 
[(fn, kn)n] ∈ Hi(holim←−−n

A(An, B)), there is a unique [f ] ∈ Hi(A(holim−−→n
An, B)) such 

that

[(f ◦ jn, f ◦ hn)n] = [(fn, kn)n].

In other words, given B ∈ A and a morphism

holim←−−
n

(f∗
n, k

∗
n) : A(B,−) → holim←−−

n

A(An,−)[i]

in D(Aop), there is a unique [f ] ∈ Hi(A(holim−−→n
An, B)) such that the diagram

A(B,−)
holim←−n

(f∗
n,k

∗
n)

f∗

holim←−−n
A(An,−)

A(holim−−→n
An,−).

holim←−n
(j∗n,h

∗
n)

(3.9)

is commutative in D(Aop). In particular, notice that [f ◦ jn] = [fn] in Hi(A(An, B)), 
for all n.

Now, assume that A is a pretriangulated dg-category and let (An
jn,n+1−−−−→ An+1)n≥0

be a sequence of closed degree 0 maps in A such that the coproduct 
⊕

n An exists in 

H0(A). Then, the homotopy colimit of (An
jn,n+1−−−−→ An+1)n≥0 exists in A. First, we note 

that the dg-module 
∏

n A(An, −) is quasi-representable. Indeed, we have closed degree 
0 maps incln : An →

⊕
n An such that

H0(A)(
⊕
n

An,−) ([incln]∗)n−−−−−−−→
∏
n

H0(A)(An,−)

is an isomorphism of left H0(A)-modules. Clearly, the maps incln induce a morphism in 
Cdg(Aop):

A(
⊕

An,−) (incl∗n)n−−−−−→
∏

A(An,−).

n n
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This is actually a quasi-isomorphism. By shifting, it is enough to check that it induces 
an isomorphism in H0, and indeed

H0(A(An,−)) → H0(
∏
n

A(An,−)) ∼−→
∏
n

H0(A(An,−))

is precisely the above H0(A)(
⊕

n An, −) ([incln]∗)n−−−−−−−→
∏

n H
0(A)(An, −).

Now, since A is pretriangulated, the sequence (An
[jn,n+1]−−−−−→ An+1)n in H0(A) has a 

homotopy colimit holim−−→n
An in the sense of Definition 3.1. Moreover, we have a diagram 

with distinguished rows in D(Aop):

A(holim−−→n
An,−)

∼

A(
⊕

n An,−)

∼

A(
⊕

n An,−)

∼

holim←−−n
A(An,−)

∏
n A(An,−)

∏
n A(An,−).

From this, we get an isomorphism A(holim−−→n
An, −) ∼−→ holim←−−n

A(An, −) in D(Aop). We 
sum up what we found:

Lemma 3.5. Let A be a pretriangulated dg-category, and let (An
jn,n+1−−−−→)n≥0 be a sequence 

of closed degree 0 maps such that 
⊕

n An exists in H0(A). Then, if holim−−→n
An is the ho-

motopy colimit of the sequence (An
[jn,n+1]−−−−−→)n≥0 in H0(A) in the sense of Definition 3.1, 

there is an isomorphism

A(holim−−→
n

An,−) → holim←−−
n

A(An,−)

in D(Aop). In other words, A is closed under (dg-functorial) homotopy colimits which, 
as objects, are described by (non-functorial) homotopy colimits in the homotopy category.

3.3. t-structures and homotopy colimits

Now, let T be a triangulated category endowed with a t-structure (T≤0, T≥0), with 
heart T♥ (see [2] for the basic reference on t-structures). The zeroth cohomology functor 
given by the t-structure on T is denoted by

H0(−) = τ≤0τ≥0 : T → T♥, (3.10)

where τ≥0 and τ≥0 are the truncation functors. We also define the i-th cohomology:

Hi(−) = H0(−[i]) = τ≤iτ≥i.

We define full subcategories of T as follows:
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T− =
⋃
n≥0

T≤n, (3.11)

T+ =
⋃
n≥0

T≥−n. (3.12)

We have inclusions

T≤n ⊆ {A ∈ T : Hi(A) = 0 ∀ i > n},
T≥n ⊆ {A ∈ T : Hi(A) = 0 ∀ i < n}.

(3.13)

We recall that an exact functor F : T → T′ between triangulated categories with t-
structures is t-exact if it preserves the aisles: F (T≤n) ⊆ T′

≤n and F (T≥n) ⊆ T′
≥n; 

equivalently, if it commutes with the truncation functors.

Lemma 3.6. T+ and T− are strictly full triangulated subcategories of T closed under 
direct summands, and the t-structure on T induces t-structures on T+ and T− such that 
the inclusions T+ ↪→ T and T− ↪→ T are t-exact. In particular, the hearts of both T+

and T− coincide with T♥.

We say that the t-structure (T≤0, T≥0) is right bounded (or bounded from above) if the 
inclusion T− ↪→ T is an equivalence. Dually, we say that it is left bounded (or bounded 
from below) if the inclusion T+ ↪→ T is an equivalence.

We say that the t-structure (T≤0, T≥0) is left separated if

⋂
n≥0

T≤−n = 0. (3.14)

Dually, we say that it is right separated if

⋂
n≥0

T≥n = 0. (3.15)

Finally, we say that the t-structure (T≤0, T≥0) is non-degenerate if it is both right and 
left separated. In this case (see [2, Proposition 1.3.7]) we have that Hi(A) = 0 for all i
if and only if A ∼= 0 in T, and the inclusions (3.13) are actual equalities:

T≥n = {A ∈ T : Hi(A) = 0 ∀ i < n},
T≤n = {A ∈ T : Hi(A) = 0 ∀ i > n}.

(3.16)

Remark 3.7. The t-structure (T≤0, T≥0) is left separated if and only if the induced t-
structure on T− is non-degenerate. Dually, the t-structure (T≤0, T≥0) is right separated 
if and only if the induced t-structure on T+ is non-degenerate.
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We are going to work with homotopy colimits inside triangulated categories with 
a t-structure; we now explain a useful assumption which ensures the existence of the 
homotopy colimits we shall need.

Definition 3.8. We say that the t-structure (T≤0, T≥0) is closed under countable coprod-
ucts if the aisle T≤0 is closed under countable coproducts.

Dually, we say that the t-structure (T≤0, T≥0) is closed under countable products if 
T≥0 is closed under countable products.

Remark 3.9. Being left adjoints, the inclusions T≤M ↪→ T are cocontinuous. Hence, the 
t-structure (T≤0, T≥0) is closed under countable coproducts if and only if any countable 
family of objects {An} in T≤0 has a direct sum 

⊕
n An in T.

Moreover, we can check that T≤0 is closed under countable coproducts if and only if 
T≤M is closed under countable coproducts for all M ∈ Z. Indeed, if {An} is a countable 
family in T≤M , the shifted family {An[M ]} lies in T≤0, and assuming that 

⊕
n An[M ]

exists in T≤0, we immediately see that (
⊕

n An[M ])[−M ] is the coproduct of the An in 
T≤M .

Clearly, the above discussion dualizes directly to t-structures which are closed under 
countable products.

We now prove a lemma which describes the t-structure cohomology of homotopy 
colimits of particular sequences which are eventually constant in cohomology.

Lemma 3.10. Let T be a triangulated category with a non-degenerate t-structure. Let

(X−k
j−k,−k−1−−−−−−→ X−k−1)k≥0

be a sequence of maps in T and assume that the direct sum 
⊕

k X−k exists in T. Let 
X = holim−−→k

X−k, together with the natural maps j−k : X−k → X (see (3.3)). If for all 
n ≥ 0 the induced morphism

Hi(j−n,−n−1) : Hi(X−n) → Hi(X−n−1)

is an isomorphism for i > −n and an epimorphism for i = −n, then for all n ≥ 0 the 
induced morphism

Hi(j−n) : Hi(X−n) → Hi(X)

is an isomorphism for i > −n and an epimorphism for i = −n.

Proof. Set C−n,−n−1 = C(j−n,−n−1)[−1] and C−n = C(j−n)[−1]. Then, the hypothesis 
is equivalent to
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∀n ≥ 0, Hi(C−n,−n−1) = 0 ∀ i > −n,

and the thesis is equivalent to

∀n ≥ 0, Hi(C−n) = 0 ∀ i > −n.

By (3.16), the hypothesis is

∀n ≥ 0, T(C−n,−n−1, Z) = 0 ∀Z ∈ T>−n,

and the thesis is

∀n ≥ 0, T(C−n, Z) = 0 ∀Z ∈ T>−n.

Let n ≥ 0 and let Z ∈ T>−n. For −k < −n, consider the exact sequence:

T(C−k,−k−1[1], Z) → T(X−k−1, Z) → T(X−k, Z) → T(C−k,−k−1, Z).

By hypothesis, we have T(C−k,−k−1, Y ) = 0 for all Y ∈ T>−k, in particular for Y =
Z ∈ T>−n ⊆ T>−k; also T(C−k,−k−1[1], Z) ∼= T(C−k,−k−1, Z[−1]) = 0, for Z[−1] ∈
T>−n like Z. So, T(X−k−1, Z) → T(X−k, Z) is an isomorphism, and we get a chain of 
isomorphisms

· · · ∼−→ T(X−n−2, Z) ∼−→ T(X−n−1, Z) ∼−→ T(X−n, Z).

Hence, T(X−n, Z) is the inverse limit lim←−−k
T(X−k, Z), together with the maps 

T(X−n, Z) → T(X−k, Z) obtained composing the suitable morphisms j∗−i,−i−1 or their 
inverses. Moreover, since the sequence (T(Z, X−k))k is definitely constant, the morphism

∏
k

T(X−k, Z) 1−ν−−→
∏
k

T(X−k, Z)

is surjective, and hence the following sequence (exhibiting T(X−n, Z) as the above inverse 
limit) is exact:

0 → T(X−n, Z) →
∏
k

T(X−k, Z) 1−ν−−→
∏
k

T(X−k, Z) → 0,

where T(X−n, Z) →
∏

k T(X−k, Z) is induced by the above maps T(X−n, Z) →
T(X−k, Z). On the other hand, we have the distinguished triangle

⊕
X−k

1−μ−−−→
⊕

X−k
⊕j−k−−−→ X.
k k
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Upon identifying 
∏

k T(X−k, Z) = T(
⊕

k X−k, Z), we get a commutative diagram with 
exact rows:

∏
k T(X−k[1], Z)

∏
k T(X−k[1], Z) T(X,Z)

j∗−n

∏
k T(X−k, Z)

∏
k T(X−k, Z)

0 T(X−n, Z)
∏

k T(X−k, Z)
∏

k T(X−k, Z).

Notice that T(X−k[1], Z) ∼= T(X−k, Z[−1]) and Z[−1] ∈ T>−n since Z ∈ T>−n, 
therefore the morphism 

∏
k T(X−k[1], Z) →

∏
k T(X−k[1], Z) is surjective, so the 

map 
∏

k T(X−k[1], Z) → T(X, Z) is the zero map, and T(X, Z) →
∏

k T(X−k, Z) is 
monic. Then, by exactness, that is a kernel of 

∏
k T(X−k, Z) →

∏
k T(X−k, Z), just as 

T(X−n, Z) →
∏

k T(X−k, Z). We deduce that

j∗−n : T(X,Z) → T(X−n, Z) (3.17)

is an isomorphism. This is true for all n ≥ 0 and for all Z ∈ T>−n. In particular, we 
also have that

j∗−n−1 : T(X,Z[1]) → T(X−n−1, Z[1]) (3.18)

is an isomorphism for the same n and Z, since Z[1] ∈ T>−n−1.
Next, we consider the following commutative diagram with exact rows:

T(X,Z)
j∗−n

j∗−n−1

T(X−n, Z) T(C−n, Z) T(X[−1], Z)

j−n−1[−1]∗

T(X−n[−1], Z)

T(X−n−1, Z) ∼ T(X−n, Z) T(C−n,−n−1, Z) T(X−n−1[−1], Z) T(X−n[−1], Z),

where the map T(C−n, Z) → T(C−n,−n−1, Z) is induced by

C−n,−n−1 X−n

j−n,−n−1
X−n−1

j−n−1

C−n X−n

j−n

X.

Since Z ∈ T>−n ⊆ T>−n−1, j∗−n−1 is an isomorphism (see (3.17) above). Moreover, 
(3.18) holds and j−n−1[−1]∗ is an isomorphism. By the five lemma, we conclude that

T(C−n, Z) → T(C−n,−n−1, Z)

is an isomorphism, hence T(C−n, Z) = 0 as required. �
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Corollary 3.11. Let T be a triangulated category with a non-degenerate t-structure. As-
sume we are given a sequence (X−k

j−k,−k−1−−−−−−→ X−k−1)k≥0 such that 
⊕

k X−k exists in 
T. Assume moreover that for all n ≥ 0 Hi(j−n,−n−1) is an isomorphism for i > −n

and an epimorphism for i = n, as in Lemma 3.10. Next, let Y ∈ T be an object and let 
f−n : X−n → Y be maps such that the diagram

X−n

j−n,−n−1
fn

X−n−1
f−n−1

Y

is commutative for all n ≥ 0. Moreover, assume that for all i ∈ Z, the induced maps

Hi(f−n) : Hi(X−n) → Hi(Y )

are isomorphisms for all n > M(i) sufficiently large. Then, any morphism f : holim−−→n
X−n

→ Y satisfying f ◦ j−n = f−n is such that

Hi(f) : Hi(holim−−→
n

X−n) → Hi(Y )

is an isomorphism for all i ∈ Z. In particular, f : holim−−→n
X−n → Y is an isomorphism 

in T.

Proof. Fix i ∈ Z. By Lemma 3.10 we know that

Hi(j−n) : Hi(X−n) → Hi(holim−−→
n

X−n)

is an isomorphism for all −n < i. So, take n > max(M(i), −i) sufficiently large, so that

Hi(f−n) : Hi(X−n) → Hi(Y )

is also an isomorphism. Since we have by hypothesis

Hi(f) ◦Hi(j−n) = Hi(f−n),

we conclude that Hi(f) is an isomorphism, as desired. �
Remark 3.12. Let (X−k

j−k,−k−1−−−−−−→ X−k−1)k≥0 be a sequence such that X−k ∈ T≤M for 
all k ≥ 0, for some M ∈ Z, and assume that the t-structure 

⊕
k X−k exists in T. Then,⊕

k X−k and holim−−→k
X−k lie in T≤M . Indeed, given Z ∈ T≥M+1, we first have:

T(
⊕

X−k, Z) =
∏

T(X−k, Z) = 0.

k k
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Moreover, the space T(holim−−→k
X−k, Z) sits in the following exact sequence:

T(
⊕
k

X−k, Z[−1]) → T(holim−−→
k

X−k, Z) → T(
⊕
k

X−k, Z),

and by hypothesis we find out that T(holim−−→k
X−k, Z) = 0.

Remark 3.13. Let T be closed under countable coproducts. The above discussion actu-
ally shows that the t-structure (T≤0, T≥0) is closed under countable coproducts (Def-
inition 3.8). Now, assume that T is closed under countable coproducts and has a left 
separated t-structure. Then, we deduce that T− has a non-degenerate t-structure which 
is closed under countable coproducts. In particular, Lemma 3.10 and Corollary 3.11 can 

be applied in T− to sequences (X−k
j−k,−k−1−−−−−−→ X−k−1)k≥0 such that X−k ∈ T≤M for all 

k ≥ 0, for some M ∈ Z.

4. Bounded above twisted complexes

Twisted complexes on dg-categories were introduced in [3]. In this section we present 
a slightly different flavour of this notion which brings us to the definition of bounded 
above twisted complexes on a dg-category with cohomology in nonpositive degrees.

4.1. The dg-category of Maurer-Cartan objects

In this subsection we fix a k-linear dg-category A.

Definition 4.1. Let B ⊆ Cdg(A) be a full dg-subcategory. We define the dg-category 
MC(B) of Maurer-Cartan objects of B as follows:

• Objects of MC(B) are pairs (M, q), where M is an object of B, and q : M → M is a 
degree 1 morphism such that dq + q2 = 0.

• A degree p morphism f : (M, q) → (M ′, q′) is a degree p morphism M → M ′ in B. 
The differential of f is defined by:

dMC(B)(f) = dBf + q′f − (−1)pfq. (4.1)

It is easy to check that MC(B) is indeed a dg-category. If B is U-small, then also 
MC(B) is U-small. There is a totalisation dg-functor

Tot : MC(B) → Cdg(A), (4.2)

defined as follows:
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Tot(M, q) = (M,dM + q),

Tot((M, q) f−→ (M ′, q′)) = (M,dM + q) f−→ (M ′, dM ′ + q′).

In other words, an object (M, q) is mapped to the dg-module whose underlying 
graded module is the same as M but with differential changed to dM + q; a mor-
phism f : (M, q) → (M ′, q′) is mapped to itself viewed as a morphism of dg-modules 
(M, dM + q) → (M ′, dM ′ + q′). We can check:

Lemma 4.2. The above definition gives a well-defined dg-functor Tot which is fully faith-
ful.

Proposition 4.3. Assume that B ⊆ Cdg(A) is closed under taking shifts and finite direct 
sums. Then, MC(B) is a strongly pretriangulated dg-category.

Proof. Given an object (M, q) ∈ MC(B), its n-shift is given by

(M, q)[n] = (M [n], (−1)nq[n]). (4.3)

Given a closed and degree 0 morphism f : (M, q) → (M ′, q′), its cone is given by

C(f) = (M [1] ⊕M ′,
( −q[1] 0

f1(M,1,0) q′

)
). � (4.4)

4.2. Bounded above twisted complexes

Here we fix a dg-category A whose cohomology is concentrated in nonpositive degrees, 
namely:

Hi(A(A,B)) = 0, ∀ i > 0, ∀A,B ∈ A.

We identify A with its image under the Yoneda embedding A ↪→ Cdg(A). Let us denote 
by A⊕ the closure of A under finite direct sums and zero objects (in Cdg(A)). We denote 
by A← the full dg-subcategory of Cdg(A) whose objects are given by direct sums

⊕
i∈Z

Ai[−i], (4.5)

where Ai ∈ A⊕, and Ai = 0 for i 	 0. The dg-category A← is clearly U-small.

Definition 4.4. A (bounded above) one-sided twisted complex on A is a pair
(⊕i∈ZAi[−i], q) ∈ MC(A←), where q = (qji : Ai[−i] → Aj [−j])i,j∈Z is such that qji = 0
whenever j ≤ i.
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A one-sided morphism of degree p

f : (⊕i∈ZAi[−i], q) → (⊕i∈ZBi[−i], q′)

between one-sided twisted complexes is a morphism f = (f j
i : Ai[−i] → Bj [−j])i,j∈Z of 

degree p in MC(A←) such that f j
i = 0 whenever i − j + p > 0.

The dg-subcategory of (bounded above) one-sided twisted complexes and one-sided mor-
phisms in MC(A←) is denoted by Tw−(A).

The full dg-subcategory of Tw−(A) whose objects are the bounded one-sided twisted 
complexes, namely the objects of the form (

⊕
i Ai[−i], q) with Ai = 0 for i 	 0 or i � 0, 

is denoted by Tw−
b (A).

It is easily checked that the identity morphisms of one-sided twisted complexes are 
one-sided, and that the composition of one-sided morphisms is one-sided. Hence, Tw−(A)
is actually a well-defined (non-full) U-small dg-subcategory of MC(A←). Notice that if 
A ∈ A, then the object (A, 0) is a one-sided twisted complexes (A lying in degree 0). We 
shall often abuse notation and identify

A = (A, 0) ∈ Tw−(A). (4.6)

Moreover, Tot(A, 0) = Tot(A) is precisely the representable dg-module A(−, A).
Now, we would like to describe more explicitly the objects and morphisms in the dg-

category Tw−(A). The idea is that a (one-sided) twisted complex (⊕Ai[−i], q) should be 
a complex with a “twisted differential” q, the object Ai sitting in degree i. This involves 
just some care with sign conventions. We sum everything up in the following remark, 
leaving it to the reader to fill in the details.

Remark 4.5. An object X ∈ Tw−(A) can be viewed as a pair (Ai, q
j
i ), where Ai ∈ A⊕, 

Ai = 0 for i 	 0 and qji : Ai → Aj is a morphism of degree i − j + 1 for all i, j ∈ Z, 
such that the following identity holds:

(−1)jdqji + qjkq
k
i = 0, (4.7)

adopting the Einstein summation convention:

qjkq
k
i =

∑
k

qjkq
k
i .

A (not necessarily one-sided) morphism f : (Ai, q
j
i ) → (A′

i, q
′j
i ) of degree p can be 

viewed as a matrix of morphisms f j
i : Ai → Aj, where f j

i has degree i − j + p. f is 
one-sided if by definition we have f j

i = 0 if i − j + p > 0. The differential of f is given 
by:

(df)ji = (−1)jdf j
i + q′

j
kf

k
i − (−1)pf j

kq
k
i . (4.8)
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Notice that

Hom(⊕Ai[−i],⊕A′
j [−j]) ∼=

∏
i

⊕
j

Hom(Ai[−i], Aj [−j]),

using the universal property of the direct sum and the Yoneda Lemma, so the matrix (f j
i )

is such that, for any i, the terms (f j
i )j of the i-th column are almost all zero. The same 

is true for the matrices (qji ) and (q′ji ), hence the sums q′jkfk
i and f j

kq
k
j are actually finite.

Given a closed degree 0 map f : (Ai, q
j
i ) → (Bi, r

j
i ) of twisted complexes, its cone C(f)

can be described as the twisted complex

(Ai+1 ⊕Bi,

(
−qj+1

i+1 0
fj
i+1 rji

)
). (4.9)

Lemma 4.6. Tw−(A) is a strongly pretriangulated subcategory of MC(A←).

Proof. We only need to check that, given a closed degree 0 morphism in Tw−(A), namely 
a one-sided morphism f : Q → R between one-sided twisted complexes, the pretriangle 
in MC(A←)

Q
f−→ R → C(f) → Q[1]

lies in Tw−(A). But this is immediate. �
The reason why we defined Tw−(A) using one-sided morphisms is that the cone of 

a morphism between one-sided twisted complexes is not in general a one-sided twisted 
complex, unless this morphism is itself one-sided. The further requirement that A has 
cohomology concentrated in nonpositive degrees ensures that we are not really losing 
any relevant information, as we see in the following result.

Proposition 4.7. Let A be a dg-category with cohomology concentrated in nonpositive 
degrees. Then, the inclusion functor

Tw−(A) → MC(A←)

is quasi-fully faithful. In particular, the totalisation functor

Tot: Tw−(A) → Cdg(A) (4.10)

is quasi-fully faithful.

Proof. The totalisation MC(A←) → Cdg(A) is fully faithful and both Tw−(A) and 
MC(A←) are strongly pretriangulated, so we only need to show the following claims, for 
two given one-sided twisted complexes Q, R ∈ Tw−(A):
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(1) Given a closed degree 0 one-sided morphism f : Q → R, if f = dα for some (non 
necessarily one-sided) degree −1 morphism α : Q → R, then there exists a one-sided 
degree −1 morphism β : Q → R such that f = dβ;

(2) For any closed and degree 0 (not necessarily one-sided) morphism f : Q → R, there 
is a degree −1 morphism α : Q → R such that f − dα is a one-sided morphism.

Both claims follow from the following technical Lemma 4.8. �
Lemma 4.8. Let A be a dg-category with cohomology concentrated in nonpositive degrees. 
Let f : Q → R be a (non necessarily one-sided) degree p morphism between bounded 
above one-sided twisted complexes Q = (Qi, qij), R = (Ri, rij) ∈ Tw−(A). Assume that 
the differential df is one-sided. Then, there exists α : P → Q of degree p − 1 such that 
f − dα is one-sided.

Proof. By shifting, we can assume without loss of generality that f has degree 0 and 
that Qi = Ri = 0 for all i > 0. For all i > 0, we define ni = i − 1, and for i ≤ 0 we define 
recursively:

ni = min{i− 1, ni+1, k : fk
i �= 0} ∈ Z.

Notice that ni < i and ni+1 ≤ ni for all i.
For all i > 0 and for all k ∈ Z, set αk

i = 0. This verifies the (empty) conditions:

fk
i = (−1)kdαk

i + rksα
s
i + αk

sq
s
i if k < i,

αk
i = 0 if k ≥ i or k < ni.

Now, let i ≥ 0. Assume recursively that we have defined αk
j for all j ≥ i + 1 and for all 

k ∈ Z, such that:

fk
j = (−1)kdαk

j + rksα
s
j + αk

sq
s
j if k < j,

αk
j = 0 if k ≥ j or k < nj .

(4.11)

We are going to define αk
i so that the conditions (4.11) are satisfied. First, we set αk

i = 0
for all k ≥ i and for all k < ni. Then, we let k < i and we define αk

i recursively. For the 
base step, we define αni

i ; using that (df)ni
i = 0 by hypothesis since ni < i, we compute:

0 = (df)ni
i = (−1)nidfni

i +
∑
s<ni

rni
s fs

i −
∑
s>i

fni
s qsi

We have written explicit summation symbols for the sake of clarity: by construction ∑
s<ni

rni
s fs

i vanishes, and since s > ns ≥ ni for s > i, we can apply the inductive 
hypothesis to 

∑
s>i f

ni
s qsi , finding:



F. Genovese et al. / Advances in Mathematics 387 (2021) 107826 27
0 = (−1)nidfni
i − (−1)ni

∑
s>i,s<ni

dαni
s qsi −

∑
s>i,t<ni

(rni
t αt

sq
s
i + αni

t qtsq
s
i ).

Next, 
∑

s>i,t<ni
rni
t αt

sq
s
i vanishes because if s > i and t < ni then t < ns, and by 

definition αt
s = 0. We resume forgetting the summation symbols and we note that 

−qtsq
s
i = (−1)tdqti , hence we go on:

0 = (−1)nidfni
i + (−1)ni+1dαsq

s
i + (−1)tαni

t dqti

= (−1)nidfni
i + (−1)ni+1d(αni

t qti).

Finally, we have that (−1)nifni
i +(−1)ni+1αni

t qti is a cocycle of positive degree. Since A
ha cohomology concentrated in nonpositive degrees, this is a coboundary: we find αni

i

such that

fni
i = (−1)nidαni

i + αni
s qsi = (−1)nidαni

i + rni
s αs

i + αni
s qsi .

For the inductive step, we assume we have defined the required αh
i for h = ni, ni +

1, . . . , k − 1 satisfying (4.11), and we define αk
i which satisfies the analogue conditions. 

The technique is similar to the one used for the base step, and it is left to the reader.
At the end of this process, we get a degree −1 morphism α : Q → R. By constructions, 

it is immediate to see that

f j
i − (dα)ji = 0

whenever j < i. Namely, f − dα is one-sided. �
Remark 4.9. The construction A �→ Tw−(A) is functorial in A. Namely, given a dg-
functor F : A → B between dg-categories with cohomology concentrated in negative 
degrees, there is a functorially induced dg-functor Tw−(F ) : Tw−(A) → Tw−(B), de-
fined as follows:

Tw−(F )(⊕Ai[−i], q) = (⊕F (Ai)[−i], F (q)),

Tw−(F )((⊕Ai[−i], q) f−→ (⊕Bj [−j], r))

= (⊕F (Ai)[−i], F (q)) F (f)−−−→ (⊕F (Bj)[−j], F (r)),

(4.12)

where we abused notation a little, identifying F with its extension to A⊕. The above 
definition is good since clearly Tw−(F ) maps (bounded above) one-sided twisted complexes 
and one-sided morphisms to (bounded above) one-sided twisted complexes and one-sided 
morphisms.
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4.3. Twisted complexes and colimits

We shall work again with a dg-category A with cohomology concentrated in nonpos-
itive degrees. We first convince ourselves that “stupid truncations” are well defined for 
twisted complexes. Let X = (⊕iAi[−i], q) ∈ Tw−(A). For all n ∈ Z, define

σ≥nX = (⊕i≥nAi[−i], σ≥nq) ∈ Tw−
b (A), (4.13)

where σ≥nq is obtained from q by restriction:

(σ≥nq)ji = qji , i, j ≥ n. (4.14)

We easily see that

(−1)jd((σ≥nq)ji ) + (σ≥nq)jk(σ≥nq)ki
= (−1)jd(qji ) + qjkq

k
i = 0

if i, j ≥ n (since q is “one-sided”, the sum is over k ≥ i).
There are natural (closed, degree 0) inclusions in Tw−(A):

ϕn : σ≥nX → X, ϕn,n−1 : σ≥nX → σ≥n−1X (4.15)

such that the following diagram is commutative:

σ≥nX
ϕn,n−1

ϕn−1

σ≥n−1X

ϕn

X.

(4.16)

For the underlying graded modules, these maps are just the inclusions:⊕
i≥n

Ai[−i] →
⊕

i≥n−1
Ai[−i] → · · · →

⊕
i

Ai[−i].

They are clearly of degree 0. Let us verify, for example, that ϕn is closed. We compute 
directly:

d(ϕn)ji = (−1)jd((ϕn)ji ) + (σ≥n−1q)jk(ϕn)ki − (ϕn)jk(σ≥nq)ki
= (σ≥n−1q)ji (ϕn)ii − (ϕn)jk(σ≥nq)ki .

Now, if both i, j ≥ n, we have (ϕn)ii = 1, (ϕn)jj = 1 and (σ≥n−1q)ji = (σ≥nq)ji = qji , so 

d(ϕn)ji = 0. On the other hand, if i < n, we have (ϕn)ii = 0 and (σ≥nq)ji = 0, so the 
above expression is 0; instead, if j < n we have (ϕn)jj = 0, and if i < j also (ϕn)ii = 0, 
whereas if i ≥ j then (σ≥n−1q)ji = 0. So, in any case (dϕn)ji = 0, as claimed.
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Remark 4.10. Given X = (⊕iAi[−i], q) as above and n ∈ Z, there is a closed degree 0
map

βn : An−1[−n] → σ≥nX (4.17)

in Tw−(A), simply defined using the twisted differentials of X:

(βn)jn = qjn−1, j > n− 1.

By definition it has degree 0, and

(dβn)jn = (−1)jd(qjn−1) + qjk(βn)kn
= (−1)jd(qjn−1) + qjkq

k
n−1 = 0.

By definition

C(βn) = (An−1[−n + 1] ⊕ σ≥nX,
( 0 0

βn1(An−1,−n+1,−n) σ≥nq

)
) = σ≥n−1X.

The map ϕn,n−1 is precisely the natural inclusion σ≥nX → C(βn). In other words, for 
any n ∈ Z, there is a pretriangle in Tw−(A):

An−1[−n] βn−−→ σ≥nX
ϕn,n−1−−−−→ σ≥n−1X → An−1[−n + 1]. (4.18)

The twisted complex X can be reconstructed from the truncations σ≥nX by taking 
the colimit. More precisely, we have the following:

Proposition 4.11. Let n ∈ Z. The totalisation Tot(X), with the maps (Tot(ϕn−p))p≥0, is 
the colimit of (Tot(σ≥n−pX), Tot(ϕn−p,n−p−1))p≥0 in C(A) = Z0(Cdg(A)):

Tot(X) ∼= lim−−→
p≥0

Tot(σ≥n−pX). (4.19)

Proof. Assume we are given a dg-module M and closed degree 0 morphisms αn−p :
Tot(σ≥n−pX) → M for all p ≥ 0, such that αn−p = αn−p−1 ◦ Tot(ϕn−p,n−p−1) for all 
p ≥ 1. We want to define a unique α : Tot(X) → M such that α ◦Tot(ϕn−p) = αn−p for 
all p ≥ 0. We observe that

Tot(X) =
⋃
p≥0

ϕn−p(Tot(σ≥n−pX))

and the differential on Tot(ϕn−p)(Tot(σ≥n−pX)) is the restriction of the differential on 
Tot(X). So, for all y ∈ Tot(X)(A), y = Tot(ϕn−p)(y′) for a unique y′, for some p ≥ 0. 
Hence, we are forced to set
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α(y) = αn−p(y′).

Now it is easy to verify that α is well-defined and satisfies the required properties. �
It is known that the totalisation Tot(X) ∼= lim−−→p

Tot(σ≥n−pX), as a directed colimit, 
lies in the following short exact sequence in C(A):

0 →
⊕
p≥0

Tot(σ≥n−pX) 1−μ−−−→
⊕
p≥0

Tot(σ≥n−pX) ⊕p Tot(ϕn−p)−−−−−−−−−→ Tot(X) → 0, (4.20)

where μ is the morphism induced by

Tot(σ≥n−pX) Tot(ϕn−p,n−p−1)−−−−−−−−−−−→ Tot(σ≥n−p−1X) →
⊕
p≥0

Tot(σ≥n−pX).

Recall from Definition 3.2 that the (strictly dg-functorial) homotopy colimit
holim−−→p≥0 Tot(σ≥n−pX) is the cone in the following pretriangle in Cdg(A):

⊕
p≥0

Tot(σ≥n−pX) 1−μ−−−→
⊕
p≥0

Tot(σ≥n−pX) → holim−−→
p≥0

Tot(σ≥n−pX). (4.21)

In order to compare Tot(X) ∼= lim−−→p
Tot(σ≥n−pX) and holim−−→p

Tot(σ≥n−pX), we use the 
following general result:

Lemma 4.12. Let

A
f−→ B

g−→ C

a degreewise split exact sequence of maps in Z0(A), namely, there are degree 0 (not 
necessarily closed) maps σ : C → B and ρ : B → A such that B, together with those 
maps, is a biproduct of A and C:

gf = 0, ρσ = 0, gσ = 1, ρf = 1, σg + fρ = 1.

Then, the closed degree 0 morphism ϕ : C(f) → C defined by ϕ = (0, g) (with respect 
to the direct sum decomposition C(f) = A[1] ⊕ B) is an isomorphism in H0(A). In 
particular, ϕ makes the following diagram commute in Z0(A):

A
f

B C(f)

ϕ

A
f

B
g

C.
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Proof. We define a homotopy inverse of ϕ as follows. Observe that d(gσ) = gdσ = 0, so 
fρdσ = dσ − σgdσ = dσ. We set

ψ =
(
−δ
σ

)
: C → C(f),

where δ = 1(A,0,1)gdσ. This is a closed degree 0 morphism which serves as a homotopy 
inverse to ϕ. �

Now, we check that the short exact sequence (4.20) is degreewise split. To do 
so, it is sufficient to check that ⊕p Tot(ϕn−p) has a degree 0 section σ : Tot(X) →⊕

p Tot(σ≥n−pX). We define σ on Am[−m] to be the inclusion on the first summand:

Am[−m] →
⊕
p≥0

Am[−m] →
⊕
p≥0

Tot(σ≥n−pX), m ≥ n,

An−k[−n + k] →
⊕
p≥k

An−k[−n + k] →
⊕
p≥0

Tot(σ≥n−pX), k > 0.

It is immediate to check that ⊕p Tot(ϕn−p) ◦σ = 1. Hence, from Lemma 4.12 we deduce:

Proposition 4.13. The morphism ⊕p Tot(ϕn−p) induces an isomorphism

ϕ : holim−−→
p≥0

Tot(σ≥n−pX) → Tot(X) (4.22)

in K(A). Moreover, the following diagram is commutative in C(A) for all p ≥ 0:

Tot(σ≥n−pX)
Tot(ϕn−p)

holim−−→p≥0 Tot(σ≥n−pX)
ϕ

Tot(X),

(4.23)

where the vertical arrow is the canonical morphism to the homotopy colimit.

We have seen how an object X ∈ Tw−(A) can be reconstructed from its truncations 
σ≥nX. On the other hand, a twisted complex in Tw−(A) can be constructed from a 
suitable “increasing sequence”:

Proposition 4.14. Let A be a dg-category. Assume there is a sequence (An)n≤M of objects 
of A and a sequence (Xn)n≤M of twisted complexes in Tw−

b (A) such that:

XM = AM [−M ],

Xn−1 = C(An−1[−n] βn−−→ Xn),
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for suitable closed degree 0 morphisms βn : An−1[−n] → Xn, so that there is a pretriangle

An−1[−n] βn−−→ Xn
ϕn,n−1−−−−→ Xn−1 → An−1[n + 1]

in Tw−(A). Then, there is a twisted complex X ∈ Tw−(A) such that σ≥nX = Xn. In 
particular, the totalisation Tot(X) (together with the natural inclusions Tot(XM−p) →
Tot(X)) is a colimit of the sequence (Tot(XM−p) 

Tot(ϕM−p,M−p−1)−−−−−−−−−−−−→ Tot(Xm−p−1))p:

Tot(X) ∼= lim−−→
p

Tot(XM−p).

Proof. By construction we have Xn−1 = (An−1[−n + 1] ⊕Xn, 
( 0 0

βn1(An−1,−n+1,−n) qXn

)
). 

Hence, we may set

X =

⎛
⎝⊕

i≤M

Ai[−i], q

⎞
⎠ ,

where qji : Qi → Qj is set to be (qXk
)ji , for k ≤ min(i, j). This is well defined and by 

construction σ≥nX = Xn. The last part of the claim follows from Proposition 4.11. �
If X ∈ Tw−(A), then σ≥n−pX ∈ Tw−

b (A) for all p ≥ 0. From (4.18) it is easy to see 
that σ≥n−pX, as any object in Tw−

b (A), is obtained as an iterated cone of (shifts of) 
twisted complexes of the form A = (A, 0) with A ∈ A. In particular, Tw−

b (A) is strongly 
pretriangulated and the totalisation functor restricts to

Tot: Tw−
b (A) → pretr(A) ⊂ h-proj(A), (4.24)

and Tot(σ≥n−pX) ∈ pretr(A). Since h-proj(A) is closed under direct sums, cones and 
isomorphisms in K(A), it is also closed under homotopy colimits, and we deduce:

Proposition 4.15. For all X ∈ Tw−(A), the totalisation Tot(X) ≈ holim−−→p
Tot(σ≥n−pX)

is an h-projective dg-module. In particular, Tot induces a fully faithful dg-functor

Tot: Tw−(A) → h-proj(A) (4.25)

and hence also a fully faithful functor

H0(Tot) : H0(Tw−(A)) → D(A). (4.26)

It is well-known that the derived category D(A) of a dg-category A with cohomol-
ogy concentrated in nonpositive degrees has a t-structure whose heart is the category 
Mod(H0(A)) (see [1, Lem 2.2, Prop 2.3] for a proof when A is a dg-algebra). This allows 
us to use the results of §3.3 and describe the cohomology of the sequence of truncations 
(Tot(σ≥n−pX))p.
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Lemma 4.16. Let X ∈ Tw−(A) be of the form X = (
⊕

j≤M A[−j], q), and con-
sider the sequence (σ≥M−pX

ϕM−p,M−p−1−−−−−−−−−→ σ≥M−p−1X)p≥0 and the natural maps 
ϕM−p : σ≥M−pX → X (see (4.16)). Then, the induced maps in cohomology

Hi(Tot(ϕM−p,M−p−1)) : Hi(Tot(σ≥M−pX)) → Hi(Tot(σ≥M−p−1X)),

Hi(Tot(ϕM−p)) : Hi(Tot(σ≥M−pX)) → Hi(Tot(X))

are isomorphisms for i > M − p and epimorphisms for i = M − p.

Proof. Upon shifting, assume M = 0 so that X = (
⊕

j≤0 Aj [−j], q). By (4.18), we have 
a pretriangle in Cdg(A)

A−p−1[p] → Tot(σ≥−pX) → Tot(σ−p−1X) → A−p−1[p + 1],

where we identify A−p with A(−, A−p). Taking i-th cohomology, we get the following 
exact sequence:

Hi+p(A−p−1) →Hi(Tot(σ≥−pX)) → Hi(Tot(σ≥−p−1X))

→ Hi+p+1(A−p−1).

A has cohomology concentrated in nonpositive degrees, hence if i > −p we have that both 
Hi+p(A−p−1) = 0 and Hi+p+1(A−p−1) = 0, and if i = −p then only Hi+p+1(A−p−1) = 0. 
So, the morphism

Hi(Tot(σ≥M−pX)) → Hi(Tot(σ≥M−p−1))

is an isomorphism if i > −p and an epimorphism if i = −p, and our first claim is proved.
Now, we can apply Lemma 3.10 to the induced sequence (Tot(σ−pX) →

Tot(σ−p−1X))p in D(A): we deduce that the natural map

Tot(σ≥−pX) → holim−−→
p

Tot(σ−pX)

into the (strictly dg-functorial) homotopy colimit holim−−→p
Tot(σ−pX) is such that

Hi(Tot(σ≥−pX)) → Hi(holim−−→
p

Tot(σ−pX))

is an isomorphism for i > −p and an epimorphism for i = p. Hence, our second claim 
follows from Proposition 4.13: there is an isomorphism holim−−→p

Tot(σ−pX) → Tot(X) in 
K(A) such that the diagram (4.23) is commutative. �
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4.4. Twisted complexes and quasi-equivalences

It is well known that a dg-functor F : A → B induces a dg-functor

IndF : Cdg(A) → Cdg(B), (4.27)

which is left adjoint to the restriction functor

ResF : Cdg(B) → Cdg(A),

Y �→ Y ◦ F.

We refer to [7] for its definition and we recall from there some of its relevant properties:

• IndF is left adjoint to the restriction functor ResF : Cdg(B) → Cdg(A) and it pre-
serves representable modules. Namely, there is an isomorphism of complexes

IndF (A(−, A)) ∼= B(−, F (A)),

natural in A ∈ A.
• IndF preserves h-projective modules and hence induces a dg-functor

IndF : h-proj(A) → h-proj(B).

If F is fully faithful, the same is true for IndF ; if F is a quasi-equivalence, the same 
is true for IndF : h-proj(A) → h-proj(B).

• IndF preserves cones and shifts, hence it induces a dg-functor

IndF : pretr(A) → pretr(B).

If F is a quasi-equivalence, the same is true for IndF : pretr(A) → pretr(B).
Moreover, if i : A → pretr(A) is the natural inclusion induced by the Yoneda em-
bedding, then Indi : Cdg(A) → Cdg(pretr(A)) is an equivalence of dg-categories.

Remark 4.17. For all X ∈ h-proj(A) and Y ∈ h-proj(B), we have the adjunction iso-
morphism:

h-proj(B)(IndF (X), Y ) ∼= Cdg(A)(X,Y ◦ F ).

Hence, setting

(ResF )XY = Cdg(A)(X,Y ◦ F ) (4.28)
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we have a candidate quasi-functor ResF : h-proj(B) → h-proj(A) which is right adjoint 
to the dg-functor IndF : h-proj(A) → h-proj(B). Indeed, take an h-projective resolution 
Q(Y ◦ F ) → Y ◦ F ; for all X ∈ h-proj(A), it induces a quasi-isomorphism

h-proj(A)(X,Q(Y ◦ F )) → Cdg(A)(X,Y ◦ F ) = (ResF )XY ,

natural in X.

In a precise sense, the functor Tw−(−) (see Remark 4.9) can be viewed as a restriction 
of Ind:

Proposition 4.18. Let F : A → B be a dg-functor between dg-categories with cohomology 
concentrated in nonpositive degrees. Then, the following diagram is commutative (up to 
natural isomorphism):

Tw−(A)
Tw−(F )

TotA

Tw−(B)

TotB

h-proj(A)
IndF h-proj(B),

(4.29)

where TotA and TotB are the (quasi-fully faithful) totalisation functors (4.10), which 
have values in h-projective modules thanks to Proposition 4.15.

Proof. Since IndF � ResF , it is sufficient to find an isomorphism of complexes

Cdg(B)(Tot(Tw−(F )(X)),M) ∼= Cdg(A)(Tot(X),ResF (M)),

natural in X ∈ Tw−(A) and M ∈ Cdg(B). This can be explicitly written down; the 
details are left to the reader. �

The functor Tw−(−) preserves quasi-equivalence, as Ind does.

Proposition 4.19. Let F : A → B be a dg-functor between dg-categories with cohomology 
concentrated in nonpositive degrees. If F is a quasi-equivalence, then Tw−(F ) is a quasi-
equivalence.

Proof. We notationally identify both categories A and B with their images in Cdg(A)
and Cdg(B) under the Yoneda embedding. We know that IndF is a quasi-equivalence 
and both TotA and TotB are quasi-fully faithful, so by the commutativity of (4.29) we 
immediately deduce that Tw−(F ) is quasi-fully faithful.

In order to prove essential surjectivity in H0, let Y ∈ Tw−(B), and upon a suitable 
shift assume it is of the form:
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Y =

⎛
⎝⊕

i≤0
Bi[−i], r

⎞
⎠ .

From (4.18) we get a pretriangle in h-proj(B), for all p ≥ 0:

B−p−1[p] → TotB(σ≥−pY ) → TotB(σ≥−p−1Y ) → B−p−1[p + 1].

Since F is a quasi-equivalence, we can find X0 = A0 ∈ A such that F (A0) ≈ B0. Next, 
assume inductively that σ≥−pY ∼= Tw−(F )(X−p) in H0(Tw−(B)), where

X−p =

⎛
⎝ 0⊕

i=−p

Ai[−i], qp

⎞
⎠ ∈ Tw−

b (A).

We have that B−p−1 ∼= F (A−p−1) in H0(B) for some A−p−1 ∈ A; consider the diagram 
in h-proj(B):

B−p−1[p]

≈

TotB(σ≥−pY )

≈

TotB(σ≥−p−1Y )

≈

F (A−p−1[p])
TotB(Tw−(F )(β−p))

TotB(Tw−(F )(X−p)) TotB((Tw−(F )(X−p−1)).

By the inductive hypothesis the first two vertical arrows on the left are homotopy equiv-
alences, so that we can find a closed degree 0 map

F (A−p−1[p]) → TotB(Tw−(F )(Xp))

in h-proj(B), such that the leftmost square commutes up to homotopy. Following our 
convention (4.6), we have

F (A−p−1[p]) = TotB(Tw−(F )(A−p−1[p]))

Since TotB ◦ Tw−(F ) is quasi-fully faithful, the above map is (up to homotopy) of the 
form TotB(Tw−(F ))(β−p), for some closed degree 0 morphism β−p : A−p−1[p] → X−p in 
Tw−(A). We define X−p−1 = C(β−p) in Tw−(A), and clearly we can find the dotted ver-
tical homotopy equivalence which makes the above diagram commute in H0(h-proj(B)).

We can now apply Proposition 4.14 and find X ∈ Tw−(A) such that σ≥−pX = X−p

for all p ≥ 0. Recall from Proposition 4.13 that

TotB(Y ) ≈ holim−−→
p

TotB(σ≥−pY ),

TotA(X) ≈ holim−−→
p

TotA(X−p).
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Then, the commutative square in H0(h-proj(B))

TotB(σ≥−pY )

≈

TotB(σ≥−p−1Y )

≈

TotB(Tw−(F )(Xp)) TotB((Tw−(F )(Xp+1)),

tells us that

TotB(Y ) ≈ holim−−→
p

TotB(σ≥−pY )

≈ holim−−→
p

TotB(Tw−(F )(Xp)),

and moreover

holim−−→
p

TotB(Tw−(F )(Xp)) ∼= holim−−→
p

IndF (TotA(Xp))

∼= IndF (holim−−→
p

TotA(Xp))

≈ IndF (TotA(X))
∼= TotB(Tw−(X)),

whence Y ∼= Tw−(X) in H0(Tw−(B)), as we wanted. In the above chain of homotopy 
equivalences and isomorphisms, we used the commutativity of (4.29) and the fact that 
IndF commutes with homotopy colimits (we invite the reader to check this using that 
IndF is a dg-functor which preserves direct sums). �
5. Twisted complexes on homotopically locally coherent dg-categories

It is well-known that the derived category D(A) of a dg-category A with cohomology 
concentrated in nonpositive degrees has a (non-degenerate) t-structure whose heart is 
the category Mod(H0(A)) (see [1, Lem 2.2, Prop 2.3] for a proof when A is a dg-
algebra). In this section, we give conditions on A in order that the triangulated category 
H0(Tw−(A)) naturally inherits this t-structure.

5.1. Finitely presented modules and coherent categories

We start by briefly recalling the notion of (right) coherent category and some related 
results we shall need. For this subsection, we fix a k-linear category C.

Definition 5.1. A (right) C-module M ∈ Mod(C) is finitely presented if there is an exact 
sequence
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m⊕
j=1

C(−, C ′
j) →

n⊕
i=1

C(−, Ci) → M → 0,

for some objects C1, . . . , Cn and C ′
1, . . . , C

′
m in C. The full subcategory of finitely pre-

sented modules of Mod(C) is denoted by mod(C).

The following result is true without any additional hypothesis on C:

Proposition 5.2. The category mod(C) is closed under cokernels, extensions and direct 
summands in Mod(C).

Proof. It follows from [21, Tag 0517]. �
The definition of coherent category is as follows:

Definition 5.3. C is (right) coherent if mod(C) is an abelian category.

Since mod(C) has cokernels and it can be shown that the inclusion mod(C) ↪→ Mod(C)
preserves kernels, we deduce that C is coherent if and only if mod(C) is closed under 
kernels in Mod(C). Next, we give a very useful characterisation of coherent additive 
categories:

Definition 5.4. Let f : C → C ′ be a morphism in C. A weak kernel of f is a morphism 
g : D → C such that the sequence

C(−, D) g∗−→ C(−, C) f∗−→ C(−, C ′)

is exact in Mod(C). If every morphism in C has a weak kernel, we say that C admits 
weak kernels.

Proposition 5.5 ([13, Lemma 1]). Assume that C is additive. Then C is coherent if and 
only if it admits weak kernels.

5.2. Homotopically locally coherent dg-categories

By definition, the category of finitely presented modules on a coherent category is an 
abelian subcategory of the category of modules. In analogy, we now give a more general 
and “homotopically relevant” notion of coherence for dg-categories: this will have the key 
property that a suitable category of h-projective and “homotopically finitely presented” 
dg-modules will inherit both the property of being pretriangulated and the t-structure 
from the dg-category of h-projective dg-modules.

Remark 5.6. A t-structure on a pretriangulated dg-category A is by definition a t-
structure on the homotopy category H0(A). We shall denote by A≤n and A≥n the full 
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dg-subcategories of A with the same objects as the aisles H0(A)≤n and H0(A)≥n. More-
over, we shall denote by A+ and A− the full dg-subcategories of A whose objects are the 
same as H0(A)+ and H0(A)−. Given a quasi-functor F : A → B between dg-categories 
with t-structures, we say that it is t-exact (or that it preserves the t-structures) if H0(F )
does, namely if it commutes with the truncation functors (or, equivalently, if it preserves 
the aisles). If A is strongly pretriangulated, then the same is true for A+ and A−. For a 
given dg-category B, we shall sometimes write D−(B) and h-proj−(B) instead of D(B)−
and h-proj(B)−.

Definition 5.7. Let Q be a dg-category. A dg-module M ∈ Cdg(Q) is called homotopically 
finitely presented (in short, hfp) if Hi(M) is a finitely presented H0(Q)-module for all 
i ∈ Z:

Hi(M) ∈ mod(H0(Q)), ∀ i ∈ Z.

We denote by h-proj(Q)hfp and D(Q)hfp the full subcategories of respectively h-proj(Q)
and D(Q) whose objects are the homotopically finitely presented Q-dg-modules:

h-proj(Q)hfp = {M ∈ h-proj(Q) : Hi(M) ∈ mod(H0(Q)) ∀ i}, (5.1)

D(Q)hfp = {M ∈ D(Q) : Hi(M) ∈ mod(H0(Q)) ∀ i}. (5.2)

We shall also set:

h-proj−(Q)hfp = {M ∈ h-proj(Q)hfp : Hi(M) = 0 ∀ i 	 0}, (5.3)

D−(Q)hfp = {M ∈ D(Q)hfp : Hi(M) = 0 ∀ i 	 0}. (5.4)

Definition 5.8. A dg-category Q is called (right) homotopically locally coherent (in short,
hlc) if:

• Q is cohomologically concentrated in nonpositive degrees: for all A, A′ ∈ Q, we have 
Hi(Q(A, A′)) = 0 for all i > 0.

• H0(Q) is an additive and (right) coherent k-linear category.
• For all A ∈ Q, the represented dg-module Q(−, A) is homotopically finitely presented, 

in other words the H0(Q)-module Hi(Q(−, A)) is finitely presented for all i ∈ Z: 
Hi(Q(−, A)) ∈ mod(H0(Q)).

There is a nice cohomological characterisation of the dg-category Tw−(Q) when Q is 
a hlc dg-category, which will be proven in §5.3.

Theorem 5.9. Let Q be a hlc dg-category.
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(1) The dg-category h-proj(Q)hfp of homotopically finitely presented (hfp) modules is 
strongly pretriangulated and has a non-degenerate t-structure which is induced from 
h-proj(Q); its heart is mod(H0(Q)).
In other words, the category D(Q)hfp is a triangulated subcategory of D(Q) and it 
has a non-degenerate t-structure induced from D(Q); its heart is mod(H0(Q)).

(2) The totalisation dg-functor (4.25) induces a quasi-equivalence

Tot: Tw−(Q) ≈−→ h-proj−(Q)hfp.

In particular, Tw−(Q) has a unique non-degenerate right bounded t-structure with 
heart mod(H0(Q)) and such that the totalisation functor is t-exact. Moreover, 
h-proj−(Q)hfp is essentially U-small.

5.3. The resolution and the proof of Theorem 5.9

The proof of part 1 of Theorem 5.9 follows from the following two lemmas.

Lemma 5.10. The dg-category h-proj(Q)hfp is strongly pretriangulated. Moreover, its full 
dg-subcategory h-proj−(Q)hfp is strongly pretriangulated and contains the representables 
Q(−, A).

Proof. By definition, h-proj(Q)hfp is closed under shifts, so to see that it is strongly 
pretriangulated we only have to show that it is closed under cones. Let f : M → N a 
closed degree 0 morphism in h-proj(Q)hfp. It fits in the following pretriangle in h-proj(Q):

M
f−→ N

j−→ C(f) p−→ M [1].

Taking cohomology, we obtain the following exact sequence:

Hi(M) → Hi(N) → Hi(C(f)) → Hi+1(M) → Hi+1(N)

which also gives the following short exact sequence:

0 → coker(Hi(f)) → Hi(C(f)) → ker(Hi+1(f)) → 0.

Since Q is hlc, Hi(f) and Hi+1(f) are maps between objects in mod(H0(Q)). Also, since 
H0(Q) is coherent, both coker(Hi(f)), ker(Hi+1(f)) ∈ mod(H0(Q)). Since the category 
mod(H0(Q)) is closed under extensions, we deduce that

Hi(C(f)) ∈ mod(H0(Q)).

Finally, since Q is by hypothesis concentrated in nonpositive degrees, we immediately 
deduce that h-proj−(Q)hfp contains all the representables. �
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Lemma 5.11. Let Q be a hlc dg-category. Then, D(Q)hfp is a triangulated subcategory of 
D(Q) stable under truncations, hence it has a non-degenerate t-structure induced from 
D(Q); its heart is the category mod(H0(Q)).

Proof. D(Q)hfp is clearly stable under truncations. To see that it is closed under direct 
summands, we directly apply Proposition 5.2. Its heart is then given by the intersec-
tion of D(Q)hfp with the heart Mod(H0(Q)), which is immediately seen to be precisely 
mod(H0(Q)). �

Next, we prove part 2 of Theorem 5.9. We already know from Proposition 4.15 that 
the totalisation Tot: Tw−(Q) → h-proj(Q) is quasi-fully faithful, so we need to focus 
on its essential image. First, we prove that totalisations of twisted complexes in Tw−(Q)
land in the subcategory h-proj−(Q)hfp:

Lemma 5.12. Let Q be a hlc dg-category, and let X = (
⊕

i≥M Ai[−i], q) ∈ Tw−(Q). 
Then, Hi(Tot(X)) = 0 for i > M and Hi(Tot(X)) ∈ mod(H0(Q)) for all i ∈ Z. In 
particular, the totalisation functor restricted to Tw−(Q) has image in h-proj−(Q)hfp:

Tot: Tw−(Q) → h-proj−(Q)hfp.

Proof. Without loss of generality, we assume M = 0. By Lemma 4.16, we have for i ∈ Z

and −p < i that

Hi(Tot(X)) ∼= Hi(Tot(σ≥−pX)).

So, it is enough to prove the statement for σ≥−pX, for all p ≥ 0. We argue by induction. 
For the base step, we have σ≥0X = A0 ∈ Q and the claim follows since Q is hlc. Next, 
assume the thesis is true for σ≥−pX. From (4.18) we obtain a pretriangle in Cdg(Q):

Q(−, A−p−1)[p] → Tot(σ≥−pX) → Tot(σ≥−p−1X) → Q(−, A−p−1)[p + 1]. (5.5)

Taking i-th cohomology, we get an exact sequence in Mod(H0(Q)):

Hi+p(Q(−, A−p−1))
s−→ Hi(Tot(σ≥−pX)) → Hi(Tot(σ≥−p−1X))

→ Hi+p+1(Q(−, A−p−1))
t−→ Hi+1(Tot(σ≥−pX)).

Now, if i > 0 we have

Hi+p(Q(−, A−p−1)) = 0, Hi+p+1(Q(−, A−p−1)) = 0,

so we have an isomorphism

Hi(Tot(σ≥−pX)) ∼−→ Hi(Tot(σ≥−p−1X))
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and from the inductive hypothesis we conclude that Hi(Tot(σ≥−p−1X)) = 0. For the 
other claim, we observe that the above long exact sequence induces the following short 
exact sequence:

0 → coker(s) → Hi(Tot(σ≥−p−1X)) → ker(t) → 0.

By the inductive hypothesis and since Q is hlc, s and t are maps between objects 
in mod(H0(Q)). Also, since H0(Q) is coherent, both coker(s), ker(t) ∈ mod(H0(Q). 
Since mod(H0(Q)) is closed under extensions, we deduce that Hi(Tot(σ≥−p−1X)) ∈
mod(H0(Q)), as claimed. �

The following is a key technical result which allows us to “resolve” objects by means 
of twisted complexes. We write it down in some generality.

Proposition 5.13. Let D be a strongly pretriangulated dg-category; we identify it with its 
pretriangulated hull: pretr(D) = D. Assume that D has a t-structure (D≤0, D≥0). We 
denote as usual with Hi(−) the i-th cohomology functor H0(D) → H0(D)♥; we shall 
write Hi(f) instead of the more precise Hi([f ]), if [f ] is the cohomology class of a closed 
degree 0 morphism f .

Assume moreover there is a full dg-subcategory Q ⊆ D≤0 with cohomology concen-
trated in nonpositive degrees. We recall that the inclusion Q ⊂ D induces a fully faithful 
dg-functor pretr(Q) ↪→ pretr(D) = D (see the properties of Ind in §4.4); the totalisation 
functor (4.24) restricted to Tw−

b (Q) induces a (quasi-fully faithful) dg-functor:

TQ : Tw−
b (Q) Tot−−→ pretr(Q) ↪→ D. (5.6)

Moreover, assume that for any object A ∈ D− there is an object Q ∈ Q and a closed 
degree 0 morphism α : Q → A with the property that H0(α) : H0(Q) → H0(A) is an 
epimorphism in H0(D)♥.

Fix A ∈ D≤M . There is a sequence (Qn)n≤M of objects of Q and a sequence (Xn)n≤M

of twisted complexes in Tw−
b (Q) such that

XM = QM [−M ],

Xn−1 = C(Qn−1[−n] → Xn),

for suitable closed degree 0 morphisms Qn−1[−n] → Xn in Tw−
b (Q), so that there are 

pretriangles in D

Qn−1[−n] → TQ(Xn) jn,n−1−−−−→ TQ(Xn−1) → Qn−1[−n + 1]

and Xn is concentrated in degrees between n and M :
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Xn =
(

M⊕
k=n

Qk[−k], qXn

)
.

Also, TQ(Xn) ∈ D≤M for all n. Moreover, there exist closed degree 0 morphisms 
αn : TQ(Xn) → A in D, such that the following diagram is (strictly) commutative:

TQ(Xn)
αn

jn,n−1

A

TQ(Xn−1).
αn−1

(5.7)

The morphism αn induces a map in H0(D)♥ for all i ∈ Z:

Hi(αn) : Hi(TQ(Xn)) → Hi(A)

which is an isomorphism for i > n and an epimorphism for i = n. Also the induced map

Hi(jn,n−1) : Hi(TQ(Xn)) → Hi(TQ(Xn−1))

is an isomorphism for i > n and an epimorphism for i = n.

Proof. Upon replacing A with a suitable shift, we assume that M = 0, so that A ∈ D≤0

and in particular Hi(A) = 0 for all i < 0. We construct the sequences (Qn)n≥0 and 
(Xn)n≥0 inductively, together with the maps αn : TQ(Xn) → A. For notational ease, we 
shall drop TD when taking cohomology, writing for instance Hi(αn) : Hi(Xn) → Hi(A).

Base step. By hypothesis, we can find a closed degree 0 map in D

α0 : Q0 → A, (5.8)

where Q0 ∈ Q ⊂ D≤0. Clearly, we have Q0 = TQ(X0), where X0 = (Q0, 0) = Q0 ∈
Tw−

b (Q). The map H0(α0) is an epimorphism by hypothesis, and Hi(α0) = 0 is an 
isomorphism for all i < 0, since (again by hypothesis) both A and X0 have cohomology 
concentrated in nonpositive degrees.

Inductive step. Assume we have the objects Qk, the twisted complexes Xk and the 
maps αk : A → Xk with the required properties for k ≥ n (n ≤ 0). Now, set

Cn = C(αn : TQ(Xn) → A)[−1] ∈ D−.

By hypothesis, we find a closed degree 0 map

Qn−1 → Cn[n]
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which is an epimorphism in H0(D)♥ upon taking H0. Shifting, we find a closed degree 
0 map

pn : Qn−1[−n] → Cn

such that Hn(pn) : Hn(Qn−1[−n]) → Hn(Cn) is an epimorphism. Consider the following 
diagram in D:

Qn−1[−n]
βn

pn

TQ(Xn)
jn,n−1

TQ(Xn−1)

αn−1

Cn TQ(Xn)
αn

A.

(5.9)

The morphism βn is defined as the composition making the left square (strictly) com-
mute. Now, by hypothesis Xn = (

⊕0
k=n Qk[−k], qXn

) is concentrated in degrees between 
n and 0, and Qn−1[−n] is concentrated in degree n as a twisted complex. Hence, the closed 
degree 0 map βn necessarily comes from a unique one-sided morphism bn : Qn−1[n] → Xn

in Tw−
b (Q). By definition, Xn−1 = C(Qn−1[−n] bn−→ Xn). It is the twisted complex de-

fined by

Xn−1 = (Qn−1[−n + 1] ⊕Xn,
( 0 0

bn1(Qn−1,−n+1,−n) qXn

)
). (5.10)

We notice here that TQ(Xn−1) ∈ D≤0, since it is the cone of a map between objects 
in D≤0. The morphism jn,n−1 is induced by the natural inclusion Xn → Xn−1. Next, 
notice that αn ◦βn is 0 in the homotopy category (the rows of the above diagram induce 
distinguished triangles in H0(D)), hence we can find a degree 0 morphism cn : Qn−1[−n +
1] → A such that

dcn − αnβn1(Qn−1,−n+1,−n) = 0.

So, we may define the closed degree 0 morphism αn−1 : TQ(Xn−1) → A as

αn−1 = (cn, αn), (5.11)

and by construction this makes the right square of the above diagram (strictly) commute.
Next, consider the following diagram induced by (5.9) in cohomology (the rows are 

exact):

Hi(Qn−1[−n])

Hi(pn)

Hi(Xn)
Hi(jn,n−1)

Hi(Xn−1)

Hi(αn−1)

Hi+1(Qn−1[−n]) Hi+1(Xn)

Hi(Cn) Hi(Xn)
Hi(αn)

Hi(A) Hi+1(Cn) Hi+1(Xn).
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Since Hi(αn) is an isomorphism for i > n and Hn(αn) is an epimorphism, we de-
duce by exactness of the lower row that Hi(Cn) ∼= 0 for all i > n. Next, observe that 
Hi(Qn−1[−n]) ∼= 0 for all i > n, since the objects in Q have cohomology concentrated 
in nonpositive degrees; notice that this implies that Hi(jn,n−1) is an isomorphism for 
i > n and a monomorphism for i = n, as required. Moreover, Hi(jn) = 0 is trivially an 
isomorphism for i > n, and recall that Hn(jn) is an epimorphism by construction. So, 
we easily deduce (for example, using the Five Lemma) that Hi(αn−1) is an isomorphism 
for all i ≥ n.

In order to show that Hn−1(αn−1) is an epimorphism, consider the following diagram:

Hn−1(Xn) Hn−1(Xn−1)

Hn−1(αn−1)

Hn(Qn−1[−n])

Hn(pn)

Hn(Xn)

Hn−1(Xn) Hn−1(A) Hn(Cn) Hn(Xn).

We can now conclude by the version of the 5-lemma recalled in Lemma 5.14. �
Lemma 5.14. Consider the following commutative diagram in any abelian category:

A
α

B
β

f

C
γ

g

D

A
α′

B′ β′

C ′ γ′

D.

Assume that the rows are exact and that g is a epimorphims. Then, f is an epimorphism.

Remark 5.15. The above proof, with the suitable changes, applies to a more general setting 
where we are given a cohomological functor H0 : H0(D) → A with values in any abelian 
category (not necessarily coming from a t-structure on D) and a full dg-subcategory 
Q ⊂ D concentrated in nonpositive degrees such that Hi(Q) = 0 for any i > 0 and 
Q ∈ Q. In that case, we may resolve any A ∈ D such that Hi(A) = 0 for i > M with a 
sequence of twisted complexes (Xn) of objects of Q such that Hi(Xn) = 0 for all i > M . 
We won’t need the result in such a generality, and we leave this to the interested reader.

In the case where D has a non-degenerate right bounded t-structure which is closed 
under countable coproducts (Definition 3.8), we may actually reconstruct any object 
A ∈ D− = D as the homotopy colimit of its resolution.

Corollary 5.16. In the setting of the above Proposition 5.13, assume that D has a non-
degenerate right bounded t-structure which is closed under countable coproducts (Def-
inition 3.8). The object A ∈ D≤M , with the maps αM−p : TQ(XM−p) → A and the 



46 F. Genovese et al. / Advances in Mathematics 387 (2021) 107826
“trivial homotopies” hM−p = 0: TQ(XM−p) → A, is the homotopy colimit of the se-
quence (TQ(XM−p) 

jM−p,M−p−1−−−−−−−−→ TQ(XM−p−1))p. Namely, the induced morphism (recall 
Remark 3.4)

holim←−−
p

(α∗
M−p, 0) : D(A,−) → holim←−−

p

D(TQ(XM−p),−) (5.12)

is an isomorphism in D(Dop). In particular, any A ∈ D can be reconstructed as a 
homotopy colimit as above.

Proof. Upon shifting, assume M = 0. First, we notice that holim←−−p
(α∗

−p, 0) is well defined, 
since (5.7) is strictly commutative. By hypothesis, the aisle H0(D)≤0 is closed under 
countable coproducts and TQ(X−p) ∈ D≤0 for all p; hence, by Lemma 3.5, we know that 
(TQ(X−p) 

j−p,−p−1−−−−−−→ TQ(X−p−1))p admits a homotopy colimit holim−−→p
TQ(X−p) in D. 

Namely, we have closed degree 0 maps j−p : TQ(X−p) → holim−−→p
TQ(X−p) and homotopies 

h−p which induce an isomorphism in D(Dop):

holim←−−
p

(j∗−p, h
∗
−p) : D(holim−−→

p

TQ(X−p),−) → holim←−−
p

D(TQ(X−p),−).

By the universal property (3.9), we find a closed degree 0 map α : holim−−→p
TQ(X−p) → A

such that the following diagram is commutative in D(Dop):

D(A,−)
holim←−n

(α∗
−p,0)

α∗

holim←−−n
D(TQ(X−p),−)

D(holim−−→p
TQ(X−p),−),

holim←−n
(j∗n,h

∗
n)

and moreover [α][j−p] = [α−p] in H0(D). Now, we know from the above Proposition 5.13
that both Hi(j−p,−p−1) and Hi(α−p) are isomorphisms for i > −p and epimorphisms for 
i = p. So, we may apply Corollary 3.11 and find that [α] : holim−−→p

TQ(X−p) → A is an iso-
morphism in H0(D). Hence, α∗ : D(A, −) → D(holim−−→p

TQ(X−p), −) is an isomorphism 
in D(Dop), and we conclude that holim←−−p

(α∗
−p, 0) is also an isomorphism in D(Dop), as 

claimed. �
Finally, we prove the essential surjectivity of H0(Tot) : H0(Tw−(Q)) →

H0(h-proj−(Q)hfp), which completes the proof of Theorem 5.9:

Proposition 5.17. Let Q be a hlc dg-category, and let M ∈ h-proj−(Q)hfp. Then, there 
exists X ∈ Tw−(Q) such that Tot(X) ∼= M in H0(h-proj(Q)).
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Proof. It is sufficient to show that there exist X ∈ Tw−(Q) and a quasi-isomorphism 
Tot(X) → M , for both Tot(Y ) and M are h-projective. We recall Lemma 5.10 and we 
apply Proposition 5.13 with:

• D = h-proj−(Q)hfp, which is a strongly pretriangulated full dg-subcategory of 
h-proj(Q) and has a t-structure (Lemma 5.11).

• Q = Q viewed as a full subcategory of h-proj−(Q)hfp via the Yoneda embedding.

Notice that D = D−, and the dg-functor TQ : Tw−
b (Q) → D is precisely the totalisation 

Tot: Tw−
b (Q) → h-proj−(Q)hfp. The above data satisfy the hypotheses of Proposi-

tion 5.13: Q is cohomologically concentrated in negative degrees, it lies in the aisle 
h-proj−(Q)hfp

≤0 , and every N ∈ D is such that H0(N) ∈ mod(H0(Q)) is finitely gener-
ated, so that we have an epimorphism

H0(Q(−, B)) → H0(N),

and by the Yoneda Lemma this is induced by a closed degree 0 morphism Q(−, B) → N .
Now, for simplicity, assume that Hi(M) = 0 for all i > 0. By Proposition 5.13, we 

find a sequence (X−p)p≥0 of twisted complexes and maps α−p : Tot(X−p) → M such 
that the diagram

Tot(X−p)
α−p

j−p,−p−1

M

Tot(X−p−1)
α−p−1

is (strictly) commutative in D.
We may apply Proposition 4.14 and find X ∈ Tw−(Q) and such that X−p =

σ≥−pX. We know from Proposition 4.11 that Tot(X) together with the natural in-
clusions j−p : Tot(X−p) → Tot(X) is the colimit of the sequence (Tot(X−p) 

j−p,−p−1−−−−−−→
Tot(X−p−1))p, so the maps α−p induce a map α : Tot(X) → M such that α◦j−p = α−p. 
Given i ∈ Z, these relations give in particular commutative diagrams:

Hi(Tot(σ≥−pX))
Hi(α−p)

Hi(j−p)

Hi(M)

Hi(Tot(X)).
Hi(α)

Now, choose any p such that i > −p. We know from Lemma 4.16 that Hi(j−p) is 
an isomorphism. Moreover, we know from Proposition 5.13 that Hi(α−p) is also an 
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isomorphism. Hence, Hi(α) is an isomorphism; since i ∈ Z is arbitrary, we conclude that 
α : Tot(X) → M is a quasi-isomorphism, as claimed. �
6. Derived projectives and injectives

6.1. Basic definitions and properties

Definition 6.1 ([19, §5.1]). Let T be a triangulated category with t-structure, and as usual 
denote

H0 = τ≤0τ≥0 : T → T♥.

(1) Assume that for all projectives P ∈ Proj(T♥) in the heart the cohomological functor 
T♥(P, H0(−)) : T → Mod(k) is corepresentable:

T♥(P,H0(−)) ∼= T(S(P ),−).

We say that S(P ) is the derived projective associated to P . In this case, we also 
say that T has derived projectives. If A is a pretriangulated dg-category such that 
H0(A) has a t-structure, we shall say that A has derived projectives if H0(A) has 
this property.

(2) Dually, assume that for all injectives I ∈ Inj(T♥) in the heart, the cohomological 
functor T♥(H0(−), I) : Top → Mod(k) is representable:

T♥(H0(−), I) ∼= T(−, L(I)).

We say that L(I) ∈ T is the derived injective associated to I. In this case, we also 
say that T has derived injectives. If A is a pretriangulated dg-category such that 
H0(A) has a t-structure, we shall say that A has derived injectives if H0(A) has 
this property.

Remark 6.2. Derived injectives over non-positively graded dg-algebras, with respect to the 
standard t-structure, have been investigated in [20].

We now sum up from [19, §5.1] some basic properties of derived injectives and pro-
jectives:

Proposition 6.3. Let T be a triangulated category with t-structure.

(1) Assume that T has derived projectives as in Definition 6.1 part 1. Then, for any 
P ∈ Proj(T♥), we have:
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S(P ) ∈ T≤0, (6.1)

H0(S(P )) ∼= P. (6.2)

If Q ∈ Inj(T♥) is another projective, we have

T(S(P ), S(Q)[i]) ∼=
{

T♥(P,Q) if i = 0,
0 if i > 0,

(6.3)

for i ∈ Z. In particular, S : Proj(T♥) → T, P �→ S(P ) defines a fully faithful func-
tor. Its essential image, which is the full subcategory of derived projectives of T, is 
denoted by DGProj(T). If T = H0(A) for some dg-category A, we simplify notation 
and write DGProj(H0(A)) = DGProj(A), viewing it as a full dg-subcategory of A.

(2) Dually, assume that T has derived injectives as in Definition 6.1 part 2. Then, for 
any I ∈ Inj(T♥), we have:

L(I) ∈ T≥0, (6.4)

H0(L(I)) ∼= I. (6.5)

If J ∈ Inj(T♥) is another injective, we have

T(L(I), L(J)[i]) ∼=
{

T♥(I, J) if i = 0,
0 if i > 0,

(6.6)

for i ∈ Z. In particular, L : Inj(T♥) → T, I �→ L(I) defines a fully faithful functor. 
Its essential image, which is the full subcategory of derived injectives of T, is denoted 
by DGInj(T). If T = H0(A) for some dg-category A, we simplify notation and write 
DGInj(H0(A)) = DGInj(A), viewing it as a full dg-subcategory of A.

Remark 6.4. If T has derived projectives as in Definition 6.1 part 2, then the same is 
true for T− and DGProj(T−) = DGProj(T). This follows immediately from the fact 
that (T−)♥ = T♥ and the fact that S(P ) ∈ T− for all injectives P ∈ Proj(T♥). Dually, 
if T has derived injectives as in Definition 6.1 part 1, then the same is true for T+ and 
DGProj(T+) = DGProj(T).

Remark 6.5. Assume that T has derived projectives, and let {Pi : i ∈ I} be a family of 
objects in Proj(T♥) such that P =

⊕
i Pi exists in T. Then, H0(P ) is a coproduct of 

the Pi in T♥ and in particular is in Proj(T♥). To see this, first note that 
⊕

i Pi ∈ T≤0, 
because

T(
⊕

Pi, Y ) ∼=
∏

T(Pi, Y ) = 0,

i i
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for all Y ∈ T≥1, since Pi ∈ T♥ ⊆ T≤0. Then, for all A ∈ T♥ we have:

∏
i

T♥(Pi, A) ∼= T(P,A)

∼= T(τ≥0(P ), A)
∼= T♥(H0(P ), A),

naturally in A. Being a coproduct of projectives in T♥, the object H0(P ) is itself projec-
tive.

Moreover, we have

T(S(H0(P )), X) ∼= T♥(H0(P ), H0(X))

∼=
∏
i

T♥(Pi, H
0(X))

∼=
∏
i

T(S(Pi), X)

∼= T(
⊕
i

S(Pi), X),

naturally in X ∈ T. We deduce that S(H0(P )) ∼=
⊕

i S(Pi); in other words, S(−) com-
mutes with coproducts. Dually, one can prove that L(−) commutes with direct products 
if T has derived injectives.

Derived injectives or projectives can be used to make resolutions of objects of trian-
gulated categories with t-structures, much like projectives are used to resolve objects in 
abelian categories. The starting point for this is the following definition:

Definition 6.6. Let T be a triangulated category with t-structure. We say that T has 
enough derived projectives if T has derived projectives as in Definition 6.1 and moreover 
the heart T♥ has enough projectives. Dually, we say that T has enough derived injectives 
if T has derived injectives and T♥ has enough injectives.

If A is a pretriangulated dg-category with a t-structure, we say that A has enough 
derived projectives (or injectives) if H0(A) has this property.

Remark 6.7. If T has enough derived projectives, then for any given A ∈ T we can find 
a projective P ∈ Proj(T♥) and an epimorphism α : P � H0(A). From this, directly 
applying the definition, we find a morphism α : S(P ) → A in T such that H0(α) is 
identified with α via the isomosphism H0(S(P )) ∼= P .

In the following example, we explicitly characterise the derived projectives of 
h-proj(Q)hfp.
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Example 6.8. Let Q be a hlc dg-category such that H0(Q) is Karoubian. Then, we know 
from Theorem 5.9 that the triangulated categories D(Q)hfp and D−(Q)hfp have natural 
t-structures with the same heart given by mod(H0(Q)). By [17, Proposition A.14], we 
know that the projectives of mod(H0(Q)) are precisely given by (the essential image 
of) H0(Q), namely the modules isomorphic to the representables H0(Q)(−, A) for some 
A ∈ Q. By the Yoneda lemma, we have for all M ∈ h-proj(Q)hfp:

mod(H0(Q))(H0(Q)(−, A), H0(M)) ∼= H0(M)(A)
∼= D(Q)(Q(−, A),M)

We conclude that DGProj(h-proj(Q)hfp) is precisely given by the dg-modules iso-
morphic in H0(h-proj(Q)) to the representable dg-modules. The same is true for 
DGProj(h-proj−(Q)hfp) by Remark 6.4. A little more precisely, we have that the Yoneda 
embedding Q ↪→ h-proj−(Q)hfp induces a quasi-equivalence

Q ≈−→ DGProj(h-proj−(Q)hfp) = DGProj(h-proj(Q)hfp). (6.7)

Since Tw−(Q) is quasi-equivalent to h-proj−(Q)hfp via the totalisation functor, we also 
deduce that DGProj(Tw−(Q)) is the closure in H0(Tw−(Q)) of the objects of the form 
Q = (Q, 0) ∈ Tw−(Q).

The following lemma is an improvement of Lemma 5.10.

Lemma 6.9. Let Q be a hlc dg-category such that H0(Q) is Karoubian. Then, the full dg-
subcategory h-proj(Q)hfp of h-proj(Q) defined in (5.1) has enough derived projectives. 
Moreover, if H0(Q) is closed under countable coproducts, then the same is true for 
H0(h-proj(Q)hfp)

Proof. Clearly the homotopy category of h-proj(Q)hfp is equivalent to the triangulated 
category D(Q)hfp (defined in (5.2)), and from Theorem 5.9 we know that it has a 
t-structure induced from D(Q) with heart mod(H0(Q)). Since H0(Q) is Karoubian, 
we know that the representable H0(Q)-modules are precisely the projectives of the 
heart mod(H0(Q)), and by the above Example 6.8 we know that for every projec-
tive H0(Q)(−, A) the associated derived projective is Q(−, A). Moreover, the heart 
mod(H0(Q)) has enough projectives, hence by definition h-proj(Q)hfp has enough de-
rived projectives.

Next, we assume that H0(Q) has countable coproducts, and we show that the same 
is true for D(Q)hfp. Let (Mj)j∈J be a countable family of objects there. Then, for all 
i ∈ Z, we have projective presentations

H0(Q)(−, Aj) → H0(Q)(−, Bj) → Hi(Mj).

Taking direct sums in D(Q) we find an exact sequence:
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⊕
j∈J

H0(Q)(−, Aj) →
⊕
j∈J

H0(Q)(−, Bj) →
⊕
j∈J

Hi(Mj) ∼= Hi(
⊕
j∈J

Mj).

By hypothesis, ⊕jH
0(Q)(−, Aj) and ⊕jH

0(Q)(−, Bj) are representable (say, respec-
tively by objects A and B in H0(Q)) and we get an exact sequence:

H0(Q)(−, A) → H0(Q)(−, B) → Hi(
⊕
j∈J

Mj),

namely Hi(M) ∈ mod(H0(Q)), as desired. �
For a given dg-category, the property of being homotopically locally coherent and 

with Karoubian H0 is precisely what makes it a “dg-category of derived projectives of a 
dg-category with enough derived projectives”, in virtue of Example 6.8 and the following 
result:

Lemma 6.10. Let A be a pretriangulated dg-category with a t-structure and enough derived 
projectives. Then, the dg-category DGProj(A) is hlc and H0(DGProj(A)) is Karoubian.

Moreover, if the t-structure on A is closed under countable direct sums (Defini-
tion 3.8), then the coproduct 

⊕
i S(Pi) in H0(A)≤0 of any countable collection of objects 

in H0(DGProj(A)) lies in H0(DGProj(A)). In particular, H0(DGProj(A)) is closed 
under countable direct sums.

Proof. For simplicity, set Q = DGProj(A). We know that S(−) : Proj(H0(A)♥) →
H0(Q) is an equivalence, hence H0(Q) is additive, coherent and Karoubian since 
Proj(H0(A)♥) is such (by the dual of [17, Remark A.13]. To go on to show that Q
is hlc, we let Q ∈ Q and consider Hi(Q(S(P ), Q)) for any given projective P in the 
heart. We have:

Hi(Q(S(P ), Q)) ∼= H0(A(S(P ), Q[i]))
∼= H0(A)♥(P,Hi(Q)).

Next, consider a projective presentation of Hi(Q), which exists since H0(A)♥ has enough 
projectives:

P1 → P0 → Hi(Q) → 0.

Since P is projective, we get an exact sequence

H0(A)♥(P, P1) → H0(A)♥(P, P0) → H0(A)♥(P,Hi(Q)) → 0.

Next, recalling that S(−) : Proj(H0(A)♥) → H0(Q) is an equivalence, we get an exact 
sequence:
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H0(Q)(S(P ), S(P1)) → H0(Q)(S(P ), S(P0)) → Hi(Q(S(P ), Q)) → 0.

This sequence is natural in P , hence also in S(P ) ∈ H0(Q), since S(−) is fully faithful. 
We conclude that Hi(Q(−, Q)) is finitely presented, as desired.

Finally, the second part of the claim follows from Remark 6.5. Indeed, the coproduct ⊕
i Pi exists in H0(A)≤0 since this aisle is closed under direct sums, and then we have 

that

S(H0(P )) ∼=
⊕
i

S(Pi) ∈ H0(Q). �

6.2. Functors preserving derived injectives or projectives

In this part we give sufficient conditions in order that a given exact functor F : T → S
between categories which have derived projectives or injectives actually preserves the sub-
categories of derived projectives or injectives. To this purpose, we start by investigating 
the behaviour of adjoints with respect to t-structures. Recall that F is right (left) t-exact 
if F (S≤0) ⊂ T≤0 (F (S≥0) ⊂ T≥0) holds. Furthermore we say that F is t-exact if it is 
both left and right t-exact. We recall the following standard result.

Lemma 6.11. Assume we are given an adjunction F � G : T � S of exact functors 
between triangulated categories with t-structures. Then F is right t-exact if and only if 
G left t-exact.

Proof. Assume that G(S≥0) ⊆ T≥0. Playing with shifts, we notice that this implies that 
G(S≥n) ⊆ T≥n for all n ∈ Z. Now, let A ∈ T≤0. Recall that F (A) ∈ S≤0 is equivalent 
to

S(F (A), B) = 0, ∀B ∈ S>0.

On the other hand, for any B ∈ S>0, we have

S(F (A), B) ∼= T(A,G(B)) ∼= 0,

since by hypothesis G(B) ∈ T>0. The other implication is proved in the same fashion. �
Any exact functor F : T → S between triangulated categories with t-structures in-

duces a functor between the hearts:

F♥ : T♥ → S♥,

A �→ H0(F (A)) = τ≤0τ≥0F (A).
(6.8)

This formula simplifies to τ≥0F (A) (τ≤0F (A)) is F if right (left) t-exact (in which case 
F♥ : T♥ → S♥ is right (left) exact) and to A �→ F (A) if F is t-exact (in which case F♥

is exact).
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Lemma 6.12. Assume we are given an adjunction

F � G : T � S

of exact functors between triangulated categories with t-structures. Then, if F is right t-
exact (or equivalently G is left t-exact) then the above adjunction induces an adjunction

F♥ � G♥ : T♥ � S♥

of the functors induced between the hearts.

Proof. We may compute, for any A ∈ T♥ and B ∈ S♥:

S♥(F♥(A), B) ∼= S♥(τ≥0F (A), B) (F is right t-exact)
∼= S(F (A), B) (B ∈ S♥ ⊆ S≥0)
∼= T(A,G(B))
∼= T(A, τ≤0G(B)) (A ∈ T♥ ⊆ T≤0)
∼= T♥(A,G♥(B)) (G is left t-exact). �

It is well known that a functor between abelian categories preserves projectives when-
ever it has an exact right adjoint. A similar result is true in the framework of t-structures 
and derived projectives and injectives:

Proposition 6.13. Let F : T → S be an exact functor between triangulated categories with 
t-structures. If T and S have derived projectives and F has a t-exact right adjoint G
then F preserves the derived projectives, namely it restricts to a functor

F |DGProj(T) : DGProj(T) → DGProj(S).

Dually, if T and S have derived injectives and F has a t-exact left adjoint G′, then 
F preserves the derived injectives, namely it restricts to a functor

F |DGInj(T) : DGInj(T) → DGInj(S).

Proof. We prove the statement about derived projectives, the other one being dual. Let 
S(P ) ∈ DGProj(T) be a fixed derived projective, associated to some P ∈ Proj(T♥). We 
are going to prove that F (S(P )) ∼= S(F♥(P )). For any B ∈ S, we have:

S(S(F♥(P )), B) = S♥(F♥(P ), H0(B))
∼= T♥(P,G♥(H0(B))) (F♥ � G♥)
∼= T♥(P,H0(G(B))) (G is t-exact, hence G♥ ◦H0 ∼= H0 ◦G)
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∼= T(S(P ), G(B))
∼= T(F (S(P )), B).

We applied the above Lemma 6.12 and the fact that F♥(P ) is projective since P ∈
Proj(T♥) and F♥ has an exact right adjoint G♥. �
7. The (re)construction

The results of the previous sections (see Theorem 5.9, Lemma 6.9, Example 6.8, see 
also Remark 3.13) are summarized in the following theorem which provides a method 
for constructing triangulated categories with a t-structure and with enough derived pro-
jectives.

Theorem 7.1 (Construction). Let Q be a hlc dg-category such that H0(Q) is Karoubian. 
Then, the dg-category h-proj(Q)hfp defined by

h-proj(Q)hfp = {M ∈ h-proj(Q) : Hi(M) ∈ mod(H0(Q)) ∀ i}

has a non-degenerate t-structure whose heart is the category mod(H0(Q)), has enough 
derived projectives, and DGProj(h-proj(Q)hfp) is the closure of Q ↪→ h-proj(Q)hfp under 
isomorphisms in H0(h-proj(Q)hfp); also, H0(h-proj(Q)hfp) is closed under countable 
coproducts if H0(Q) is. Moreover, the totalisation dg-functor induces a quasi-equivalence:

Tot: Tw−(Q) → h-proj−(Q)hfp.

In particular, Tw−(Q) has a non-degenerate right bounded t-structure. This t-structure 
is closed under countable coproducts (Definition 3.8) if H0(Q) is closed under countable 
coproducts.

A natural question is whether the above Theorem 7.1 can be “inverted”. Namely, 
given a pretriangulated category A with a non-degenerate right bounded t-structure with 
enough derived projectives, can we reconstruct A− as Tw−(DGProj(A))? Theorem 7.2
below provides positive answers to these questions, provided that we also assume closure 
under countable coproducts.

7.1. Reconstruction

We fix a pretriangulated dg-category A with a non-degenerate right bounded t-
structure, with enough derived projectives, and which is closed under countable coprod-
ucts. Let Q = DGProj(A), and let j : Q ↪→ A be the inclusion. We can compose the 
Yoneda embedding A ↪→ h-proj(A) with the restriction quasi-functor Resj : h-proj(A) →
h-proj(Q) (recall (4.28)), hence obtaining a quasi-functor
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A → h-proj(Q), (7.1)

which in H0 gives the following exact functor between triangulated categories:

H0(A) → D(Q),

A �→ A(j(−), A).
(7.2)

Notice that Q is hlc and its H0 is Karoubian by Lemma 6.10, so Tw−(Q) is quasi-
equivalent to h-proj−(Q)hfp by the above Theorem 7.1. The key result we are going to 
show is the following:

Theorem 7.2 (Reconstruction). Let A be a pretriangulated dg-category with a non-
degenerate, right bounded t-structure with enough derived projectives, and which is closed 
under countable coproducts. Let Q = DGProj(A). The quasi-functor (7.1)

A− → h-proj(Q)

is t-exact and induces an isomorphism in the homotopy category Hqe between the dg-
categories A− and h-proj−(Q)hfp ≈ Tw−(Q).

7.2. Theorem 7.2: preparations

The proof of Theorem 7.2 is achieved by applying Proposition 5.13 in order to resolve 
A ∈ A with a sequence of twisted complexes of derived projectives. Before going on with 
the actual proof, we take care of the setting and the preparatory results.

We fix a pretriangulated dg-category A with a non-degenerate right bounded t-
structure with enough derived projectives, which is closed under countable coprod-
ucts (so that the aisles H0(A)≤M are closed under countable coproducts). We set 
Q = DGProj(A), which is a hlc dg-category such that H0(Q) is Karoubian. Moreover, 
Q ⊆ A≤0.

• We can assume that A is strongly pretriangulated, by replacing and identifying it 
with its pretriangulated hull: pretr(A) = A.

• Consider the inclusion dg-functor j : Q → A. Since A is strongly pretriangulated, we 
have an induced fully faithful dg-functor j′ : pretr(Q) ↪→ A. Recalling the properties 
of Ind in §4.4, we know that the restriction along the natural embedding Q ↪→
pretr(Q) induces a dg-equivalence

Cdg(pretr(Q)) ∼−→ Cdg(Q), (7.3)

which gives also an equivalence between the derived categories:

D(pretr(Q)) ∼−→ D(Q). (7.4)



F. Genovese et al. / Advances in Mathematics 387 (2021) 107826 57
Clearly, this equivalence maps

A(j′(−), A) �→ A(j(−), A), (7.5)

for all A ∈ A.
• Recalling (4.24), the totalisation dg-functor TotQ restricts to a dg-functor

TotQ : Tw−
b (Q) → pretr(Q),

and composing with j′ : pretr(Q) ↪→ A, we get a dg-functor (recall also (5.6))

TQ : Tw−
b (Q) → A

with the property that for all Y ∈ Tw−
b (Q) we have an isomorphism

TotQ(Y ) ∼= A(j(−), TQ(Y )), (7.6)

in Cdg(Q), natural in Y .

Lemma 7.3. Choose an inverse S−1 of the equivalence S(−) : Proj(H0(A)♥) →
DGProj(A), and let A ∈ A. For all i ∈ Z, we have an isomorphism

Hi(A(j(−), A)) ∼= H0(A)♥(S−1(−), Hi(A)). (7.7)

In particular, the functor

H0(A) → D(Q),

A �→ A(j(−), A)
(7.8)

is t-exact.

Proof. The isomorphism (7.7) follows from the very definition of derived projectives. 
t-exactness now follows from the fact that the t-structure on D(Q) is non-degenerate. 
Indeed, let A ∈ H0(A)≤n. By (3.13), we know that Hi(A) = 0 for all i > n. Thanks to 
(7.7), we find out that Hi(A(j(−), A)) = 0 for i > n, and this means that A(j(−), A) ∈
D(Q)≤n. A similar argument shows that H0(A)≥n is mapped to D(Q)≥n. �
Remark 7.4. The functor induced by the above (7.8) between the hearts is precisely

H0(A)♥ → Mod(H0(Q)),

A �→ H0(A)♥(S−1(−), A).
(7.9)

This is proven in [17, Proposition 6.25] to induce an equivalence between H0(A)♥ and 
mod(H0(Q)). That result will follow from the proof of Theorem 7.2.
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Lemma 7.5. Let A ∈ A≤M . Then, there is a sequence (XM−p → XM−p−1)p≥0 in 
Tw−

b (Q), with TQ(XM−p) ∈ A≤M , and closed degree 0 maps αM−p : TQ(XM−p) → A

such that the diagram

TQ(XM−p)
αM−p

jM−p,M−p−1

A

TQ(XM−p−1)
αM−p−1

is strictly commutative in A, and

holim←−−
p

(α∗
M−p, 0) : A(A,−) → holim←−−

p

A(TQ(XM−p),−) (7.10)

is an isomorphism in D(Aop). In other words, A together with the maps αM−p is the 

homotopy colimit of (TQ(XM−p) 
jM−p,M−p−1−−−−−−−−→ TQ(XM−p−1))p.

Proof. Proposition 5.13, Corollary 5.16. �
Lemma 7.6. Let A ∈ A≤M , and consider the sequence (XM−p → XM−p−1)p and the 
maps αM−p : TQ(XM−p) → A given by Lemma 7.5. There exists X ∈ Tw−(Q) such that 
σ≥M−pX = XM−p, and the morphisms

(αM−p)∗ : TotQ(XM−p) ∼= A(j(−), TQ(XM−p)) → A(j(−), A)

induce a closed degree 0 morphism in Cdg(Q)

TotQ(X) → A(j(−), A) (7.11)

which is an isomorphism in D(Q). Moreover, the induced morphism (recall (3.7))

holim−−→
p

((αM−p)∗, 0) : holim−−→
p

A(j′(−), TQ(XM−p)) → A(j′(−), A) (7.12)

is an isomorphism in D(pretr(Q)).

Proof. Upon shifting, assume M = 0. The sequence (X−p → X−p−1)p is constructed 
using Proposition 5.13, so Proposition 4.14 is applicable and gives X ∈ Tw−(Q) such 
that σ−pX = X−p, and moreover

TotQ(X) ∼= lim−−→
p

TotQ(X−p) ≈ holim−−→
p

TotQ(X−p).

Thanks to the commutative diagram (4.23), the equivalence (7.3) and the isomorphism 
(7.6), we only need to check that (7.11) is a quasi-isomorphism. Let i ∈ Z and recall 
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Lemma 4.16: Hi(TotQ(X−p)) → Hi(TotQ(X)) is an isomorphism for −p < i, so it is 
enough to prove that

Hi(TotQ(X−p)) ∼= Hi(A(j(−), TQ(X−p)))
Hi((α−p)∗)−−−−−−−→ Hi(A(j(−), A))

is an isomorphism for −p < i. Thanks to (7.7), this is equivalent to proving that

H0(A)♥(S−1(−), Hi(TQ(X−p)))
Hi(α−p)∗−−−−−−→ H0(A)♥(S−1(−), Hi(A))

is an isomorphism for −p < i. This follows from Proposition 5.13, where we prove that

Hi(α−p) : Hi(TQ(X−p)) → Hi(A)

is an isomorphism for −p < i. �
7.3. Theorem 7.2: proof

In order to prove Theorem 7.2, it is enough to show that the functor (7.2)

H0(A) → D(Q),

A �→ A(j(−), A)

is fully faithful and its essential image is D−(Q)hfp ∼= H0(h-proj−(Q)hfp), since t-
exactness follows from Lemma 7.3.

Fully faithfulness. Since pretr(Q) ↪→ A and D(pretr(Q)) ∼= D(Q) via the restriction 
dg-functor, fully faithfulness of (7.2) is equivalent to fully faithfulness of

H0(A) → D(pretr(Q)),

A �→ A(j′(−), A).
(7.13)

We compute, given A, B ∈ A (assuming for simplicity that Hi(A) = 0 for all i > 0):

A(A,B)
qis≈ holim←−−

p

A(TQ(X−p), B) (from (7.10))

∼= holim←−−
p

Cdg(pretr(Q))(A(j′(−), TQ(X−p)),A(j′(−), B)) (Yoneda)

∼= Cdg(pretr(Q))(holim−−→
p

A(j′(−), TQ(X−p)),A(j′(−), B)) (from (3.5)).

Hence:
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H0(A(A,B)) ∼= K(pretr(Q))(holim−−→
p

A(j′(−), TQ(X−p)),A(j′(−), B))

∼= D(pretr(Q))(holim−−→
p

A(j′(−), TQ(X−p)),A(j′(−), B)) (∗)

∼= D(pretr(Q))(A(j′(−), A),A(j′(−), B)). (from (7.12))

The isomorphism (∗) follows from (2.2) because

holim−−→
p

A(j′(−), TQ(X−p)) = holim−−→
p

A(j′(−), j′(TotQ(X−p))

∼= holim−−→
p

pretr(Q)(−,TotQ(X−p))

is h-projective, being a homotopy colimit of representables (hence h-projectives). �
Essential image. Recall from Theorem 7.1 that the totalisation functor TotQ induces 
an equivalence H0(Tw−(Q)) ∼= D−(Q)hfp, so it is enough to prove that the essential 
image of (7.2) coincides with the objects of the form TotQ(X) ∈ D−(Q)hfp, for some 
X ∈ Tw−(Q).

Given A ∈ A, we know from Lemma 7.6 that A(j(−), A) is isomorphic to TotQ(X)
in D(Q), for some X ∈ Tw−(Q), hence the essential image of (7.2) is contained in 
D−(Q)hfp.

On the other hand, take an object TotQ(X) ∈ D−(Q)hfp, for some X ∈ Tw−(Q). 
Upon shifting, we may assume that X is of the form

X = (
⊕
h≤0

Qh[−h], q).

By Lemma 5.12, we know that TotQ(X) ∈ D(Q)≤0. Let X−p = σ≥−pX and consider 
the sequence (TotQ(X−p) → TotQ(X−p−1))p (recall §4.3). This clearly gives a sequence 
in A:

(TQ(X−p)
j−p,−p−1−−−−−−→ TQ(X−p−1))p

We claim that TQ(X−p) ∈ A≤0 for all p. Indeed, we have that TQ(X0) = X0 ∈ Q ⊆ A≤0, 
and then there is a pretriangle

Q−p−1[p] → TQ(X−p)
j−p,−p−1−−−−−−→ TQ(X−p−1) → Q−p−1[p + 1],

from where we see that, assuming inductively that TQ(X−p) ∈ A≤0, we get TQ(X−p−1) ∈
A≤0. Now, the sequence (TotQ(X−p) → TotQ(X−p−1))p is isomorphic (recall (7.6)) to

(A(j(−), TQ(X−p))
(j−p,−p−1)∗−−−−−−−−→ A(j(−), TQ(X−p))p.
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By Proposition 4.13, we know that

TotQ(X) ≈ holim−−→
p

TotQ(X−p) ∼= holim−−→
p

A(j(−), TQ(X−p)).

Now, set

A = holim−−→
p

TQ(X−p),

which lies in A≤0 by Remark 3.12, and comes with closed degree 0 maps

j−p : TQ(X−p) → A

such that [j−p−1] = [j−p,−p−1 ◦ j−p] in H0(A). In particular, the diagram

A(j(−), TQ(X−p))
(j−p)∗

(j−p,−p−1)∗

A(j(−), A)

A(j(−), TQ(X−p−1))
(j−p−1)∗

is commutative in D(Q), and recalling the “weak universal property” of the homotopy 
colimit (see §3.1) we get a morphism in D(Q):

TotQ(X) → A(j(−), A)

and for all i a commutative diagram

Hi(TotQ(X)) Hi(A(j(−), A))

Hi(j(−), TQ(X−p)).
Hi((j−p)∗)

Now, fix i ∈ Z and recall from Lemma 4.16 that

Hi(TotQ(X−p)) ∼= Hi(A(j(−), TQ(X−p)) → Hi(TotQ(X))

is an isomorphism if i > −p. Moreover, by (7.7) the map Hi((j−p)∗) can be identified 
with

H0(A)♥(S−1(−), Hi(TQ(X−p)))
Hi(j−p)∗−−−−−−→ H0(A)♥(S−1(−), Hi(A))
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So, in order to show that Hi(TotQ(X)) → Hi(A(j(−), A)) is an isomorphism, it is 
now sufficient to show that Hi(TQ(X−p)) → Hi(A) is an isomorphism if i > −p. The 
idea is to show that

Hi(TQ(X−p)) → Hi(TQ(X−p−1))

is an isomorphism for i > −p and an epimorphism for i = p, and then apply Lemma 3.10
(see also Remark 3.13). In fact, we may apply TQ : Tw−

b (Q) → A to the pretriangle 
(4.18), obtaining a pretriangle in A:

TQ(Q−p−1)[p] → TQ(X−p) → TQ(X−p−1) → TQ(Q−p−1)[p + 1].

Notice that TQ(Q−p−1) = Q−p−1 ∈ Q ⊂ A, and it has cohomology concentrated in 
nonpositive degrees. Hence, applying the t-structure cohomology of A and arguing as 
in the proof of Lemma 4.16, we see that Hi(TQ(X−p)) → Hi(TQ(X−p−1)) is indeed an 
isomorphism for i > −p and an epimorphism for i = p. Putting everything together, we 
conclude that

TotQ(X) → A(j(−), A)

is an isomorphism in D(Q).

7.4. The correspondence

Theorems 7.1 and 7.2 tell us that the dg-categories of the form Tw−(Q) when Q is a 
hlc dg-category such that H0(Q) is Karoubian and closed under countable coproducts 
are precisely the dg-categories A is any dg-category with a non-degenerate right bounded 
t-structure with enough derived projectives and which is closed under countable coprod-
ucts. This correspondence can be made into an equivalence of categories, as we are going 
to show.

Definition 7.7. The category HqeDGProj is defined as follows:

• The objects are the homotopically locally coherent dg-categories Q such that H0(Q)
is Karoubian.

• The morphisms are the morphisms F : Q → Q′ in Hqe (isomorphism classes of 
quasi-functors) with the property that for any Q′ ∈ Q′, the restricted module along 
the functor H0(F ):

H0(Q′)(F (−), Q′) = H0(Q′)(H0(F )(−), Q′)

lies in mod(H0(Q)).
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We also denote by HqeDGProj
⊕ the full subcategory of HqeDGProj of dg-categories Q

such that H0(Q) is closed under countable coproducts.

Lemma 7.8. HqeDGProj is a subcategory of Hqe.

Proof. Clearly, for any dg-category Q ∈ HqeDGProj and for any Q ∈ Q, we have that 
H0(Q)(−, Q) lies in mod(H0(Q)), hence HqeDGProj is closed under identities.

To show closure under compositions, let

Q F−→ Q′ G−→ Q′′

be morphisms in HqeDGProj. Let Q′′ ∈ Q′′; by hypothesis, we have an exact sequence:

H0(Q′′)(−, Q1) → H0(Q′′)(−, Q0) → H0(Q′′)(G(−), Q′′) → 0,

from which we restrict along H0(F ) and get an exact sequence:

H0(Q′′)(F (−), Q1) → H0(Q′′)(F (−), Q0) → H0(Q′′)(GF (−), Q′′) → 0.

Now, since both H0(Q′′)(F (−), Q1) and H0(Q′′)(F (−), Q0) are finitely presented by 
hypothesis, the same is true for the cokernel H0(Q′′)(GF (−), Q′′), as desired. �
Definition 7.9. The category Hqet− is defined as follows:

• The objects are dg-categories A endowed with non-degenerate right bounded t-
structure with enough derived projectives.

• The morphisms are the morphisms F : A → B in Hqe (isomorphism classes of quasi-
functors) such that they admit a t-exact right adjoint G : B → A.

We also denote by Hqet−
⊕ the full subcategory of Hqet− of dg-categories A such that 

the t-structure is closed under countable coproducts.

Notice that two dg-categories A, B ∈ Hqet− are isomorphic in Hqet− if and only if 
there is an isomorphism A ∼= B in Hqe which preserves the t-structures.

Remark 7.10. If Q, Q′ are hlc dg-categories with Karoubian H0 and F : Q → Q′ is any 
dg-functor, then the dg-functor IndF : h-proj(Q) → h-proj(Q′) actually restricts to a 
dg-functor

IndF : h-proj−(Q)hfp → h-proj−(Q′)hfp, (7.14)

and the following diagram is commutative, with vertical arrows being quasi-equivalences:
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Tw−(Q)
Tw−(F )

≈TotQ

Tw−(Q′)

≈ TotQ′

h-proj−(Q)hfp IndF h-proj−(Q′)hfp.

(7.15)

Indeed, if M ∈ h-proj−(Q)hfp, we know from Proposition 5.17 that M ∼= Tot(Y ) in 
H0(h-proj(Q)). By the commutative diagram (4.29), we have

IndF (M) ∼= IndF (Tot(Y )) ∼= Tot(Tw−(F )(Y ))

in H0(h-proj(Q′)), and we know that Tot(Tw−(F )(Y )) ∈ h-proj−(Q′)hfp by Lemma 5.12.

Now, recall from Proposition 4.19 that the functor B �→ Tw−(B) preserves quasi-
equivalences, hence it induces a functor

Tw− : Hqe → Hqe,

B �→ Tw−(B).

If Q is an hlc dg-category with Karoubian H0, we shall identify Tw−(Q) with 
h-proj−(Q)hfp via the totalisation TotQ. If F : Q → Q′ is a dg-functor between such 
dg-categories, then Tw−(F ) is identified with IndF thanks to by (7.15).

Lemma 7.11. The functor Tw− : Hqe → Hqe induces a functor

Tw− : HqeDGProj → Hqet−,

Q �→ Tw−(Q) ≡ h-proj−(Q)hfp,
(7.16)

where we endow Tw−(Q) with the natural t-structure of Theorem 7.1.

Proof. We already know from Theorem 7.1 that if Q ∈ HqeDGProj then h-proj(Q)hfp ∈
Hqet−. It only remains to show that for any morphism F : Q → Q′ in HqeDGProj, 
the morphism Tw−(F ) : Tw−(Q) → Tw−(Q′) has a right adjoint which preserves 
the t-structures. Since Tw− preserves quasi-equivalences, without loss of generality 
we can assume that Q is cofibrant, so that F can be represented by a dg-functor – 
which, abusing notation, we also denote by F . Since we are identifying Tw−(−) with 
h-proj−(−)hfp via the totalisation dg-functor, by (7.15) we see that Tw−(F ) is iden-
tified with IndF : h-proj−(Q)hfp → h-proj−(Q′)hfp. From Remark 4.17, we know that 
ResF : h-proj(Q′) → h-proj(Q) is the right adjoint quasi-functor of IndF : h-proj(Q) →
h-proj(Q′); being a lift of the restriction functor D(Q′) → D(Q), it is readily seen that 
ResF preserves the t-structures. To conclude, it is sufficient to show that ResF restricts 
to a quasi-functor
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ResF : h-proj−(Q′)hfp → h-proj−(Q)hfp,

which will be the right adjoint of IndF : h-proj−(Q)hfp → h-proj−(Q′)hfp. Hence, we need 
to show that for any M ∈ D−(Q′)hfp ∼= H0(h-proj−(Q′)hfp), the restriction M ◦ F lies 
in D−(Q)hfp ∼= H0(h-proj−(Q)hfp). First, since Hi(M) = 0 for i 	 0, we immediately 
see that Hi(M ◦ F ) = 0 for i 	 0. Moreover, by hypothesis we have an exact sequence

H0(Q′)(−, Q1) → H0(Q′)(−, Q0) → Hi(M) → 0,

which by restriction induces an exact sequence

H0(Q′)(F (−), Q1) → H0(Q′)(F (−), Q0) → Hi(M ◦ F ) → 0.

By assumption, H0(Q′)(F (−), Q1) and H0(Q′)(F (−), Q0) are finitely presented, so the 
same is true for the cokernel Hi(M ◦ F ), as desired. �

Finally, we prove:

Theorem 7.12. The functor (7.16)

Tw− : HqeDGProj → Hqet−,

is fully faithful, and induces an equivalence of categories:

Tw− : HqeDGProj
⊕ → Hqet−

⊕ .

The inverse is given by

DGProj : Hqet−
⊕ → HqeDGProj

⊕ ,

A → DGProj(A).
(7.17)

The proof of the above theorem requires some care with the technical details, using 
the language of quasi-functors.

Lemma 7.13. Let

T : h-proj−(Q)hfp → h-proj−(Q′)hfp

be a quasi-functor. Then, for all Y ∈ h-proj−(Q)hfp, the restriction T
hQ′ (−)
Y lies in 

D−(Q′)hfp, and there is an isomorphism in D(k)

TX
Y

qis≈ Cdg(Q′)(X,T
hQ′ (−)
Y ), (7.18)
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“natural” in X and Y in the sense that it lifts to an isomorphism in the derived category 
D(h-proj−(Q)hfpop ⊗ h-proj−(Q′)hfp). In particular, given another quasi-functor

T ′ : h-proj−(Q)hfp → h-proj−(Q′)hfp,

we have that T ∼= T ′ (in the derived category) if and only if ThQ′(−) ∼= ThQ′ (−) in the 
derived category D(h-proj−(Q)hfpop ⊗ Q′).

Moreover, if TY is an h-projective dg-module for all Y , the same is true for ThQ′ (−)
Y .

Proof. Since T is a quasi-functor, for all Y ∈ h-proj−(Q)hfp we have

TY

qis≈ h-proj−(Q′)hfp(−, F (Y )),

for some F (Y ) ∈ h-proj−(Q′)hfp. In particular, by the Yoneda lemma:

T
hQ′ (−)
Y

qis≈ Cdg(Q′)(hQ′(−), F (Y )) ∼= F (Y ) ∈ h-proj−(Q′)hfp,

hence T
hQ′ (−)
Y ∈ D−(Q′)hfp.

There is a natural morphism

TX
Y → Cdg(Q′)(X,T

hQ′ (−)
Y )

which is induced by the action

TX
Y ⊗ h-proj−(Q′)hfp(hQ′(−), X) → T

hQ′ (−)
Y ,

and we have a commutative diagram:

TX
Y

≈

Cdg(Q′)(X,T
hQ′ (−)
Y )

≈

h-proj−(Q′)hfp(X,F (Y )) ∼ h-proj−(Q′)hfp(X,Cdg(Q′)(hQ′(−), F (Y ))).

The rightmost vertical arrow is an isomorphism in D(k) because X is h-projective; the 
lower horizontal arrow is a (strict) isomorphism by the Yoneda lemma. This implies 
that the upper horizontal arrow is an isomorphism in D(k), as we wanted. Next, let 
T ′ : h-proj−(Q)hfp → h-proj−(Q′)hfp be another quasi-functor. If T ∼= T ′ then ThQ′ (−) ∼=
(T ′)hQ′ (−) by restriction. On the other hand, assume there is an isomorphism ThQ′(−) ≈−→
(T ′)hQ′ (−). For X ∈ h-proj−(Q′)hfp and Y ∈ h-proj−(Q)hfp, this induces

TX
Y ≈ Cdg(Q′)(X,T

hQ′ (−)
Y ) ≈−→ Cdg(Q′)(X,T

′hQ′ (−)
Y ) ≈ (T ′)XY ,
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which gives an isomorphism of quasi-functors.
Now, assume that TY is h-projective for all Y . Notice that ThQ′

Y is the image of TY

with respect to the restriction functor

Cdg(h-proj−(Q′)hfp) → Cdg(Q′)

along the Yoneda embedding Q′ ↪→ h-proj−(Q′)hfp. This restriction functor maps any 
representable h-proj−(Q′)hfp(−, M) to

h-proj−(Q′)hfp(hQ′(−),M) = Cdg(Q′)(hQ′(−),M) ∼= M

by the Yoneda lemma. By [5, Proposition 3.2, (4)] we deduce that this restriction functor 
preserves h-projective dg-modules, hence we have that ThQ′(−)

Y is actually h-projective, 
as claimed. �
Lemma 7.14. Giving an adjunction of quasi-functors

T � S : h-proj−(Q)hfp → h-proj−(Q′)hfp

is the same as giving an isomorphism in D(k)

Cdg(Q′)(Q(T )hQ′ (−)
Y , X)

qis≈ Cdg(Q)(Y, ShQ(−)
X ) ≈ SY

X , (7.19)

“natural” in X and Y in the sense that it lifts to an isomorphism in the derived category 
D(h-proj−(Q)hfpop ⊗h-proj−(Q′)hfp). Here Q(T ) is, as usual, an h-projective resolution 
of T as a bimodule.

Proof. For simplicity, assume that T is h-projective, and identify Q(T ) = T . We have:

Cdg(Q′)(ThQ′ (−)
Y , X) ∼= Cdg(h-proj−(Q′)hfp)(h

T
h
Q′ (−)

Y

, hX) (Yoneda)

qis≈ Cdg(h-proj−(Q′)hfp)(TY , hX),

where the second isomorphism follows from the above Lemma 7.13 and the fact that 
both TY and the representable module h

T
h
Q′ (−)

Y

are h-projective (recall [5, Lemma 3.4]). 
Now, since

Cdg(Q)(Y, ShQ(−)
X )

qis≈ SY
X ≈ Cdg(Q)(hY , SX)

again by Lemma 7.13, we conclude recalling the definition of adjoint quasi-functors 
(2.8). Every isomorphism above is “natural” in X and Y in the sense that it lifts to 
an isomorphism in the convenient derived category of bimodules. �
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Finally, we can prove Theorem 7.12:

Proof of Theorem 7.12. Essential surjectivity of Tw− : HqeDGProj
⊕ → Hqet−⊕ follows di-

rectly from Theorem 7.2 and the fact that if A ∈ HqeDGProj
⊕ then DGProj(A) is closed 

under countable coproducts (Lemma 6.10); we need to show fully faithfulness. Assume 
without loss of generality that Q is cofibrant, so that any quasi-functor defined on Q
is actually isomorphic to a (strict) dg-functor. We are going to prove that the inverse 
of

HqeDGProj(Q,Q′) → Hqet−(h-proj−(Q)hfp,h-proj−(Q′)hfp),

F �→ IndF

is given by the restriction map

Hqet−(h-proj−(Q)hfp,h-proj−(Q′)hfp) → HqeDGProj(Q,Q′),

T �→ T |Q,

from which we also see that DGProj gives actually the inverse functor of Tw− : HqeDGProj
⊕

→ Hqet−⊕ . First, since any T ∈ Hqet−(h-proj−(Q)hfp, h-proj−(Q′)hfp) has a t-exact 
right adjoint, by Proposition 6.13 we know that H0(T ) preserves the derived pro-
jectives, which means that the essential image of H0(T |Q) is H0(Q′); hence T |Q
is actually a quasi-functor Q → Q′, and the above restriction map is well de-
fined.

Now, start with a dg-functor F : Q → Q′. Then, it is well-known that IndF |Q ∼= F . 
On the other hand, start with a quasi-functor

T : h-proj−(Q)hfp → h-proj−(Q′)hfp

admitting a right adjoint S which preserves the t-structures. Upon replacing T with an 
h-projective resolution Q(T ), we can assume that T is h-projective as a bimodule. The 

restriction T |Q : Q → Q′ is given by the bimodule T
hQ′(−)
hQ(−) . Since Q is cofibrant, we 

can assume that there is a dg-functor F : Q → Q′ and an isomorphism in the suitable 
derived category

T
hQ′ (−)
hQ(−) ≈ Q′(−, F (−)).

Now, we would like to prove that IndF
∼= T as quasi-functors. Clearly, this is equivalent 

to proving that the right adjoints are isomorphic: ResF ∼= S. By Lemma 7.13, it is 
enough to prove that ReshQ(−)

F
∼= ShQ(−). We compute:

(ResF )hQ(Q)
Y = Cdg(Q)(hQ, Y ◦ F )

∼= (Y ◦ F )(Q) (Yoneda)
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∼= Cdg(Q′)(hF (Q), Y )

≈ Cdg(Q′)(ThQ′ (−)
hQ(Q) , Y )

≈ S
hQ(Q)
Y . (Lemma 7.14)

Every isomorphism above is “natural” in the sense that it lifts to an isomorphism in the 
convenient derived category. The isomorphism in D(k)

Cdg(Q′)(hF (Q), Y ) ≈ Cdg(Q′)(ThQ′ (−)
hQ(Q) , Y )

holds because hF (Q) and T
hQ′ (−)
hQ(Q) are both h-projective (recall Lemma 7.13). Our proof 

is complete. �
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