Light field

Information of ray (incoherent light)

- Three coordination (x, y, z)
- Two angle (θ, ϕ)
- Time (t)
- Radiance (W/m²/sr)
- Polarization, color

	Holography	Light field
Light source	coherent	Incoherent
View	continuous	Discrete (multi-view)
information	5D (Angle + position)	
Measurement	Interference measurement	MLA (micro lens array) or Multiple camera array
Noise	*technical noise + Speckle noise	*technical noise
*(photon and electronic noise from the recording sensor)		

ACM Trans. Graph. 24, 3 (July 2005), 765–776
Stanford University Computer Science Tech Report CSTR 2005-02

Multi-focus measurement

Sensor resolution = $M \times M = M^2$

Micro lens array resolution = Spatial resolution = $N \times N = N^2$

 $\label{eq:angular} \begin{array}{l} \mbox{Angular resolution} = \mbox{Sensor resolution} \ / \ \mbox{Spatial} \\ \mbox{resolution} = \ \mbox{M}^2 \ / \ \mbox{N}^2 \end{array}$

Sensor resolution = Spatial resolution = $M \ge M = M^2$

Angular resolution = $1 \sim M^2$

Extraction algorithm of light field information from multi-plane images

Transparent sensors or multi-plane images

6

Refocusing

Measurements and predictions depending on the position of the light source

Measurements and predictions depending on the position of the light source

Light pattern of L4 predicted at reference plane

Measurements and predictions depending on the position of the light source

Multi-plane measurements

Estimations at reference plane for each light source

Extracted light information

Computation reduction through depth estimation

If no light source is present, no static component is present in estimated images -> Volume scanning (like confocal microscope) or depth estimation is needed

JBE Vol. 24, No. 2, March 2019

JBE Vol. 19, No. 3, May 2014

Minho Choi

