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Abstract. In this paper, for an underlying small category U endowed with

a Grothendieck topology τ , and a linear category a which is graded over U in
the sense of [13], we define a natural linear topology Tτ on a, which we call

the linearized topology. Grothendieck categories in (non-commutative) alge-
braic geometry can often be realized as linear sheaf categories over linearized

topologies. With the eye on deformation theory, it is important to obtain such

realizations in which the linear category contains a restricted amount of alge-
braic information. We prove several results on the relation between refinement

(eliminating both objects, and, more surprisingly, morphisms) of the non-linear

underlying site (U , τ), and refinement of the linearized site (a, Tτ ). These re-
sults apply to several incarnations of (quasi-coherent) sheaf categories, leading

to a description of the infinitesimal deformation theory of these categories in

the sense of [17] which is entirely controlled by the Gerstenhaber deformation
theory of the small linear category a, and the Grothendieck topology τ on U .

Our findings extend results from [17], [12] and [7] and recover the examples

from [21], [20].

1. Introduction

In the 1960’s, the Grothendieck school revolutionarized algebraic geometry by
founding it on the theory of abelian categories, see [10], and on topos theory, see
the SGA4 volumes, in particular [1]. The setup of scheme theory allows arbitrary
commutative rings as buiding blocks, and is further centered around the concepts of
(quasi-coherent) sheaves and sheaf cohomology. Schemes have underlying topolog-
ical spaces, built from the Zariski topologies on the spectra of commutative rings.
With the formulation of the Weil conjectures, it was realized that classical topolog-
ical spaces and sheaf cohomology were insufficient, and it was the introduction of
the more general étale Grothendieck topology, and corresponding étale cohomology,
which eventually led to the proofs of the conjectures between 1960 and 1974. On
the other hand, in 1962, in his thesis Gabriël developed localization theory in the
context of abelian categories, involving, in the case of module categories over rings,
the concept of a Gabriël filter on a ring. This notion can be recognized as a linear
version of a Grothendieck topology, on a single object linear category, and can eas-
ily be extended to arbitrary small linear categories. In the famous Gabriël-Popescu
theorem, it was proven that every Grothendieck abelian category can be realized as
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the localization of a module category. This gives Grothendieck categories the sta-
tus of linear versions of Grothendieck topoi, the localizations of presheaf categories
of sets which were characterized internally by Giraud’s theorem. In both setups,
the localizations can be realized as sheaf categories, and depend upon the choice
of a suitable functor γ : a −→ C from a small (linear) category to a Grothendieck
topos (or Grothendieck category), giving rise to a (linear) topology T on a and
an equivalence of catgeories C ∼= Sh(a, T ). See [11] for a characterization of such
functors γ.

Whereas the rings occuring in algebraic geometry are commutative, the theory of
abelian categories and their localizations is not restricted to the commutative realm,
and includes in particular module categories over non-commutative rings. For a
commutative ring A, the module category Mod(A) is equivalent to the category of
quasi-coherent sheaves on the spectrum Spec(A), and captures a lot of geometric
information. With the development of so called non-commutative algebraic geom-
etry by Artin, Tate, Stafford, Van den Bergh and others [3] [19], this observation
is taken further and Grothendieck abelian categories are themselves considered as
the main geometric objects. This is motivated by the fact that non-commutative
rings typically have no well-behaved underlying “spectra” of points, whence one
is forced to work in a point-free environment. Following this philosophy, one is
primordially interested in Grothendieck categories which share a lot with the ones
occuring in classical algebraic geometry. Examples are provided by deformations of
commutative rings, with the Weyl algebra deforming the commutative polynomial
algebra in two variables as prime example. Since, for instance, projective geometry
involves more general quasi-coherent sheaf categories than module categories, in
[17], Gerstenhaber’s deformation theory of algebras was extended to a deformation
theory for abelian categories. This theory allows to capture the important examples
of non-commutative projective planes, quadrics and P1-bundles over commutative
schemes from [21], [20], which motivated its development. Further, the theory leads
to a description of non-commutative deformations of schemes in terms of twisted
presheaves of non-commutative rings (see [12]).

Let C be a given Grothendieck category over a field k, and suppose we are in-
terested in deformation in the direction of an Artin local k-algebra R. According
to [17], a deformation is an R-linear Grothendieck abelian category which reduces
to C upon restriction to k-linear objects. Now suppose we consider our favourite
representation C ∼= Sh(a, T ) as a sheaf category over a k-linear site (a, T ), corre-
sponding to a functor γ : a −→ C. Then, ideally, we would like to realize D as
D ∼= Sh(b,S) for a R-linear site (b,S) in which:

(A) b is obtained as a linear (i.e., Gerstenhaber type) deformation of a;
(B) S is naturally an “R-linear variant” of T .

In general, both requirements may fail. Whether or not we can realize (A) es-
sentially depends on homological conditions involving the objects γ(A) ∈ C, more
precisely the vanishing of certain Ext groups between these objects. In order to
realize (B), we first have to understand what an R-linear variant of a k-linear topol-
ogy means. In a first approach, this could mean “a topology naturally induced by
T along the map b −→ a”. The drawback of this interpretation is that such a
topology does not necessarily have an intrinsic “meaning” with respect to b. Let
us look at the ideal case where C = Mod(a), the entire module category over a. A
basic result from [17] states that there is a deformation equivalence

(1) Def lin(a) −→ Defab(Mod(a)) : b −→ Mod(b)

from linear deformations of a to abelian deformations of Mod(a). Both Mod(a)
and Mod(b) are sheaf categories with respect to the trivial topologies on a and b
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respectively. The trivial topology on b happens to be the induced topology along
b −→ a, but it moreover has an intrinsic description on b regardless of a.

Our approach in this paper is to realize both (A) and (B) in the framework of
map-graded categories from [13]. For a k-linear U-graded category a over a small
category U , we describe how to “linearize” a Grothendieck topology τ on U in order
to obtain a linear topology Tτ on a. In our applications to deformation theory, U
will be the category associated to a poset (U ,v). To facilitate the discussion, we
will continue the introduction in this setup. For a poset (U ,v), a k-linear U-graded
category can be described as a k-linear category a with a map f : Ob(a) −→ Ob(U)
with fibers aU = f−1(U), such that for A ∈ aU , B ∈ aV , V 6v U implies a(B,A) = 0.
Hence, the only non-trivial algebraic information in the category a naturally lives
over the category U . Now suppose τ is a Grothendieck topology on U . To a sieve
R on U and an object A ∈ aU , we naturally associate a linear sieve RA on A with,
for B ∈ aV ,

RA(B) =

{
a(B,A) if (V v U) ∈ R(V )

0 otherwise.

The linearized topology Tτ on a is by definition the smallest topology on a which
contains all the sieves RA for R ∈ τ(U) as covering sieves in Tτ (A) (Definition
3.3). In §6.4, we generalize (1) and solve (B) by giving the following sheaf theoretic
description of the map introduced in [17, §8]:

(2) Def lin(a) −→ Defab(Sh(a, Tτ,a)) : b −→ Sh(b, Tτ,b).

We can now be more precise and reinforce (A) to the requirement that the map (2)
is a bijection. Based upon [17, Thm. 8.14], we formulate conditions under which
this is indeed the case (Theorem 6.10).

Let us give an example from [17], [12] (Example 6.14). Let X be a scheme with
structure sheaf OX . We endow U = open(X) with the standard Grothendieck
topology τ of coverings by unions of open subsets. By a linear version (see [13]) of
the Grothendieck construction from [2], OX gives rise to a U-graded linear category
o with Ob(o) = Ob(U) and o(V,U) = OX(V ) for V ⊆ U . For the linearized
topology Tτ on o, we obtain a realization of the category Sh(X,OX) of sheaves of
OX -modules on X as a sheaf category on the linearized site (o, Tτ ):

Sh(X,OX) ∼= Sh(o, Tτ ).

In order to realize (A) and arrive at a bijection like (1), one has to “refine” U to
the full subcategory U ′ ⊆ U containing only affine open subsets, with the induced
topology τ ′ on V. This refinement is such that for the naturally induced linear
functor φ : o′ −→ o, we have Sh(o, Tτ,o) ∼= Sh(o′, Tτ ′,o′). The deformations of this
abelian category are now obtained precisely by endowing the R-linear deformations
ō′ of o′ with the corresponding R-linearized topologies Tτ ′,ō′ , and taking sheaves in
order to arrive at the deforming Grothendieck categories Sh(ō′, Tτ ′,ō′).

In this paper, we first investigate the following related general question: suppose
a is a U-graded category over (U , τ), ϕ : V −→ U is a “refinement” functor, σ =
ϕ−1τ is the induced topology on V and φ : aϕ −→ a is the naturally induced linear
functor. What are natural conditions under which φ is localizing, and in particular
we obtain an equivalence of categories

(3) Sh(a, Tτ ) ∼= Sh(aϕ, Tσ).

In Theorem 4.3, we show that if (like in the example) a is fibered over U , it is
sufficient to require that ϕ is localizing (a natural condition ensuring that ϕ induces
an equivalence of set-sheoretic sheaf categories Sh(U , τ) ∼= Sh(V, σ)). Further, we
formulate a specific application of such refinements which moreover realize (A) to
the context of prestacks (Theorem 6.13).
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If a is not fibered over U , the situation turns out to be more subtle, and in §3.3, we
formulate additional conditions upon ϕ, leading to the notion of a stably localizing
functor. We prove that a stably localizing functor ϕ gives rise to an equivalence
(3) (Theorem 3.16). A striking setup in which stably localizing functors can be
obtained, is at the other extreme from the example we gave before. Rather than
restricting the object set of U , we may keep te object set fixed and consider a
subcategory V ⊆ U in which certain morphisms are eliminated from U . With the
application to deformation theory in mind, these would typically consist of V v U
for which the Ext vanishing from an object over V to an object over U may fail.
In §3.4, we show that a stably localizing “refinement” functor ϕ : V −→ U can
be constructed by eliminating all morphisms occuring in an arbitrary choice of
distinguished covering sieves DU ∈ τ(U) for U ∈ U (Proposition 3.21).

In §5, we investigate this second type of refinement in the context of a parti-
cular topology, the tails topology (Theorem 5.8), and we formulate conditions for
a “tails refinement” to realize (A) (Theorem 6.15). For a downwardly directed
poset (U ,v), the tails topology tails on U consists of all non-empty sieves. It is
naturally induced from the trivial topology on a one-morphism category, and the
set-theoretic sheaf category is simply given by Sh(U , tails) ∼= Set. Never the less,
linearized versions of this topology turn out to be potentially very interesting, as
the following application, which was previously discussed in the survey [14] and
includes the motivating examples from [21], [20], shows (Example 6.16). Let X be
a projective scheme with an ample invertible sheaf L. Put O(n) = Ln ∈ Qch(X),
the category of quasi-coherent sheaves on X. Consider the poset (Z,≥) endowed
with the tails topology tails. There is an associated Z-graded category a with
a(n,m) = Qch(X)(O(−n),O(−m)) for n ≥ m and

Qch(X) ∼= Sh(a, Ttails).

Unfortunately, the cohomological conditions ensuring (A) are only fulfilled in the
rather restrictive setup treated in [7]. On the other hand, the cohomological crite-
rion of ampleness yields for every m ∈ Z a number ν(m) ≥ m such that for every
n ≥ ν(m), we have

Exti(O(−n),O(−m)) = 0.

We can now effectively refine our tails site to Z′ with n ≥′ m if and only if n ≥ ν(m),
and consider the induced Z′-graded category a′. As soon as the (less restrictive)
condition

(4) H1(X,OX) = H2(X,OX) = 0

is fulfilled, we obtain a bijection (2) for a′ and the tails topology on Z′ by “tracking
the tails topology through the deformation process”. Thus, for the class of projec-
tive schemes satisfying (4), all deformations can be described as “non-commutative
projective schemes” over some deformed Z′-graded category.

Acknowledgement. The unified approach to deformations using linearized topolo-
gies, which we develop in this paper, arose out of the analysis of two different
approaches to non-commutative deformations of schemes: a local approach based
upon prestacks, and a global approach based upon Z-algebras. The author is deeply
grateful to Michel Van den Bergh for sharing these, and many other, beautiful ideas.

2. Linear topologies

Let k be a commutative ring. Basically, k-linear sites are k-linear versions of
Grothendieck sites ([1], see also [5]). To obtain the precise definitions, one has
to systematically replace the category Set by the category Mod(k) of k-modules.
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It is known that in fact, it is more generally possible to replace the category Set
by a symmetric monoidal category C, leading to a theory of enriched sites and
enriched sheaves [6]. In this paper, we are concerned both with the classical setup
C = Set and the setup C = Mod(k). Hence, we recall the main relevant notions
simultaneously in these two setups. To do so, we make the agreement that in what
follows, k ∈ CommRing∪{∅}, that is, either k is a commutative ring or k = ∅, and
for k = ∅, we specify the notions enriched over Set. Thus, we put Mod(∅) = Set.

2.1. Linear sieves. A k-linear category a is by definition a category enriched over
Mod(k), and a k-linear functor between k-linear categories is a functor enriched
over Mod(k). Let a be a small k-linear category and let

Mod(a) = Modk(a) = Funk(a
op

,Mod(k))

be the k-linear category of k-linear functors from a
op

to Mod(k). In Mod(a), we
denote the product by

∏
and the coproduct by ⊕. We also denote the coproduct

in Set by
∐

. Elements of Mod(a) are called a-modules or simply modules. For an
object A ∈ a, we consider the representable module

a(−, A) : a
op

−→ Mod(k) : B 7−→ a(B,A).

A sieve on A is by definition a subobject R ⊆ a(−, A) in Mod(a). Intuitively, R
corresponds to the following set [R] of morphisms with codomain A:

[R] =
∐
A′∈a

R(A′) ⊆
∐
A′∈a

a(A′, A).

We will often abusively denote [R] = R, in particular by f ∈ R we mean f ∈ [R].
Let F = (fi : Ai −→ A)i∈I be an arbitrary family of morphisms in a with codomain
A. There exists a smallest sieve R ⊆ a(−, A) with fi ∈ R(Ai) for all i ∈ I. This
sieve is called the sieve generated by F and is denoted by 〈F 〉 = 〈fi〉i = 〈fi〉. For
k = ∅, 〈F 〉(A′) consists of all f : A′ −→ A which factor through some fi : Ai −→ A
in F , that is, f = fig for some morphism g : A′ −→ Ai. For k 6= ∅, 〈F 〉(A′) consists
of all finite k-linear combinations

n∑
j=1

fijgj

for fij : Aij −→ A in F and gj : A′ −→ Aij in a.

2.2. Linear topologies. Let a be a small k-linear category. Before defining a k-
linear topology on a, it is useful to introduce the corresponding notion “without
axioms”.

A cover system T on a consists of specifying, for every A ∈ a, a collection T (A)
of sieves on A, called covering sieves on A or simply covers of A. An arbitrary
collection of morphisms (fi : Ai −→ A)i∈I is covering or covers A provided that
the generated sieve 〈fi〉i is a cover.

Consider a sieve R on A and a morphism f : B −→ A in a. The pullback f−1R
of R along f is the sieve on B obtained as the pullback

a(−, B)
f−
// a(−, A)

f−1R

OO

// R

OO

in the category Mod(a). Hence, f−1R(A′) contains all g : A′ −→ B with fg ∈
R(A′). Similarly, for two sieves R and S on A, the intersection R ∩ S is the sieve
on A obtained as the pullback of R ⊆ a(−, A) and S ⊆ a(−, A).
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Consider a sieve R on A and for every f : Af −→ A in R a sieve Rf on Af . We
define their glueing to be the sieve

R ◦ (Rf )f∈R = 〈gf〉f∈R,g∈Rf
⊆ a(−, A).

For k = ∅, an element in R ◦ (Rf )f∈R(B) can be written as fg for f : Af −→ A in
R(Af ) and g ∈ Rf (B). For k 6= ∅, an element in R ◦ (Rf )f∈R(B) can be written
as

∑n
i=1 figi for fi : Ai −→ A in R(Ai) and gi : B −→ Ai in Rfi(B).

We consider the following conditions for a cover system T on a:

(Id) T satisfies the identity axiom if a(−, A) ∈ T (A) for every A ∈ a.
(Pb) T satisfies the pullback axiom if for every f : B −→ A in a and R ∈ T (A),

we have f−1R ∈ T (B).
(Glue) T satisfies the glueing axiom if S ∈ T (A) as soon as there exists an R ∈

T (A) and for every f : Af −→ A in R(A) an Rf ∈ T (Af ) with Rf ⊆ f−1S.
(Glue’) T is closed under glueings if for a cover R ∈ T (A) and for covers Rf ∈

T (Af ) for every f : Af −→ A in R, the glueing R ◦ (Rf )f∈R is in T (A).
(Glue”) T respects glueing of covering families if for a covering family fi : Ai −→ A

of A and covering families fij : Aij −→ Ai of Ai, the collection of all
compositions fifij : Aij −→ A is covering.

(Up) T is upclosed if R ∈ T (A) and R ⊆ S ⊆ a(−, A) implies S ∈ T (A).
(Int) T is closed under intersections if R,S ∈ T (A) implies R ∩ S ∈ T (A).

(Loc) T is localizing if it satisfies (Id) and (Pb).
(Top) T is a topology if it satisfies (Id), (Pb) and (Glue).

The following proposition shows that to define a topology, axioms (Id) and (Pb)
can equivalently be combined with either (Glue’) and (Up) or else with (Glue”)
and (Up).

Proposition 2.1. Let T be a cover system on a.

(1) If T satisfies (Id) and (Glue), then T satisfies (Up) and (Glue’).
(2) If T satisfies (Up) and (Glue’), then it satisfies (Glue).
(3) If T is a topology then T satisfies (Int) and (Glue”).
(4) If T satisfies (Glue”), then it satisfies (Glue’).

Proof. (1) Suppose T satisfies (Id) and (Glue). Let us show that T satisfies (Up).
Consider R ⊆ S with R ∈ T . Then for f : B −→ A in R(A), a(−, B) = f−1R ⊆
f−1S and a(−, B) ∈ T (B). Let us show that T satisfies (Glue’). For a glueing
S = R ◦ (Rf )f of covers, we clearly have Rf ⊆ f−1S.

(2) Suppose T satisfies (Glue’) and (Up). Consider S, R, Rf as stated in (Glue).
By (Glue’), R ◦ (Rf )f is a cover and since Rf ⊆ f−1S, we have R ◦ (Rf )f ⊆ S.
Thus, S is a cover by (Up).

(3) Suppose T is a topology and consider R,S ∈ T (A). Then for R∩S, we have
for every f ∈ R that f−1S is a cover by (Pb) and f−1S ⊆ f−1(R ∩ S). Hence
R ∩ S is a cover by (Glue). Next we prove that (Glue”) holds in case k 6= ∅.
The case k = ∅ is similar. Consider a covering collection fi : Ai −→ A of A
and covering collections fij : Aij −→ Ai of Ai. Put S = 〈fifij〉i,j and R = 〈fi〉i.
Consider an arbitrary element f =

∑n
l=1 filαl in R. We put Rf = ∩nl=1α

−1
l 〈filj〉j ,

which is a cover. We claim that Rf ⊆ f−1S. Indeed, for β ∈ Rf , we have that
fβ =

∑n
l=1 filαlβ =

∑
l,l′ filfiljl′ belongs to S.

(4) Clearly, a glueing R ◦ (Rf )f as in (Glue’) is a special case of a glueing of
covering families, whence the result is covering. �

A cover system B ⊆ T is a basis for T if for every T ∈ T (A), there is a B ∈ B(A)
with B ⊆ T . For a cover system B on a we define the upclosure Bup to be the cover
system on a with

Bup(A) = {R ⊆ a(−, A) | ∃ S ∈ B(A) S ⊆ R}.
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Clearly, Bup is upclosed and B is a basis of Bup.
Note that all the listed properties (Id) to (Top) are stable under taking arbitrary

intersections of cover systems. Consequently, for a given cover system T , there
exists a smallest cover system T ′ with T ⊆ T ′ such that T ′ satisfies a particular
combination of the properties in the list. In some cases, it is possible to give a more
tangible description of such a smallest T ′.

For a cover system L on a, we define the cover system L+ on a with

L+(A) = {R ◦ (Rf )f∈R | R ∈ L(A), Rf ∈ L(Af ), f : Af −→ A}.

Lemma 2.2. If B is a basis for L, then B+ is a basis for L+.

Proof. Consider a glueing R◦(Rf )f∈R of L-covers. Take B-covers B ⊆ R, Bf ⊆ Rf .
Clearly B ◦ (Bf )f∈B ⊆ R ◦ (Rf )f∈R. �

Lemma 2.3. If L is localizing, then so is (L+)up.

Proof. Consider a cover R ◦ (Rf )f∈R of A for L+ and a map a : B −→ A. Since
R ∈ L(A), we have a−1R ∈ L(B). For g : Bg −→ B in a−1R, we have ag ∈ R.
Consider the glueing a−1R ◦ (Rag)g∈a−1R. Clearly a−1R ◦ (Rag)g∈a−1R ⊆ a−1(R ◦
(Rf )f∈R). �

Let B and L be cover systems. We define the cover systems Bglue and Lupglue

through transfinite induction. We put B0 = B and L0 = Lup. For a successor
ordinal α+ 1 we put Bα+1 = B+

α and Lα+1 = (L+
α )up. For a limit ordinal β we put

Bβ = ∪α<βBα and Lβ = ∪α<βLα. For cardinality reasons, the sequences of cover
systems Bα and Lα become stationary. We define Bglue and Lupglue to be these
stable values.

Proposition 2.4. (1) If B is a basis of L, then Bglue is a basis of Lupglue.
(2) Bglue is the smallest cover system B′ which is closed under glueings with
B ⊆ B′.

(3) Lupglue is the smallest upclosed cover system L′ which is closed under glue-
ings with L ⊆ L′.

(4) If L is localizing, then Lupglue is the smallest topology L′ with L ⊆ L′.

Proof. (1) It suffices to show that Bα is a basis for Lα. To begin with, B0 is a basis
for L0. Suppose Bα is a basis for Lα. Then by Lemma 2.2, Bα+1 = B+

α is a basis for
L+
α and hence also for (L+

α )u = Lα+1. For a limit ordinal β, if Bα is a basis for Lα
for every α < β, then Bβ = ∪α<βBα is a basis for ∪α<βLα = Lβ . (2) and (3) are
obvious. For (4), it suffices to note that by Lemma 2.3 and transfinite induction,
Lupglue is localizing. �

2.3. Linear sites and sheaves. The main interest in linear topologies on linear
categories, lies in the fact that they allow the definition of well-behaved categories
of sheaves. Let a be a k-linear category and let T be a cover system on a. A module
M ∈ Mod(a) is a sheaf on a if for every morphism f : R −→ M in Mod(a) with
R ∈ T (A), there is a unique morphism ξ : a(−, A) −→ M which restricts to f on
R, that is, the composition ξ|R : R −→ a(−, A) −→M is equal to f . Let

Sh(a, T ) ⊆ Mod(a)

be the full subcategory of sheaves on a. Recall that a localization of a category C is
a fully faithful functor C′ −→ C which has an exact (that is, finite limit preserving)
left adjoint. A strict localization of C is a full subcategory closed under adding
isomorphic objects, for which the inclusion functor is a localization. A small k-
linear category endowed with a k-linear topology T is called a k-linear site.

The following is well-known:
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Proposition 2.5. Let (a, T ) be a k-linear site. The category Sh(a, T ) is a strict
localization of Mod(a) and the association T 7−→ Sh(a, T ) defines a 1-1 correspon-
dence between k-linear topologies on a and strict localizations of Mod(a).

In order to construct the category of sheaves on a site, we do not need the entire
topology:

Proposition 2.6. Let a be a small k-linear category with cover systems B ⊆ L ⊆ T
such that L is localizing, B is a basis for L and T = Lupglue. We have

Sh(a,B) = Sh(a,L) = Sh(a, T ).

For k 6= ∅, we can further give an alternative description of the category of
sheaves, based upon torsion modules. In this case, let T be a cover system on
a. A module M ∈ Mod(a) is torsion if for every morphism ξ : a(−, A) −→ M ,
there is a cover R ∈ T (A) on which ξ vanishes, that is, the composition ξ|R :
R −→ a(−, A) −→ M is equal to zero. Let Tors(a, T ) ⊆ Mod(a) denote the full
subcategory of torsion modules. Cleary, if B is a basis for a cover system T , we
have Tors(a,B) = Tors(a, T ).

Recall that a localizing Serre subcategory of a Grothendieck abelian category C
is a full subcategory S closed under coproducts, subquotients and extensions. In
this case the Gabriël quotient C/S exists, and is equivalent to the right orthogonal

S⊥ = {C ∈ C | HomC(S,C) = 0 = Ext1
C(S,C) for all S ∈ S}.

We have the following:

Proposition 2.7. Let (a, T ) be a k-linear site for k 6= ∅. The category Tors(a, T )
is a localizing Serre subcategory for which

Sh(a, T ) = Tors(a, T )⊥.

2.4. The conditions (G), (F) and (FF). For k = ∅, categories of sheaves on
arbitrary small sites are characterized internally as so called Grothendieck topoi by
Giraud’s theorem [1]. For k 6= ∅, it follows from the Gabriël-Popescu theorem that
the categories of k-linear sheaves are precisely the k-linear Grothendieck abelian
categories. This leads to the point of view that Grothendieck abelian categories
can be considered as “linear topoi”. Following our earlier convention, by a k-linear
topos we will mean a Grothendieck topos if k = ∅, and a k-linear Grothendieck
abelian category if k is a commutative ring.

For a given k-linear Grothendieck topos C, one is interested in finding interesting
representations of C as a category of sheaves. Such representations originate from
k-linear functors γ : u −→ C with u a small k-linear category, the functor γ giving
rise to a functor

ι : C −→ Mod(a) : C 7−→ C(φ(−), C)

with left adjoint a : Mod(a) −→ C obtained as the colimit preserving extension of
γ.

We recall the following theorem from [11], which is proven in loc. cit. for k = Z.
The proof for k an arbitrary commutative ring is entirely similar, and the result
for k = ∅ is proven along the same lines, generalizing the construction in Giraud’s
theorem. The case k = ∅ also follows from a suitable version of the “Lemme de
Comparaison” [1].

We call a family of morphisms (ci : Ci −→ C)i∈I in C jointly epimorphic if for
f, g : C −→ D in C we have f = g if and only if fci = gci for all i ∈ I. We
define the cover system T on u with R ∈ T (U) if and only if (γ(f))f∈[R] is jointly
epimorphic. We say that the functor γ satisfies

(G) and is called generating if the objects γ(U) for U ∈ u generate C;
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(F) if for every c : γ(U) −→ γ(V ) in C there exists a covering family (fi : Ui −→
U)i in U with for all i ∈ I, cγ(fi) = γ(gi) for some gi : Ui −→ V .

(FF) if for every f : U −→ V in u with γ(f) = 0, there exists a covering family
(fi : Ui −→ U)i in U with ffi = 0 for all i ∈ I.

Remark 2.8. (1) Note that it is equivalent to require, in the definitions of (F)
and (FF), the existence of a covering sieve rather than a covering family,
as is done in [11].

(2) The notation (F) stands for “full up to coverings” and (FF) stands for
“faithful up to coverings”.

Theorem 2.9. The following are equivalent:

(1) The functor γ satisfies (G), (F) and (FF);
(2) The functor ι is a localization.

In this case, T is a topology on u and ι factors through an equivalence C −→
Sh(a, T ).

Definition 2.10. The functor γ : u −→ C is called localizing if the equivalent
conditions in Theorem 2.9 are fulfilled.

2.5. Transfer of cover systems. Let a, b be small k-linear categories. Let cov(a)
denote the set of cover systems on a. Consider a k-linear functor ϕ : b −→ a with
colimit preserving extension ϕ̂ : Mod(b) −→ Mod(a). For a sieve s : S ⊆ b(−, B),
we define ϕS to be the image of the map ϕ̂(s) : ϕ̂(S) −→ ϕ̂(b(−, B)) = a(−, ϕ(B)).
For any collection of generators bi : Bi −→ B with S = 〈bi〉, ϕS is the sieve of
a(−, ϕ(B)) generated by the morphisms ϕ(bi).

We define natural maps between the sets of cover systems

ϕ : cov(b) −→ cov(a) : S 7−→ ϕS = {ϕS | S ∈ S}
and

ϕ−1 : cov(a) −→ cov(b) : T 7−→ ϕ−1T = {S | ϕS ∈ T }.
We obviously have ϕϕ−1T ⊆ T and S ⊆ ϕ−1ϕS. If we consider a second functor
ψ : c −→ b then for a sieve T on C ∈ c, we have (ϕψ)T = ϕ(ψT ). Consequently,
for a cover system T on a, we have (ϕψ)−1T = ψ−1(ϕ−1T ).

Definition 2.11. Consider ϕ : b −→ a as above and let T and S be cover systems
on a and b respectively. For B ∈ b with A = ϕ(B), ϕ is called cover continuous
in B if for every R ∈ T (A), there exist S ∈ S(B) with ϕS ⊆ R. The functor ϕ is
called cover continuous if it is cover continuous in B for every B ∈ b.

Lemma 2.12. Consider ϕ : b −→ a as above and let T and S be localizing cover
systems on a and b respectively. Consider the associated topologies T upglue and
Supglue. If ϕ is cover continuous with respect to T and S, then ϕ is also cover
continuous with respect to T upglue and Supglue.

Proof. Without loss of generality, we may suppose that S is a topology. Let R be
the largest cover system on a for which ϕ becomes cover continuous with respect
to S on b and R on a. Concretely, for A ∈ a, we have R ∈ R(A) if and only if
for every B ∈ b with ϕ(B) = A, there is a cover S ∈ S(B) with ϕS ⊆ R. By
the assumption, we have T ⊆ R. If we can show that R is closed under glueings,
then by Proposition 2.4 (3), we also have T upglue ⊆ R as desired. Hence, consider
R ∈ R(A) and for every f : Af −→ A in R, Rf ∈ R(Af ). If A is not in the
image of ϕ, then every sieve on A is in R so there is nothing to check. Suppose
A = ϕ(B) for some B ∈ b. Then there is an S ∈ S(B) with ϕS ⊆ R. For every
g : Bg −→ B in S, we thus have ϕ(g) : ϕ(Bg) −→ ϕ(B) = A in R. Further, for
the cover Rϕ(g) ∈ R(ϕ(Bg)), there exists a cover Sg ∈ S(Bg) with ϕSg ⊆ Rϕ(g).
Clearly, we have ϕ(S ◦ (Sg)) ⊆ R ◦ (Rf ). �
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Consider ϕ : b −→ a and suppose a is endowed with a topology T . Consider
the canonical morphism a −→ Sh(a, T ) obtained as the composition of the Yoneda
embedding a −→ Mod(a) with the sheafification Mod(a) −→ Sh(a, T ). Consider its
composition φ : b −→ Sh(a) with ϕ. We can apply Theorem 2.9 to φ.

Suppose a is endowed with a cover system T . We say that the functor ϕ satisfies

(G) if for every A ∈ a there is a covering family (ϕ(Bi) −→ A)i for T .

Suppose b is endowed with a cover system S. We say that the functor ϕ satisfies

(F) if for every a : ϕ(B) −→ ϕ(B′) in a there exists a covering family (fi :
Bi −→ B)i for S with for all i ∈ I, aφ(fi) = φ(gi) for some gi : Bi −→ B′.

(FF) if for every f : B −→ B′ in a with ϕ(f) = 0, there exists a covering family
(fi : Bi −→ B)i for S with ffi = 0 for all i ∈ I.

The following result is a generalized “Lemme de comparaison” from [1]:

Theorem 2.13. Let T be a topology on a and consider the cover system ϕ−1T on
b. If the functor ϕ satisfies (G), (F) and (FF) relative to T and ϕ−1T , then the
cover system ϕ−1T is a topology on b and the forgetful functor Mod(a) −→ Mod(b)
restricts to an equivalence Sh(a, T ) −→ Sh(b, ϕ−1T ).

Definition 2.14. The functor ϕ is called localizing with respect to T if it satisfies
(G), (F) and (FF) relative to T and ϕ−1T .

Lemma 2.15. Let ϕ : b −→ a be as above and let a be endowed with a topology
T and b with the cover system ϕ−1T . If ϕ satsifies (G) and (F), then ϕ is cover
continuous.

Proof. Consider B ∈ b, A = ϕ(B), and R ∈ T (A). Take arbitrary generators
R = 〈ai〉 for ai : Ai −→ A. Since ϕ satisfies (G), for every i, there is a covering
family aij : ϕ(Bij) −→ Ai. Since ϕ satisfies (F), for every aiaij : ϕ(Bij) −→ ϕ(B),
there exists a covering family bijk : Bijk −→ Bij and morphisms cijk : Bijk −→ B
with aiaijϕ(bijk) = ϕ(cijk). By (Glue”), the morphisms cijk constitute a covering
family with 〈ϕ(cijk)〉 ⊆ R. �

Proposition 2.16. Let ϕ : b −→ a be as above and let T and S be topologies on a
and b respectively. If ϕ is cover continuous and satisfies (F) and (FF) with respect
to S, then ϕ−1T ⊆ S.

Proof. Consider B ∈ b and a sieve R ⊆ b(−, B) with ϕR ∈ T . We are to show that
R ∈ S. Since ϕ is cover continuous, there is a cover S ∈ S(B) with ϕS ⊆ ϕR. In
particular, for every si : Bi −→ B in S(B′), there exist finitely many morphisms
rαi : Bαi −→ B in R(Bαi ) and morphism gαi : ϕ(Bi) −→ ϕ(Bαi ) in a with ϕ(si) =∑n
α=1 ϕ(rαi )gαi . Since ϕ satisfies (F), taking the intersection of n covers, there is a

cover Si ∈ S(Bi) with for every sij : Bij −→ Bi in Si(Bij), g
α
i ϕ(sij) = ϕ(fαij) for

some fαij . hence ϕ(sisij) = ϕ(
∑n
α=1 r

α
i f

α
ij). Since ϕ satisfies (FF), for every i, j

there is a further cover Sij ∈ S(Bij) with for every sijk : Bijk −→ Bij in Sij(Bijk),
sisijsijk =

∑n
α=1 r

α
i f

α
i jhijk for some hijk. This shows that S ◦ (Si) ◦ (Sij) ⊆ R,

which finishes the proof since S satisfies (Glue’) and (Up). �

3. Linearized topologies

From now on, k is a commutative ground ring. Let U be a small (non-linear)
category and let a be a k-linear U-graded category in the sense of [13]. In this
section, for a topology τ on U , we define an associated linearized topology Tτ on
the k-linear category ã associated to a. If Tτ equals a certain simpler localizing
cover system Lτ , based upon [7, Thm. 2.8] we obtain a recognition result for the
sheaf category over the linearized topology (Theorem 3.25). We investigate the
following general question: suppose ϕ : V −→ U is a localizing functor with respect
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ot τ (Definition 2.14), σ = ϕ−1τ is the induced topology on V and φ : aϕ −→ a
is the naturally induced linear functor, what are natural conditions under which
φ is localizing? In particular, we introduce a class of stably localizing functors ϕ
(Definition 3.17) for which this is indeed the case (Theorem 3.16).

3.1. Map-graded categories. The setting for linearized topologies is that of map-
graded categories in the sense of [13]. Map-graded categories have two levels, a lower
level which is not enriched (hence, corresponding to the case k = ∅ before), and an
upper level which is enriched over k for a commutative ring k. If we would instead
take k = ∅ for the upper level as well, a map-graded category would simply be a
functor a −→ U in which U represents the lower level and a represents the upper
level. For k a commutative ring, the correct notion is the following. Let U be a
(non-linear) small category. A k-linear U-graded category consists of the following
data:

• For every object U ∈ U , a set of objects aU “living over U”.
• For every morphism u : V −→ U in U and objects AV ∈ aV , AU ∈ aU , a
k-module au(AV , AU ) of morphisms “living over u”.

• For every U ∈ U , A ∈ aU , an identity morphism 1A ∈ a1U
(A,A).

• For v : W −→ V and u : V −→ U in U and AU ∈ aU , AV ∈ aV and
AW ∈ aW , a k-bilinear composition

au(AV , AU )× av(AW , AV ) −→ auv(AW , AU ) : (a, b) 7−→ ab.

These data have to satisfy the obvious identity and associativity axioms. Note
however that a is not itself a k-linear category, or even a category. On the other
hand, we can associate a k-linear category ã to a in the following way. We put
Ob(ã) =

∐
U∈U aU and for objects AV ∈ aV , AU ∈ aU , we put

ã(AV , AU ) =
⊕

u∈U(V,U)

au(AV , AU ).

Following the philosophy from [18] that k-linear categories can be viewed as k-
algebras with several objects, k-linear U-graded categories can be viewed as monoid-
graded algebras with several objects (in which both the monoid and the algebra
are allowed to have several objects).

3.2. Linearized topologies. Let a be a k-linear U-graded category with associ-
ated k-linear category ã. Next we explain how to “linearize” a topology on U in
order to obtain a k-linear topology on ã. Consider a sieve R = RU ⊆ U(−, U). For
A ∈ aU , B ∈ aV , we consider the k-module

RA(B) =
⊕

f∈RU (V )

af (B,A).

Clearly, an element b ∈ ag(B
′, B) for g ∈ U(V ′, V ) induces a k-linear morphism

−b : RA(B) −→ RA(B′) which sends a ∈ af (B,A) to ab ∈ afg(B
′, A), since

fg ∈ RU (V ′). Consequently, an arbitrary element
∑n
i=1 bi ∈ ã(B′, B) induces k-

linear morphism
∑n
i=1(−bi) : RA(B) −→ RA(B′), and we thus obtain a k-linear

sieve RA ⊆ ã(−, A).
Let τ be a cover system on U . We define the cover system Bτ on ã with, for

A ∈ aU :

Bτ (A) = {RA | R ∈ τ(U)}.

Lemma 3.1. (1) U(−, U)A = ã(−, A).
(2) (R ∩ S)A = RA ∩ SA.

(3) For a ∈ ag(A
′, A) and R ∈ T (U), (g−1R)A

′ ⊆ a−1RA.
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(4) For a =
∑
i ai ∈ ã(A′, A) with ai ∈ agi(A

′, A) and R ∈ T (U), (∩ig−1
i R)A ⊆

a−1RA.

Proof. (1) U(−, U)A(B) = ⊕f :V−→Uaf (B,A) = ã(B,A). (2) (R ∩ S)A(B) =
⊕f∈R(V )∩S(V )af (B,A) = ⊕f∈R(V )af (B,A) ∩ ⊕f∈S(V )af (B,A). (3) Consider a
morphism b =

∑
i bi : B −→ A′ with bi ∈ afi(B,A

′) with gfi ∈ R(U) for all i.
Then abi ∈ agfi(B,A) do abi ∈ RA(B) as desired. (4) By (3), for every i we have

(g−1
i R)A

′ ⊆ a−1
i RA. Hence (∩ig−1

i R)A
′

= ∩i(g−1
i RA

′
) ⊆ ∩ia−1

i RA ⊆ a−1RA. �

We define the cover system Lτ = Bup
τ on a with, for A ∈ aU :

Lτ (A) = {S ⊆ ã(−, A) | ∃R ∈ τ(U) RA ⊆ S}.

Proposition 3.2. If τ satisfies the axioms (Id) and (Pb), then so does Lτ . We
have

Proof. This follows from Lemma 3.1 (1) and (4). �

Definition 3.3. Let a be a U-graded category and let τ be a topology on U . The
topology Tτ on ã is the smallest topology containing Bτ . The category of sheaves
on a is by definition Sh(a, τ) = Sh(ã, Tτ ) and the category of torsion modules on a
is Tors(a, τ) = Tors(ã, Tτ ).

Proposition 3.4. Let a be a U-graded category and let τ be a topology on U . We
have Tτ = Lupglue

τ and Sh(a, τ) = Sh(ã,Lτ ) = Sh(ã,Bτ ).

Proof. This follows from Propositions 3.2 and 2.4(4). �

Unlike the category of sheaves Sh(a, τ), in general the category Tors(a, τ) of
torsion modules cannot be defined directly in terms of τ and Bτ . However, in many
cases, it is possible to give such a direct description.

Proposition 3.5. Let a be a U-graded category and τ a topology on U . If Lτ
satisfies the glueing axiom (Glue), then we have Lτ = Tτ and A module M ∈ Mod(ã)
is τ -torsion if for every A ∈ aU and x ∈ M(A) there is a cover R ∈ τ(U) such
that for every f : V −→ U in R, a : B −→ A in af (B,A) ⊆ ã(B,A), we have
M(a)(x) = 0.

To end this section, we formulate conditions which ensure that Lτ satisfies the
glueing axiom, and hence Lτ = Tτ . Recall that a module M ∈ Mod(ã) is called
finitely generated if there exists an epimorphism ⊕ni=1ã(−, Ai) −→M .

Proposition 3.6. Let a be a U-graded category and τ a topology on U . Suppose
the following conditions hold:

(1) For every w : W −→ U in U and cover R ∈ τ(W ) there is a cover S ∈ τ(U)
with w−1S ⊆ R.

(2) There is a basis β of τ such that for every R ∈ β(U) and A ∈ aU the module
RA ∈ Mod(ã) is finitely generated.

Then Lτ is a topology on ã.

Proof. By Proposition 3.2, Lτ satisfies (Id) and (Pb). We show that it also satisfies
(Glue). Consider A ∈ aU and S ⊆ ã(−, A) such that there is a T ∈ Lτ (A) and
for every b : B −→ A in T (B) a Tb ∈ Lτ (B) with Tb ⊆ b−1S. Clearly, we may
suppose that T and all the Tb are in the basis of Lτ consisting of covers RC for
R ∈ β(W ), C ∈ aW . So, suppose T = RA for R ∈ β(U) and Tb = (Rb)

Bb for
Rb ∈ β(Ub). Take finitely many generators bi : Bi −→ A, i : 1, . . . , n for T . We
may suppose that bi ∈ aui

(Ui, U) for ui : Ui −→ U in R(Ui). For every Rbi , take a
cover Ri ∈ τ(U) with u−1

i Ri ⊆ Rbi . Consider the cover R′ = R ∩ ∩ni=1Ri in τ(U).

We claim that R′
A ⊆ S. To see this, consider w : W −→ U in R′ and c : C −→ A
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in aw(C,A). Since c ∈ RA, we can write c =
∑n
i=1 bici for ci ∈ ã(C,Bi). Further,

write ci =
∑ni

j=1 cij for cij ∈ auij
(C,A). It follows that uiuij = w for all i, j. Since

uiuij = w ∈ Ri, it follows that uij ∈ Rbi , and consequently cij ∈ Tbi ⊆ bi
−1S. It

follows that c ∈ S, as required. �

The following notion will be important later on. Let a be a U-graded category
and τ a topology on U . We say that a satisfies

(WG) if for every covering family fi : Ui −→ U with R = 〈fi〉 ∈ τ(U) and for
every A ∈ aU , the collection of morphisms F =

∐
i

∐
A′∈aUi

afi(A
′, A) has

〈F 〉 = RA.

3.3. Comparison of linearized topologies. Let U ,V be small categories, a a
small U-graded category and

ϕ : V −→ U
a functor. According to [15], the category of map-graded categories is naturally
fibered over the category of small categories, through the association (U , a) 7−→ U .
In particular, we can construct a canonical V-graded category aϕ as follows. For
V ∈ v, we put aϕV = aϕ(V ). For A ∈ aϕV , A′ ∈ aϕV ′ and v ∈ V(V, V ′), we put
aϕv (A,A′) = aϕ(v)(A,A

′). The identity maps aϕv (A,A′) −→ aϕ(v)(A,A
′) give rise to

a graded functor (V, aϕ) −→ (U , a). We are interested in the induced linear functor

φ : ãϕ −→ ã : A 7−→ A

with

ãϕ(A,A′) =
⊕

v∈V(V,V ′)

aϕv (A,A′) −→
⊕

u∈U(ϕ(V ),ϕ(V ′))

au(A,A′) = ã(A,A′)

determined by the identity maps aϕv (A,A′) −→ aϕ(v)(A,A
′).

Proposition 3.7. Suppose V is endowed with a topology σ, and let ãϕ be endowed
with the cover system Bσ. If ϕ satsifies (F) (resp. (FF)) with respect to σ, then φ
satisfies (F) (resp. (FF)) with respect to Bσ.

Proof. We prove (F), the proof of (FF) is similar. Consider A ∈ aϕV , A′ ∈ aϕV ′
and a morphism a ∈ ã(A,A′). We have morphims ui ∈ U(ϕ(V ), ϕ(V ′)) and ai ∈
aui

(A,A′) with a =
∑n
i=0 ai. Taking the intersection of n covers, we obtain a cover

R ∈ σ(V ) such that for every fj : Vj −→ V in R and i, there exists hij : Vj −→ V ′

with uiϕ(fj) = ϕ(hij). Consider RA ∈ Bσ(A). Now for fixed j consider any finite
collection of morphisms gk : Vj −→ V in R(W ) and B ∈ aϕW , and bk ∈ aϕgk(B,A).

For b =
∑m
k=1 bk ∈ RA(B), we have φ(b) = b ∈ ã(B,A) and ab =

∑
i,k aibk for

aibk ∈ ãϕ(hij)(B,A
′) = ãϕhij

(B,A′). �

Lemma 3.8. Let U be endowed with a topology τ , and V with the cover system
σ = ϕ−1τ . Suppose σ is a topology.

(1) Let ã be endowed with the cover system Lτ and ãϕ with the cover system
Lσ. If ϕ is cover continuous in U ∈ U , then for all A ∈ aU , φ is cover
continuous in A.

(2) Let ã be endowed with the cover system Tτ and ãϕ with the cover system
Tσ. If ϕ is cover continuous, then φ is cover continuous.

Proof. For A ∈ aϕV = aϕ(V ), consider the a cover R ∈ τ(ϕ(V )) and the cover

RA ∈ Bτ (A). By assumption, there is a sieve S ⊆ V(−, V ) with ϕS ⊆ R. Hence,
for every s : V ′ −→ V in S(V ′), we have ϕ(s) ∈ R(ϕ(V ′)). Consider SA ∈ Bσ(A).
Obviously, φSA ⊆ RA. This proves (1). (2) now follows from Lemma 2.12. �
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Proposition 3.9. Let ϕ : V −→ U be as above and let U be endowed with a
topology τ . Suppose ϕ satsifies the conditions (G), (F), (FF) with respect to τ and
σ = ϕ−1τ . Then σ is a topology, and we have φ−1Tτ ⊆ Tσ.

Proof. According to Proposition 2.16, it suffices that (a) φ is cover continuous with
respect to Tτ and Tσ and (b) φ satisfies (F) and (FF) with respect to Tσ. Require-
ment (a) follows from Lemma 3.8 and requirement (b) follows from Proposition
3.7. �

In order to proceed, we need to impose further conditions relative to the topology
τ on U , either on the U-graded category a, or on the functor ϕ : V −→ U . We say
that ϕ satisfies

(SG1) if for every U ∈ U , there is a coverR ∈ τ(U) such that for every f : U ′ −→ U
in R(U ′), we have U ′ = ϕ(V ) for some V ∈ V.

(SG2) if for every V ∈ V there is a cover R ∈ τ(ϕ(V )) such that for every f :
U ′ −→ ϕ(V ) in R(U ′), we have f = ϕ(g) for some g : V ′ −→ V in V.

Definition 3.10. A sieve T on V ∈ V is called a U-sieve if [ϕT ] = {ϕ(f) | f ∈ [T ]}.

Hence, T is a U-sieve if for every f : V ′ −→ V in T (V ′) and for every u : U −→
ϕ(V ′) in U , we have ϕ(f)u = ϕ(g) for some g : V ′′ −→ V in T (V ′′).

Lemma 3.11. Let R be an arbitrary sieve on V ∈ V, and for every f : Vf −→ V
in R, let Tf be a U-sieve on Vf . The composition R ◦ (Tf ) is a U-sieve on V .

Proof. An element of R ◦ (Tf ) can be written as fg for f : Vf −→ V in R(Vf ) and
g : Wg −→ Vf in Tf (Wg). For every u : U −→ ϕ(Wg) in U , we have ϕ(fg)u =
ϕ(f)ϕ(g)u = ϕ(f)ϕ(h) for some h : Zh −→ Vf in Tf (Zh). hence, ϕ(fg)u = ϕ(fh)
for fh ∈ R ◦ (Tf )(Zh). �

Proposition 3.12. The following are equivalent:

(1) ϕ satisfies (SG2).
(2) for every V ∈ V, there exists a U-sieve TV ∈ ϕ−1τ(V ).
(3) ϕ−1τ has a basis of U-sieves.

Proof. Suppose (1) holds, and for V ∈ V, let R ∈ τ(ϕ(V )) be as stated. We define
the sieve R̄ on V with R̄(V ′) = {g : V ′ −→ V | ϕ(g) ∈ R(ϕ(V ′)). We clearly have
ϕR̄ = R ∈ τ(ϕ(V )), and R̄ is a U-sieve. Hence (2) holds. Suppose (2) holds. Let
R ∈ ϕ−1τ(V ) be a cover on V . For every f : Vf −→ V in R, let Tf ∈ ϕ−1τ(Vf )
be a U-sieve. By Lemma 3.11, the composition R ◦ (Tf ) is a U-sieve, and it is a
cover since τ satisfies (Glue”). Obviously, we have R ◦ (Tf ) ⊆ R. Hence (3) holds.
Suppose (3) holds. For V ∈ V, since V(−, V ) ∈ ϕ−1T (V ), there exists a U-sieve
TV ∈ ϕ−1τ(V ) and (2) holds. Suppose (2) holds and for V ∈ V, let TV ∈ ϕ−1τ(V )
be a U-sieve. Then ϕTV ∈ τ(ϕ(V )) is as in (SG2) and (1) holds. �

Proposition 3.13. Suppose ϕ is injective on objects and satisfies (SG2) with re-
spect to a topology τ on U . Then ϕ satsifies (F) with respect to ϕ−1τ .

Proof. Consider f : ϕ(V ′) −→ ϕ(V ) in U . Take U-sieves T ∈ ϕ−1τ(V ) and T ′ ∈
ϕ1τ(V ′). Consider the cover S = ϕT ′ ∩ f−1ϕT ∈ τ(ϕ(V ′)). Let S̄ be the sieve on
V ′ with S̄(W ) = {v : W −→ V ′ ∈ V | ϕ(v) ∈ S(ϕ(W ))}. Then ϕS̄ = S since RV ′

is a U-sieve, and hence S̄ ∈ ϕ−1τ(V ′). For v : W −→ V ′ in S̄(W ), we thus have
fϕ(v) = ϕ(v′) for some v′ : W ′ −→ V in T . Since ϕ is injective on objects, we have
W = W ′ which finishes the proof. �

Proposition 3.14. Let U be endowed with a topology τ , and suppose ϕ satisfies
(G). If either a satsifies (WG), or else ϕ satisfies (SG1), then φ satsifies (G) with
respect to Bτ .
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Proof. Consider U ∈ U andA ∈ aU . Suppose first that a satsifies (WG). Since ϕ sat-
isfies (G), there is a covering family fi : ϕ(Vi) −→ U for τ . For every A′ ∈ aϕ(Vi), we
also have A′ ∈ aϕVi

and A′ = φ(A′). By (WG), we have 〈
∐
i

∐
A′∈aϕ(Vi)

afi(A
′, A)〉 =

RA ∈ Bτ , as desired.
Next suppose that ϕ satisfies (SG1). We thus have a cover R ∈ τ(U) consist-

ing of morphism ϕ(V ) −→ U . Then RA ∈ Tτ (A) is a cover with for A′ ∈ aU ′ ,
RA(A′) = ⊕f :U ′−→U∈R(U ′)af (A′, A). Since the domain of every f ∈ R(U) is given
by U ′ = ϕ(V ) for some V , every morphism a ∈ af (A′, A) satisfies A′ = φ(A′) and
〈
∐
f

∐
A′∈aU′

af (A′, A)〉 = RA ∈ Bτ , as desired. �

Proposition 3.15. Let U be endowed with a topology τ , and V with the cover
system σ = ϕ−1τ . Suppose σ is a topology. If either a satisifies (WG), or else ϕ
satisfies (SG2), then we have Bσ ⊆ φ−1Tτ .

Proof. Consider S ∈ σ(V ) and A ∈ ãϕV = ãϕ(V ). By assumption, we have ϕS ∈
τ(ϕ(V )). We are to show that φSA ∈ Tτ (A). Suppose first that a satsifies (WG).
We have ϕS = 〈ϕ(g) | g ∈ [S]〉 and thus

(ϕS)A = 〈
∐

g:V ′−→V ∈[S]

∐
A′∈aϕ(V ′)

aϕ(g)(A
′, A)〉 = φSA.

Next suppose that ϕ satisfies (SG2). By Proposition 3.12, we thus have a cover
T ⊆ S with T ∈ σ(V ) and [ϕT ] = {ϕ(t) | t ∈ [T ]}. Obviously, TA ⊆ SA and
φTA ⊆ φSA. Further, we have φTA = (ϕT )A ∈ Bτ whence φSA ∈ Tτ . �

Theorem 3.16. Let ϕ : V −→ U be a functor between small categories, and suppose
ϕ is localizing with respect to a topology τ on U . Let a be a U-graded category and
let φ : ãϕ −→ ã be the induced linear functor. Let σ = ϕ−1τ be the induced topology
on V and let Tτ and Tσ be the induced linearized topologies on ã and ãϕ respectively.
Supose further that either a satisfies (WG), or else ϕ satisfies (SG1) and (SG2).
Then φ is localizing with respect to Tτ and we have φ−1Tτ = Tσ. In particular, the
forgetful functor Mod(ã) −→ Mod(ãϕ) restricts to an equivalence

Sh(ã, Tτ ) −→ Sh(ãϕ, Tσ).

Proof. By Proposition 3.14, φ satisfies (G) with respect to Tτ , and by Proposition
3.7, φ satisfies (F) and (FF) with respect to Bσ. By Proposition 3.15, we have
Bσ ⊆ φ−1Tτ , so φ also satisfies (F) and (FF) with respect to φ−1Tτ . By Theorem 2.9
applied to φ, φ−1Tτ is a topology. By Proposition 3.9, we now have Bσ ⊆ φ−1Tτ ⊆
Tσ so since Tσ is the smallest topology containing Bσ according to Proposition 2.4,
we conclude that φ−1Tτ = Tσ. �

Definition 3.17. A functor ϕ : V −→ U is called stably localizing with respect to
a topology τ on U if it is localizing and satsifies (SG1) and (SG2) with respect to
τ .

3.4. Refining sites. Let (U , τ) be a site, that is, U is a small category endowed
with a topology τ . In this section, we develop a technique for constructing a “refined
site” from a suitable subcategory V ⊆ U for which the inclusion functor ϕ : V −→ U
is stably localizing. First, we note the following:

Lemma 3.18. Suppose ϕ : V −→ U is faithful and bijective on objects. If ϕ satisfies
(SG2), it is stably localizing.

Proof. Condition (FF) is fulfilled since ϕ is faithful. Condition (SG1) is fulfilled
since ϕ is surjective on objects, and (G) follows from (SG1). By Proposition 3.13,
condition (F) follows from (SG2). �
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Let V ⊆ U be a subcategory with Ob(V) = Ob(U), and let ϕ : V −→ U be the
inclusion functor. In this setup, we say that a sieve R on U ∈ U is a V-sieve if for
every u : U ′ −→ U in R(U ′), we have u ∈ V. For every V-sieve R on U ∈ U , we let
R̄ be the sieve on U ∈ V with

R̄(U ′) = {v : U ′ −→ U | v ∈ R(U ′)}.
We assume that ϕ satisfies (SG2). Hence, for every U ∈ U there is a cover RU ∈
τ(U) which is a V-sieve. Since for an arbitrary S ∈ τ(U), S ∩ RU is a V-sieve, τ
has a basis β of V-sieves. Let β̄ be the cover system on V with

β̄(V ) = {R̄ | R ∈ β(V )}.

Lemma 3.19. β̄ is a basis of ϕ−1τ consisting of U-sieves.

Proof. By Proposition 3.12, ϕ−1τ has a basis β′ of U-sieves. For S ∈ β′(V ), let
R ∈ β(V ) be such that R ⊆ ϕS. Consequently, we have R̄ ⊆ S. �

Now let (U , τ) be a site. The ingredient we need for our construction of V is
the choice, for every object U ∈ U , of a distinguished cover DU ∈ τ(U). We put
Ob(V) = Ob(U) and for U,U ′ ∈ U , we put

(5) V(U ′, U) =

{
DU (U) ∪ {1U} if U ′ = U

DU (U ′) otherwise.

Lemma 3.20. With the higher definitions, V is a subcategory of U .

Proof. By construction, V contains the identity morphisms of U , which act as iden-
tity morphisms for V as well. It remains to check that V is closed under the compo-
sition of two morphisms different from identities. Hence, consider f : U ′ −→ U in
DU (U ′) and g : U ′′ −→ U ′ ∈ DU ′(U

′′). Since DU is a sieve, we have fg ∈ DU (U ′′)
as desired. �

We denote the inclusion functor by ϕ : V −→ U .

Proposition 3.21. The functor ϕ is stably localizing with respect to τ on U .

Proof. By Lemma 3.18, it suffices to show that ϕ satsifies (SG2). By construction
of V, for U ∈ U , DU ∈ τ(U) is a V-sieve. �

In the remainder of this section, we suppose V ⊆ U is a subcategory with
Ob(V) = Ob(U) for which the inclusion functor satisfies (SG2). Let a be a U-
graded category and consider φ : ãϕ −→ ã. Put σ = ϕ−1τ on V and let ã and ãϕ

be endowed with Tτ and Tσ respectively. By Theorem 3.16, we have Tσ = φ−1Tτ
and φ is localizing. Next we list conditions which ensure that for the refined site
(V, σ = ϕ−1τ), condition (2) in Proposition 3.6 is fulfilled.

Proposition 3.22. Suppose the following conditions hold:

(1) There is a basis β of τ such that for every R ∈ β(U) and A ∈ aU the sieve
RA ⊆ ã(−, A) is finitely generated.

(2) For given U ∈ U , A ∈ aU , there are only finitely many couples (u,B) with
u : V −→ U not in V and B ∈ aV , and for every such couple the k-module
au(B,A) is finitely generated.

Then there is a basis β′ of ϕ−1τ such that for every R′ ∈ β′(U) and A ∈ aϕU the

sieve R′
A ⊆ ãϕ(−, A) is finitely generated.

Proof. For every U ∈ U , let RU ∈ τ(U) be a fixed V-sieve. After changing from β0

as given in (1) to the basis β with β0(U) = {R∩RU | R ∈ β(U)}, we may suppose
that for β in (1), β(V ) consists of V-sieves. For every cover R ∈ β(V ), we let R̄
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be as before and by Lemma 3.19, we obtain the basis β̄ of ϕ−1τ consisting of U-
sieves. It remains to show that R̄A ⊆ ãϕ(−, A) is finitely generated in Mod(ãϕ) for
R ∈ β(V ). Since RA ⊆ ã(−, A) is finitely generated in Mod(ã), the result follows
from Lemma 3.23 �

Lemma 3.23. Suppose the conditions of Proposition 3.22 hold. For a V-sieve R
on V ∈ U , let R̄ be the associated U-sieve on V ∈ V. If RA ⊆ ã(−, A) is finitely
generated in Mod(ã), then R̄A ⊆ ãϕ(−, A) is finitely generated in Mod(ãϕ).

Proof. Take finitely many generators ai : Ai −→ A of RA, with ai ∈ avi(Ai, A)
for vi : Vi −→ V in R(Vi). For every i, there are finitely many couples (uij , Aij)
with uij : Vij −→ Vi not in V and Aij ∈ aVij

, and in each case auij
(Aij , Ai) is

a finitely generated k-module. Let aijk : Aij −→ Ai be finitely many generators
of this module. Consider all the ai : Ai −→ A together with al the compositons
aiaijk : Aij −→ Ai −→ A. We claim that these morphisms together generate R̄A.
It suffices to generate a morphism b : B −→ A with b ∈ aw(W,V ) for w : W −→ V
in R(W ). Since b ∈ RA(B), we can write b =

∑n
l=1 ailbl for bl ∈ aul

(B,Ail). If
ul ∈ V, then bl ∈ ãϕ. If ul /∈ V, then necessarily ul = uilj and B = Ailj for some
j. Hence, we can write bl =

∑m
t=1 κtailjkt with κt ∈ k and ailbl =

∑m
t=1 κtailailjkt .

This proves the claim and finishes the proof. �

3.5. A characterization. If Lτ = Tτ on a U-graded category, it is easier to recog-
nize the corresponding sheaf category. Let C be a Grothendieck category, let (U ,v)
be a preordered set, let aU be sets for U ∈ U , and consider a map γ : U −→ Ob(C).
We define the U-graded category a with

av(V,U) = C(γ(V ), γ(U)).

Put u = ã and let γ : u −→ C be the canonical functor. Let τ be a topology on U for
which Lτ = Tτ on u. Following [7], we characterize when γ induces an equivalence
C ∼= Sh(u, Tτ ).

Definition 3.24. (1) γ is τ -full if for every c : γ(V ) −→ γ(U) in C with
V 6v U , there is a τ -cover Vi v V such that for every ci : γ(Vi) −→ γ(V )
with Vi 6v U we have cci = 0.

(2) γ is τ -projective if for every C-epimorphism c : X −→ Y and morphism
y : γ(V ) −→ Y with V ∈ U , there is a τ -cover Vi v V such that for every
ci : γ(Vi) −→ γ(V ), there is a di : γ(Vi) −→ X with yci = cdi.

(3) γ is τ -finitely presented if for every filtered colimit colimαXα in C the fol-
lowing conditions hold:
(a) for every map c : γ(V ) −→ colimαXα with V ∈ U , there is a τ -cover

Vi v V such that for every ci : γ(Vi) −→ γ(V ), there is an αi and a
di : γ(Vi) −→ Xαi

with cci = sαi
di for sαi

: Xαi
−→ colimαXα.

(b) for every map c : γ(V ) −→ Xβ with 0 = sβc : γ(V ) −→ colimαXα,
there is a cover Vi v V such that for every ci : γ(Vi) −→ γ(V ) there
is a β′ with sββ′cci = 0 for sββ′ : Xβ −→ Xβ′ .

(4) γ is τ -ample if for every τ -cover Vi v V the canonical morphism⊕
c∈C(γ(Vic ),γ(V ))

γ(Vic) −→ γ(V )

is a C-epimorphism.

The following theorem combines Theorem 2.9 with the requirement that the
induced topology on u coincides with Tτ .

Theorem 3.25. Consider γ : u −→ C and τ as above. The following are equivalent:

(1) γ induces an equivalence C ∼= Sh(u, Tτ ).
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(2) γ is generating, τ -full, τ -projective, τ -finitely presented and τ -ample.

Proof. This is a special case of [7, Thm. 2.8]. �

Remarks 3.26. (1) If all the objects γ(U) for U ∈ U are projective (resp.
finitely presented) in C, then γ is τ -projective (resp. τ -finitely presented).

(2) γ is τ -projective if and only if for every element ξ ∈ Ext1
C(γ(V ), C) with

V ∈ U and C ∈ C, there is an τ -cover Vi v V such that for every morphism
c : γ(Vi) −→ γ(V ), the natural image of ξ in Ext1

C(γ(Vi), C) is zero.
(3) The setup for Definition 3.24 and Theorem 3.25 can easily be extended

to the case where we have a preordered set (U ,v), prescribed sets aU for
U ∈ U , and a map γ :

∐
U∈U aU −→ Ob(C).

4. Fibered map-graded categories

In this section we apply the results from §3 to fibered U-graded categories a. In
this case, for a topology τ on U , we always have Lτ = Tτ on ã (Proposition 4.2)
and for every localizing functor ϕ : V −→ U , the induced φ : ãϕ −→ ã is localizing.
We fomulate an application to pseudofunctors A : Uop −→ Cat(k) (Theorem 4.6).

4.1. Fibered map-graded categories. Let U be a small category and let a be
a U-graded category. In this section we recall some notions from [13], based upon
the standard non-linear notions from [2]. Consider a morphism u : U ′ −→ U in U
and objects A ∈ aU , A′ ∈ aU ′ . A morphism f ∈ au(A′, A) is called cartesian if for
every u′ : U ′′ −→ U ′ in U and A′′ ∈ aU ′′ , the canonical composition morphism

f− : au′(A
′′, A′) −→ auu′(A

′′, A)

is an isomorphism of k-modules. The U-graded category a is called fibered provided
that for every u : U ′ −→ U in U and A ∈ aU , there exist an object u∗A ∈ aU ′

and a cartesian morphism δu,A ∈ au(u∗A,A). If a cartesian morphism exists, it
is unique up to an isomorphism ρ ∈ a1U′ (A

′′, A′) where A′ and A′′ are the two
involved choices for u∗A. A composition of cartesian morphisms is readily seen to
be cartesian.

By definition, a prestack A on U is a pseudofunctor A : Uop −→ Cat(k) from Uop

to the 2-category of small k-linear categories and k-linear functors. In particular,
A consists of k-linear categories A(U) for U ∈ U , k-linear restriction functors
u∗ : A(U) −→ A(V ) for u : V −→ U in U , and natural isomorphisms v∗u∗ ∼= (uv)∗

for u : V −→ U and v : W −→ V in U , satisfying a natural coherence condition for
three composable morphisms in U .

To the prestack A, we associate a natural U-graded catgeory a = A] with aU =
Ob(A(U)) and

au(BV , AU ) = a(V )(BV , u
∗AU )

for u : V −→ U in U and BV ∈ aV , AU ∈ aU . For every u : V −→ U in U and
A ∈ aU , the canonical morphism

δu,A = 1u∗A ∈ A(V )(u∗A, u∗A) = au(u∗A,A)

is cartesian, whence a is fibered. The association A 7−→ A] is a k-linear version of
the Grothendieck construction which is part of the classical correspondence between
pseudofunctors and fibered categories [2]. See [13] for further details in the linear
setup.
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4.2. Linearized topologies. Let U be a small category and let a be a fibered
U-graded category. Let U be endowed with a topology τ .

Lemma 4.1. Consider A ∈ aU and R ∈ τ(U). For every u : U ′ −→ U in R(U ′),
let δu,A ∈ au(u∗A,A) be a cartesian morphism. Suppose R = 〈F 〉. We have

RA = 〈δf,A | f ∈ F 〉.
In particular, a satsifies (WG).

Proof. It suffices to look at a morphism a ∈ au(A′, A) for arbitrary u : U ′ −→ U
and A′ ∈ aU ′ . We can write u = fu′ for f : V −→ U in F and u′ : U ′ −→ V . Since
δf,A is cartesian, there is a unique morphism b ∈ au′(A

′, u∗A) with a = δf,Ab. �

Proposition 4.2. Let U be a small category endowed with a topology τ , and let a
be a fibered U-graded category. The cover system Lτ is a topology on ã, that is, we
have Lτ = Tτ .

Proof. Since Lτ satisfies (Loc) and (Up), it suffices to show that it satisfies (Glue’).
For A ∈ aU , consider RA for R ∈ τ(U). For every f ∈ RA(Af ) with Af ∈ aUf

,

consider R
Af

f for Rf ∈ τ(Uf ). For every u : V −→ U in R(V ), RA contains

the cartesian morphism δu,A : u∗A −→ A. The cover Ru
∗A
δu,A for Rδu,A ∈ T (V )

further contains the cartesian morphisms δv,u
∗A for all v : W −→ V in Rδu,A(W ).

Consequently, the composition RA ◦ (R
Af

f ) contains the cartesian compositions

δu,Aδv,u
∗A corresponding to the compositions uv ∈ R ◦ (Ru). Hence, by Lemma

4.1, (R ◦ (Ru))A ⊆ RA ◦ (R
Af

f ). �

4.3. Comparison of linearized topologies. Let ϕ : V −→ U be a functor be-
tween small categories. Let a be a fibered U-graded category with induced V-graded
category aϕ. For v : V ′ −→ V in V and A ∈ aϕV = aϕ(V ), a cartesian morphism

δϕ(v),A ∈ aϕ(v)(ϕ(v)∗A,A) = aϕv (ϕ(v)∗A,A)

for a is readily seen to define a cartesian morphism

δv,A = δϕ(v),A ∈ aϕv (ϕ(v)∗A,A)

for aϕ as well. Hence, aϕ is a fibered V-graded category.

Theorem 4.3. Let ϕ : V −→ U be a functor between small categories, localizing
with respect to a topology τ on U . Let a be a fibered U-graded category and let
φ : ãϕ −→ ã be the induced linear functor. Let σ = ϕ−1τ be the induced topology on
V and let Tτ and Tσ be the induced linearized topologies on ã and ãϕ respectively.
Then φ is localizing and we have φ−1Tτ = Tσ. In particular, the forgetful functor
Mod(ã) −→ Mod(ãϕ) restricts to an equivalence

Sh(ã, Tτ ) −→ Sh(ãϕ, Tσ).

Proof. Since by Lemma 4.1, a satisfies (WG), the result is given by Theorem 3.16.
�

4.4. Sheaves of k-modules. Let (U , τ) be a small site. Let

Modk(U) = Fun(U
op

,Mod(k)

be the category of presheaves of k-modules on U , and let Shk(U , τ) be the full
subcategory of sheaves of k-modules on U . For every U ∈ U , we obtain a slice site
(U/U, τU ) in the obvious way. For g : V −→ U in U , the natural maps g∗ : U/V 7−→
U/U and iU : U/U −→ U : g 7−→ V induce functors i∗U : Modk(U) −→ Modk(U/U)
and g∗ : Modk(U/U) −→ Modk(U/V ) which restrict to

i∗U : Shk(U , τ) −→ Shk(U/U, τU )
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and

g∗ : Shk(U/U, τU ) −→ Shk(U/V, τV )

between categories of sheaves of k-modules.

Proposition 4.4. The functors i∗U and g∗ define pseudofunctors Modk(U) and
Shk(U , τ) of presheaves resp. sheaves of k-modules on (U , τ) with

Modk(U)(U) = Modk(U/U); Shk(U , τ)(U) = Shk(U/U, τU ).

Proof. This is a straightforward verification. �

4.5. Sheaves of A-modules. Let (U , τ) be as before and let A : Uop −→ Cat(k)
be a pseudofunctor. A presheaf of A-modules is a morphism of pseudofunctors
Aop −→Modk(U). A sheaf of A-modules is a morphism of pseudofunctors Aop −→
Shk(U , τ). We obtain abelian categories Mod(A) of presheaves of A-modules and
Sh(A, τ) of sheaves of A-modules. For every U ∈ U we obtain the categories
Mod(A|U ) of presheves of A|U -modules and Sh(A|U , τU ) of sheaves of A|U -modules.
For g : V −→ U in U , the natural maps g∗ : U/V 7−→ U/U and iU : U/U −→ U :
g 7−→ V induce functors i∗U : Mod(A) −→ Mod(A|U ) and g∗ : Mod(A|U ) −→
Mod(A|V ) which restrict to

i∗U : Sh(A, τ) −→ Sh(A|U , τU )

and

g∗ : Sh(A|U , τU ) −→ Sh(A|V , τV )

between categories of sheaves of k-modules.
Now let a = A] be the associated U-graded category of A.

Proposition 4.5. There are equivalences of categories Mod(A) ∼= Mod(ã) and

Sh(A, τ) ∼= Sh(ã, Tτ ).

Proof. We indicate how to define inverse equivalences

ϕ : Sh(A, τ) −→ Sh(ã, Tτ )

and

ψ : Sh(ã, Tτ ) −→ Sh(A, τ).

Consider a sheaf F : Aop −→ Sh(U , τ) onA with maps FU : A(U)
op −→ Sh(U/U, τU ).

We define ϕF : ã
op −→ Mod(k) by putting ϕF (AU ) = FU (AU )(1U ). For a mor-

phism x ∈ ag(BV , AU ) = A(V )(BV , g
∗AU ) for g : V −→ U we obtain

FV (x)(1V ) : FV (g∗AU )(1V ) −→ FV (BV )(1V ).

Composing with the natural isomorphism FU (AU )(g) ∼= FV (g∗AU )(1V ) and

FU (AU )(g : g −→ 1U ) : FU (AU )(1U ) −→ FU (AU )(g),

we obtain the desired ϕF (x) : ϕF (AU ) −→ ϕF (BV ).
Conversely, let M : ã −→ Mod(k) be a sheaf on ã. We define ψMU : A(U) −→

Sh(U/U, τU ) by putting ψMU (AU )(g) = M(g∗AU ). For g : V −→ U , f : W −→ U ,
h : g −→ f we have g∗AU ∼= h∗f∗AU yielding a morphism δ ∈ ah(g∗Au, f

∗AU ) and
M(δ) : M(f∗AU ) −→M(g∗AU ). We obtain natural isomorphisms

g∗ψMU (AU )(h) = M((gh)∗AU ) ∼= M(h∗g∗AU ) = ψMV (g∗AU )(h).

It is easily seen that the sheaf properties on both sides of the equivalence correspond.
�
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let A : Uop −→ Cat(k) be a pseudofunctor with associated fibered U-graded
category a = A]. For the composed pseudofunctor

B = Aϕ
op

: V
op

−→ U
op

−→ Cat(k),

the associated fibered V-graded category b = B] satisfies b = aϕ.

Theorem 4.6. Let ϕ : V −→ U be a functor between small categories, and suppose
ϕ is localizing with respect to a topology τ on U . Put σ = ϕ−1τ on V. Let A :
Uop −→ Cat(k) be a pseudofunctor on U and let B = Aϕop

: V −→ Cat(k) be the
composed pseudofunctor on V. There is a canonical equivalence of categories

Sh(A, τ) −→ Sh(B, σ).

Proof. This follows from Theorem 4.3 and Proposition 4.5. �

Example 4.7. Let (X,O) be a ringed space, that is X is a topological space and O is
a sheaf of rings on X. Let B ⊆ open(X) be a basis of the topological space X. We
consider B as a category in the usual way, endowed with the topology τB for which
(Ui −→ U)i is covering if and only if ∪iUi = U . Now consider two bases B′ ⊆ B,
and consider the natural inclusion functor ϕ : B′ −→ B. This functor is fully
faithful hence satisfies the conditions (F) and (FF) with respect to τB′ = ϕ−1τB.
By definition of a basis, ϕ also satsifies (G) with respect to τB. Let Sh(X,O) be the
classical category of sheaves of O-modules on X, and let Sh(B,O) = Sh(O|B, τB) be
the category of sheaves of O|B-modules on (B, τB). We have canonical equivalences
of categories

Sh(X,O) −→ Sh(B,O) −→ Sh(B′,O).

5. Tails topologies

In this section, we apply the results from §3 to a particular tails topology tails
which can be considered on a certain class of small categories U as naturally in-
duced by the trivial topology on the single morphism category. We describe the
refinement construction from §3.4 for tails topologies (Theorem 5.8), as well as
natural conditions ensuring that Ltails = Ttails (Definition 5.10). If this equality
of cover systems holds, we further give a recognition result for the corresponding
sheaf category (Theorem 5.20).

5.1. Tails topologies. Let U be a small (non-linear) category. Then U can be
endowed with two extreme topologies.

The smallest topology on U is the trivial topology triv, for which

triv(U) = {U(−, U)}

for U ∈ U . This is a topology with Sh(U , triv) = Mod(U) = Fun(U ,Set).
The largest topology on U is the discrete topology disc, for which

disc(U) = {R ⊆ U(−, U)}

for U ∈ U . In particular, the discrete topology has ∅ ∈ disc(U) for U ∈ U . Note
that if M ∈ Mod(U) is a sheaf for a topology with ∅ ∈ disc(U) for a certain U ∈ U ,
we necessarily have |M(U)| = 1. Thus, for disc, up to isomorphism, the only sheaf
M is the constant sheaf with M(U) = {∗} for U ∈ U . The category Sh(U ,disc) is
equivalent to the category with a single morphism.

Our next aim is to introduce a topology on U which is as large as possible,
but avoids the empty covers. Let e be the category with a single object ? and
a single morphism 1 = 1?. Let e be endowed with the trivial topology triv. We
have Sh(e, triv) = Fun(e, Set) ∼= Set. For an arbitrary small category U , consider the
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unique functor ε : U −→ e. We endow U with the tails cover system tails = ε−1triv.
Concretely, we have

tails(U) = {R ⊆ U(−, U) | R 6= ∅}.
Consider the forgetful functor

ε∗ : Fun(e,Set) −→ Fun(U ,Set) : X 7−→ cX

which sends X = (? 7−→ X) to the constant presheaf cX : U 7−→ X on U . As soon
as U is connected (that is, every two objects in U can be joined by a zig-zag of
morphisms in U), every cX is a sheaf and we obtain a factorization of ε∗ through
Fun(e,Set) = Sh(e, triv) −→ Sh(U , tails). Consider the following conditions on the
category U :

(D0) Every couple of morphisms V −→ U and W −→ U fit into a commutative
diagram

V // U

Z

OO

// W

OO

(D1) Every couple of objects V and W fit into a diagram

V

Z

OO

// W

(D2) Every couple of morphisms f, g : V −→ U fit into a commutative diagram

Z // V
f
//

g
// U

If U satisfies (D1) and (D2), we will call U downwardly directed (D). A category
satisfying the dual condition of (D) is sometimes called filtered [5]. Note that (D)
implies (D0). Obviously, the category associated to a downwardly directed poset is
downwardly directed as a category.

Lemma 5.1. The following are equivalent:

(1) The category U satisfies (D0);
(2) The cover system tails is a topology on U .

Proof. The cover system tails clearly satisfies (Id) and (Glue”). It satisfies (Pb) if
and only if (D0) holds. �

Proposition 5.2. The following are equivalent:

(1) The category U is non-empty and downwardly directed;
(2) The functor ε is localizing.

In particular, in this case we have Sh(U , tails) ∼= Set.

Proof. By Definition 2.14 and Theorem 2.13, it suffices to show that ε satisfies
(G), (F) and (FF) if and only if U satsifies (D). First note that φ satisfies (G) if
and only if U is non-empty. Next we rephrase (F). We may equivalently look at
ϕ : U −→ e instead of φ. Consider objects V,W ∈ U and the unique morphism
1? : ϕ(V ) −→ ϕ(W ). Condition (F) if fulfilled if and only if there exists a morphism
Z −→ V in U for which the composition 1? : ϕ(Z) −→ ϕ(V ) −→ ϕ(W ) is in the
image of ϕ, that is, for which there exists a morphism Z −→ W in U . This is
precisely condition (D1). Finally we rephrase (FF), again using ϕ instead of φ.
Consider morphisms f, g : V −→ U in U with ϕ(f) = ϕ(g). Since ϕ(f) = 1? for
every morphism f , f and g are arbitrary morphism in U . Condition (FF) is fulfilled
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if there exists a morphism h : Z −→ V with fh = gh. This is precisely condition
(D2). �

5.2. Linearized tails topologies. Let U , V be small categories and let ϕ : V −→
U be a functor. Let tailsU and tailsV be the tails cover systems on U and V
respectively.

Lemma 5.3. We have ϕ−1tailsU = tailsV .

Proof. This follows for instance from considering the composition of ϕ with ε :
U −→ e. �

Proposition 5.4. Suppose ϕ satisfies is localizing. If U satisfies (D) (resp. (D0)),
then so does V.

Proof. If U satisfies (D) and ϕ satisfies (G), (F), (FF), then by Proposition 5.4,
the composition εϕ : V −→ U −→ e satsifies (G), (F) and (FF), that is, V satisfies
(D). If U satsifies (D0), it is not hard to check directly that V also satisfies (D0),
making consecutive use of the conditions (G), (F) and (FF). �

Lemma 5.5. Suppose U satisfies (D0). Then for every w : W −→ U in U and
∅ 6= R ⊆ U(−,W ) there is a ∅ 6= S ⊆ U(−, U) with w−1S ⊆ R.

Proof. It suffices to define S to be the image of R −→ U(−,W ) −→ U(−, U). By
definition of the pullback, we have w−1S ⊆ R. �

Proposition 5.6. Suppose U satisfies (D0). Let a be a U-graded category. Suppose
for every ∅ 6= S ⊆ U(−, U) and A ∈ aU , there is a ∅ 6= R ⊆ S such that the sieve
RA ⊆ ã(−, A) is finitely generated. Then Ltails = Ttails on ã.

Proof. This follows from Proposition 3.6 and Lemma 5.5. �

In the remainder of this section, we suppose V ⊆ U is a subcategory with
Ob(V) = Ob(U). Suppose U satisfies (D0) and suppose the inclusion functor ϕ
satisfies (SG2), that is, for every U ∈ U there exists a non-empty V-sieve on U ∈ U .
By Lemma 3.18, ϕ is stably localizing and by Proposition 5.4, V satisfies (D0).

Let a be a U-graded category and consider φ : ãϕ −→ ã. Let ã and ãϕ be
endowed with TtailsU and TtailsV respectively. By lemma 5.3 and Theorem 3.16, we
have TtailsV = φ−1TtailsU and φ is localizing. Next we list conditions which ensure
that we have LtailsV = TtailsV on ãϕ.

Proposition 5.7. Suppose the following conditions hold:

(1) For every ∅ 6= S ⊆ U(−, U) and A ∈ aU , there is a ∅ 6= R ⊆ S such that
the sieve RA ⊆ ã(−, A) is finitely generated.

(2) For given U ∈ U , A ∈ aU , there are only finitely many couples (u,B) with
u : V −→ U not in V and B ∈ aV , and for every such couple the k-module
au(B,A) is finitely generated.

Then there is a basis β′ of ϕ−1τ such that for every R′ ∈ β′(U) and A ∈ aϕU the

sieve R′
A ⊆ ãϕ(−, A) is finitely generated.

Proof. This follows from Propositions 3.6, 3.22 and Lemma 5.5. �

5.3. Preorder tails topologies. Let (U ,v) be a preorder considered as a cate-
gory. Suppose U satisfies (D0), that is, if for U, V ∈ U there exists W ∈ U with
U v W and V v W , then there exists Z ∈ U with Z v U and Z v V . Let a be a
U-graded category with aU = {U}.
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For V v U , consider the sieve RvVU on U ∈ U with

RvVU (W ) =

{
U(W,U) = {∗} if W v V
∅ otherwise

and the sieve R̃vVU on U ∈ ã with

R̃vVU (W ) =

{
av(W,U) if W v V
0 otherwise.

Consider the cover systems β on U and β̃ on ã with

β(U) = {RvVU | V v U}; β̃(U) = {R̃vVU | V v U}.

Clearly, β is a basis for the topology tails on U and β̃ is a basis for the cover system
Ltails on ã.

Let ν : U −→ U be a function with ν(U) v U for all U ∈ U . Define the relation
v′ on U by

(6) V v′ U ⇐⇒ [V v ν(U) ∨ V = U ].

Let U ′ be the category associated to the new poset (U ,v′) and let ϕ : U ′ −→ U be
the inclusion functor. Consider the resulting U ′-graded category aϕ. The associated
k-linear category ã′ = ãϕ has

ã′(V,U) =

{
av(V,U) if V v ν(U)

0 otherwise.

We obtain the naturally induced k-linear functor

φ : ã′ −→ ã : U 7−→ U.

By Proposition 5.4, U ′ satisfies (D0) and we denote the tails topology on U ′ by
tails′. Let ã and ã′ be endowed with the topologies Ttails and Ttails′ respectively.

Theorem 5.8. The functor ϕ is stably localizing, we have φ−1Ttails = Ttails′ and
the functor φ is localizing. In particular, the forgetful functor Mod(ã) −→ Mod(ãϕ)
restricts to an equivalence

Sh(ã, Ttails) −→ Sh(ã′, Ttails′).

Proof. This follows from Proposition 3.21 and Definition 3.17, Theorem 3.16. �

Proposition 5.9. Suppose the following conditions hold:

(1) For every V v U , there exists W v V for which R̃vWU is finitely generated
in Mod(ã).

(2) For every ν(U) @ V v U the k-module ã(V,U) is finitely generated.

Then Ttails′ = Ltails′ on ã′.

Proof. This follows from Proposition 5.7. �

In the remainder of this subsection, for simplicity, we assume (U ,v) is a poset.
The following definitions extend the ones from [7, §3].

Definition 5.10. (1) a is connected if av(V, V ) = k for V ∈ U ;
(2) a is locally finite if the k-modules av(V,U) are finitely generated for V v U

in U .
(3) a is generated by a collection of elements X ⊆ a given by sets X(V,U) ⊆

av(V,U) for V v U if every element in a can be written as a (finite)
k-linear combination of (finite) products of elements in X and elements
1V ∈ av(V, V ).
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(4) a is finitely generated if it is generated by X such that for all U ∈ U , the
set

XU =
∐
V ∈U

X(V,U)

is finite.

For V,U ∈ U , consider the interval

[V,U ] = {W ∈ U | V vW v U}.

We write V @n U if |[V,U ]| = n. We call U interval finite if for all V,U ∈ U , |[V,U ]|
is finite.

Lemma 5.11. Suppose U is interval finite and suppose a is finitely generated and
connected. Then a is locally finite.

Proof. Similar to the proof of [7, Lem. 3.1]. �

Proposition 5.12. Suppose U is interval finite and suppose a connected. The
following are equivalent:

(1) a is finitely generated;

(2) the a-modules R̃vVU are finitely generated for all V v U in U ;

(3) the a-modules R̃vVU are finitely generated for all V @2 U in U ;

Proof. Similar to the proof of [7, Prop. 3.2]. �

Proposition 5.13. Suppose for every V v U , there is a W v V for which R̃vWU
is finitely generated in Mod(ã). Then Ttails = Ltails on ã.

Proof. This follows from Proposition 5.6. �

Corollary 5.14. Suppose U is interval finite and a is connected and finitely gen-
erated. Then Ttails = Ltails on ã and Ttails′ = Ltails′ on ã′.

Proof. This follows from Propositions 5.9 and 5.12 and Lemma 5.11. �

Example 5.15. Put U = (Z,≥). The category ã of a U-graded category a cor-
responds precisely to the notion of a positively graded Z-algebra from [4]. The
resulting cover systems Ltails and Ttails on ã coincide with those defined in [7, §3.3].
Suppose a is connected and finitely generated. Then by Corollary 5.14, we have
Ttails′ = Ltails′ for any choice of ν : Z −→ Z with ν(n) ≥ n.

Example 5.16. Let A = (An)n∈N be a positively graded k-algebra. We obtain an
associated (Z,≥)-graded category a with a(n,m) = An−m, see [7, §3.1]. If A is a
connected (i.e A0 = k) finitely generated graded algebra, then ã is connected and
finitely generated by [7, Prop.3.3], and Example 5.15 applies.

5.4. A characterization. In this section, based upon §3.5, we discuss how sheaf
categories over linearized tails topologies can be recognized. Let C be a Grothendieck
category and let (U ,v) be a preordered set, considered as a category, satisfying
(D0), with a map ϕ : U −→ Ob(C). We define the U-graded category a with
aU = {U} and

av(V,U) = C(ϕ(V ), ϕ(U)).

Put u = ã and let ϕ : u −→ C be the canonical functor. Suppose the topology tails
on U is such that Ltails = Ttails on u. The following lemma generalizes [7, Lem.
3.13]:

Lemma 5.17. The functor ϕ is tails-full.
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Proof. It suffices to look at a map c : ϕ(V ) −→ ϕ(U) for V 6v U . Since U is
downwardly directed, we can take W ∈ U with W v V and W v U . Then W v V
generates a tails-cover of V . For every Z v W and d ∈ u(Z, V ) = C(ϕ(Z), ϕ(V )),
we have dc ∈ u(Z,U) = C(ϕ(Z), ϕ(V )) as desired. �

Let C be locally finitely presented with Fp(C) the set of finitely presented objects.
Consider ϕ : U −→ Fp(C).

Definition 5.18. We say that ϕ is ample if for every C ∈ Fp(C) there is a V0 ∈ U
such that for every V v V0, there is an epimorphism in C⊕

i∈I
ϕ(Vi) −→ C

with Vi v V for all i ∈ I.

Lemma 5.19. Let C and ϕ : U −→ Fp(C) be as above. The following are equivalent:

(1) ϕ is ample;
(2) ϕ : u −→ C satisfies (G) and is tails-ample.

Proof. This can be proven along the lines of the proof of [7, Corollary 3.16]. �

We obtain the following generlization of [7, Corollary 3.16]:

Theorem 5.20. Let U be a preorder satisfying (D0) and let C be a locally finitely
presented Grothendieck category with Fp(C) the set of finitely presented objects.
Consider a map ϕ : U −→ Fp(C) and let the functor ϕ : u −→ C be as above.
Suppose Ltails = Ttails on u. The following are equivalent:

(1) ϕ induces an equivalence C ∼= Sh(u, Ttails).
(2) ϕ is ample and tails-projective.

Proof. This follows from Theorem 3.25 and Lemmas 5.17 and 5.19. �

Example 5.21. Let X be a projective scheme over a noetherian base ring k. The
category C = Qch(X) of quasi-coherent sheaves is locally finitely presented and has
the category coh(X) of coherent sheaves as finitely presented objects. Recall that
an invertible sheaf L on X is called ample if for every coherent sheaf M , there is
an n0 such that for every n ≥ n0 there is an epimorphism

⊕iL−n −→M.

Take U = (Z,≥) and consider ϕ : Z −→ Fp(C) : n 7−→ L−n. Then ϕ is ample in the
sense of Definition 5.18. Furthermore, by the cohomological criterion for ampleness,
L is ample if and only if for every coherent sheaf M there is an n0 such that for
each i > 0 and for each n ≥ n0,

Exti(L−n,M) = 0.

Hence, by Remark 3.26(2), ϕ is tails-projective and by Theorem 5.20, we have
Qch(X) ∼= Sh(u, Ttails). Using the equivalence Sh(u, Ttails) ∼= Mod(u)/Tors(u, Ttails),
and the fact that the U-graded category u is naturally obtained from a Z-graded
algebra as in Example 5.16 (see for instance [7]), we recover Serre’s original algebraic
description of Qch(X).

6. Deformations of linearized sites

In this section, after recalling Gerstenhaber type algebraic deformation theory in
the context of linear and map-graded categories, we recall the deformation theory
for abelian and in particular Grothendieck categories from [17]. Our setup follows
this reference, that is we deform along a ring map between coherent commutative
rings R −→ k with nilpotent kernel I. This includes the standard infinitesimal
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deformation setup where R is an Artin local k-algebra. In (12) we describe a
natural map

θ : DefU (a) −→ Defab(Sh(ã, Tτ,a)) : b −→ Sh(b̃, Tτ,b).

If U is given by a preordered set, then based upon [17, Thm. 8.14], we formulate
conditions for θ to be a bijection (Theorem 6.10). We give applications to prestacks
(Theorem 6.13) and tails topologies (Theorem 6.15).

6.1. Algebraic deformations. Every non-commutative algebraic deformation the-
ory is somehow based upon the deformation theory of algebras due to Gerstenhaber
[8, 9]. The fundamental notions are the following:

Definition 6.1. Let A be a k-flat k-algebra. An R-deformation of A is an R-flat
R-algebra B with an isomorphism k ⊗R B ∼= A of k-algebras. An equivalence of
R-deformations B and B′ is an isomorphism B −→ B′ of R-algebras which reduces
to the identity 1A : A −→ A via the isomorphisms k ⊗R B ∼= A and k ⊗R B′ ∼= A.
The set of R-deformations of A up to equivalence of R-deformations is denoted by
Defalg(A).

Inspired upon Definition 6.1, we define deformations of three types of algebraic
objects. Each time, we have to specify how R-linear objects are reduced to k-linear
objects, and what flatness for k-linear objects means. The notion of deformation
and equivalence of deformations is then obtained in complete analogy with Defini-
tion 6.1:

(1) A k-linear category a is k-flat is all the modules a(A,A′) are k-flat. The
reduction k ⊗R b of an R-linear category is the category with the same
object set Ob(k ⊗R b) = Ob(b) and (k ⊗R b)(B′, B) = k ⊗R b(B′, B)
for B,B′ ∈ b. The set of R-deformations of a up to equivalence of R-
deformations is denoted Def lin(a).

(2) A k-linear U-graded category is k-flat if all the modules au(A,A′) are k-
flat. The reduction k ⊗R b of an R-linear U-graded category is the k-
linear U-graded category with the same object sets (k ⊗R b)U = bU and
(k⊗R b)u(B′, B) = k⊗R bu(B′, B) for u : U ′ −→ U , B′ ∈ bU ′ , B ∈ bU . The
set of R-deformations of a up to equivalence of R-deformations is denoted
DefU (a).

(3) A pseudofunctor A : Uop −→ Cat(k) is k-flat is all the categories A(U) are
k-flat. The reduction k ⊗R B of a pseudofunctor B : Uop −→ Cat(R) is the
pseudofunctor with (k ⊗R B)(U) = k ⊗R B(U). The set of R-deformations
of A up to equivalence of R-deformations is denoted Defps(A).

For a U-graded category a, there is a canonical map

(7) α : DefU (a) −→ Def lin(ã) : b −→ b̃.

Proposition 6.2. [12] [13] For a fibered U-graded category, every U-graded defor-
mation is fibered. For a pseudofunctor A : Uop −→ Cat(k) with associated fibered
U-graded category A], we have a canonical bijection

(8) β : Defps(A) −→ DefU (A]) : B −→ B].

6.2. Abelian categories. Although abelian categories are specific linear cate-
gories, the notion of linear deformation of §6.1 is not appropriate for abelian cat-
egories. For an abelian R-category B, we define the k-reduction to be the full
(abelian!) subcategory

Bk = {B ∈ B | IB = Im(I ⊗R B −→ B) = 0}.
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Furhermore, in [17, Definition 3.2], we introduce a notion of flatness for abelian
categories which is such that a k-algebra A is k-flat if and only if its module category
Mod(A) is abelian flat.

Definition 6.3. [17] Let A be a flat abelian k-category. An abelian R-deformation
of A is a flat abelian R-category B with an equivalence A ∼= Bk. An equivalence of
abelian R-deformations B and B′ is an equivalence B −→ B′ of R-linear categories
whose reduction is naturally isomorphic to the identity 1A : A −→ A via the
equivalences A ∼= Bk and A ∼= B′k.

We have the following basic result:

Proposition 6.4. [17] For a linear category a, there is a deformation equivalence

(9) µ : Def lin(a) −→ Defab(Mod(a)) : b −→ Mod(b)

The main point in the proof is to associate a linear deformation of a to a given
abelian deformation D of C = Mod(a). Considering the objects A ∈ a as objects of
C, we make essential use of the following two facts:

(1) Ext1
C(A,X ⊗k A) = Ext2

C(A,X ⊗k A) = 0 for all A ∈ a and X ∈ mod(k) (in
order to obtain unique flat lifts of the individual objects of a along the left
adjoint k ⊗R − of the embedding C −→ D);

(2) Ext1
C(A,X⊗kA′) = 0 for all A,A′ ∈ a and X ∈ mod(k) (in order to organize

the lifted object as a linear deformation b ⊆ D of a).

Proposition 6.4 tells us that the abelian deformation theory of module categories
is entirely controlled by Gerstenhaber’s deformation theory for algebras.

For general abelian categories, an appropriate Hochschild complex controling
abelian deformations was introduced and studied in [16].

6.3. Grothendieck categories. In [17, Theorem 6.29], it was proven that abelian
deformations of Grothendieck categories remain Grothendieck. The proof is based
upon the axiomatic definition of Grothendieck categories, and tells us nothing about
what happens to a concrete representation of the original Grothendieck category
as a sheaf category on a linear site. If we compare this result with Proposition 6.4
for module categories, clearly the latter is more precise.

Let γ : a −→ C be a k-linear functor from a small k-linear category a to a
Grothendieck category C, which satisfies the conditions (G), (F), (FF). According
to [17, §8], there is a canonical map

(10) λ : Def lin(a) −→ Defab(C)

making use of the map µ from (9) and the fact that deformations can be induced
upon localizations [17, §7]. In general, λ will not be a bijection. Bijectivity of λ will
be further addressed in §6.5. In the remainder of this subsection, we will discuss
concrete descriptions of λ.

First note that by Theorem 2.9, there is a canonical equivalence of categories
C ∼= Sh(a, T ) for an induced topology T on a. If we know λ′ associated to the
canonical γ′ : a −→ Mod(a) −→ Sh(a, T ), then λ is obtained by composing λ′ with
the canonical isomorphism

(11) η : Defab(Sh(a, T )) −→ Defab(C).

Let a be a k-linear category and let b be a linear R-deformation with canonical
map ρb : b −→ a. Consider the maps ρb : cov(b) −→ cov(a) and ρ−1

b : cov(a) −→
cov(b) as in §2.5. The following result is based upon [17, Thm. 7.1] and can be
found as [13, Prop. 3.16] and [7, Prop. 4.3]:
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Proposition 6.5. The given maps restrict to inverse bijections

ρb : top(b) −→ top(a)

and

ρ−1
b : top(a) −→ top(b)

between the topologies on a and on b respectively.

The following is a concrete description of the functor λ from (10) in the given
setup:

Proposition 6.6. Let (a, T ) be a k-linear site. The canonical map λ from (10)
associated to a −→ Mod(a) −→ Sh(a, T ) is given by

λ : Def lin(a) −→ Defab(Sh(a, T )) : b −→ Sh(b, ρ−1
b T ).

The main drawback in this description of λ, is the fact that although the topology
ρ−1
b T on b is uniquely determined, it is not described intrinsically in terms of b,

without reference to a. This is still in contrast with the map µ from (9), by which
to a deformation b of a, we associate the sheaf category with respect to the trivial
topology on b. This will be remedied in §6.4 in the contexts of linearized topologies.

6.4. Linearized sites. Let U be a small category. Let a be a k-linear U-graded
category and let b be an R-deformation of a. Consequently, b̃ is an R-deformation
of the k-linear category ã and we have a natural map ρ = ρb̃ : b̃ −→ ã. Consider

the maps ρ : cov(b̃) −→ cov(ã) and ρ−1 : cov(ã) −→ cov(b̃) as before.

Proposition 6.7. Let U be endowed with a topology τ . Let ã and b̃ be endowed
with the linearized topologies Tτ,a and Tτ,b respectively. We have

ρ(Tτ,b) = Tτ,a.

Proof. Consider B ∈ b with ρ(B) = A, A ∈ aU , and a cover R ∈ τ(U). From

the description of RA ⊆ ã(−, A) and RB ⊆ b̃(−, B) it is clear that ρ(RB) = RA.
Consequently, ρ(Lτ,b) ⊆ Lτ,a. For an arbitrary sieve RA ⊆ T ⊆ ã(−, A), consider

the pullbacks P and P ′ of T and RA respectively along b̃(−, B). Then P ′ = RB and

ϕ(P ) = T , whence ρ(Lτ,b) = Lτ,a. Now consider the topology ρ−1Tτ,a on b̃ which
corresponds to Tτ,a under the bijection of Proposition 6.5. Since Lτ,b ⊆ ρ−1Tτ,a,
we have Tτ,b ⊆ ρ−1Tτ,a. After taking ρ, it follows that Lτ,a ⊆ ρTτ,b ⊆ Tτ,a and
hence ρTτ,b = Tτ,a as desired. �

Proposition 6.8. Let (U , τ) be a site and let a be a U-graded category. There is a
canonical map

(12) θ : DefU (a) −→ Defab(Sh(ã, Tτ,a)) : b −→ Sh(b̃, Tτ,b).

Proof. This follows from Propositions 6.6 and 6.7. �

6.5. Deformation equivalences. Let (U ,v) be a preorder considered as a cate-
gory and let a be a U-graded category with associated k-linear category ã. Con-
cretely, for A ∈ aU , B ∈ aV , we have

ã(B,A) =

{
av(B,A) if V v U ;

0 otherwise.

Lemma 6.9. The canonical map α : DefU (a) −→ Def lin(ã) from (7) is a bijection.

Proof. It suffices to show that an arbitrary deformation c of ã is in the image of
te map. We may suppose that k ⊗R c = ã. Hence, for A ∈ aU , B ∈ aV we have
k ⊗R c(B,A) = 0 for V 6v U . By Nakayama, it follows that also c(B,A) = 0. �
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Let τ be a topology on U with linearized topology Tτ on ã. Let C be a Grothendieck
category and consider a linear functor

γ : ã −→ C.
Suppose that γ induces an equivalence C ∼= Sh(ã, Tτ ) (see §3.5).

We consider the following conditions.

(E0) An object C ∈ C satisfies (E0) if for all X ∈ mod(k), we have

Ext1
C(C,X ⊗k C) = Ext2

C(C,X ⊗k C) = 0.

(E1) A couple (C,D) of objects in C satisfies (E1) if for all X ∈ mod(k), we have

Ext1
C(C,X ⊗k D) = 0.

(I) A couple (B,A) of objects in ã satisfies (I) if

γ(B,A) : ã(B,A) −→ C(γ(B), γ(A))

is an isomorphism.

The following is a direct application of [17, Thm. 8.14]:

Theorem 6.10. Let γ : ã −→ C be as before. Suppose:

(1) for all A ∈ aU , γ(A) is k-flat and satisfies (E0);
(2) for all A ∈ aU , B ∈ bV for V v U , the couple (B,A) satisfies (I) and the

couple (γ(B), γ(A)) satisfies (E2).

Then the canonical map

θ : DefU (a) −→ Defab(Sh(ã, Tτ,a)) : b −→ Sh(b̃, Tτ,b)

from (12) is a bijection, from which the bijection λ : Def lin(ã) −→ Defab(C) from
(10) is obtained as λ = ηθα−1 for η and α as in (11) and (7) respectively.

If we analyze the previous theorem, we see that there are two possibly useful re-
finements of the site (U , τ) with the eye on deformation theory. The first refinement
involves condition (1), which only involves individual objects A ∈ aU .

Proposition 6.11. Let γ : ã −→ C be as before. Suppose V ⊆ U is a full subcategory
such that either the inclusion ϕ : V −→ U satsifies either (SG1) and (SG2), or
else ϕ satisfies (G) and a satsifies (WG). Consider the V-graded category a′ = aϕ

and let V be endowed with the topology τ ′ = ϕ−1τ . Then we canonically have
C ∼= Sh(ã′, Tτ ′,a).

(1) If for all V ∈ V and A ∈ aV , γ(A) is k-flat and satisfies (E0), then γ′ :
ã′ −→ C satsifies condition (1) in Theorem 6.10.

(2) If for all A ∈ aU , B ∈ bV for V v U in V, the couple (B,A) satisfies (I)
and the couple (γ(B), γ(A)) satisfies (E2), then γ′ satisfies condition (2)
in Theorem 6.10.

Proof. This follows from Theorem 3.16. �

The second refinement involves condition (2).

Proposition 6.12. Let γ : ã −→ C be as before. Suppose for every U ∈ U , we have
a cover DU ∈ τ(U) such that for every V v U in DU (V ), for every A ∈ aU and
B ∈ aV , the couple (B,A) satsifies (I) and the couple (ϕ(B), ϕ(A)) satisfies (E1).
Let V ⊆ U be the subcategory constructed in §3.4(5). Consider the V-graded category
a′ = aϕ and let V be endowed with the topology τ ′ = ϕ−1τ . Then we canonically
have C ∼= Sh(ã′, Tτ ′,a) and γ′ : ã′ −→ C satsifies condition (2) in Theorem 6.10.
Further, if γ satisfies condition (1), then so does γ′.

Proof. This follows from Proposition 3.21 and Theorem 3.16. �

We will illustrate Propositions 6.11 and 6.12 in the next two subsections.
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6.6. Prestacks. Let (U ,v) be a preorder considered as a category and let A :
Uop −→ Cat(k) be a pseudofunctor on U with associated fibered U-graded category
a = A]. We use the notations of §4.5. For every A ∈ A(U), we obtain a presheaf

Âp ∈ Mod(A|U ) with

ÂpV : A(V ) −→ Modk(U/V ) : B 7−→ Hom(B,A|V )

and

Hom(B,A)(W ) = A(W )(B|W , A|W ).

Let τ be a topology on U . The pseudofunctor A is called a prestack if for ev-
ery A ∈ A(U), B ∈ A(V ), we have Hom(B,A|V ) ∈ Shk(U/V ) and hence Âp ∈
Sh(A|U ). In general, we let Â ∈ Sh(A|U ) denote the sheafification of Âp. Every
restriction map i∗U : Mod(A) −→ Mod(A|U ) has a fully faithful exact left adjoint
ipU,! : Mod(A|U ) −→ Mod(A) which is given by the “presheaf extension by zero”,

that is, for F ∈ Mod(A|U ), for A ∈ A(Z) and W v Z, we have

ipU,!F (A)(W ) =

{
F (A|W )(W ) if W v U
0 otherwise.

Coposition with sheafification Mod(A) −→ Sh(A, τ) yields the fully faithful exact
left adjoint iU,! of i∗U : Sh(A, τ) −→ Sh(A|U , τU ). Similarly, for V v U , we obtain

the fully faithful exact left adjoint iUV,! : Sh(A|V , τV ) −→ Sh(A|U , τU ) of iU,∗V :

Sh(A|U , τU ) −→ Sh(A|V , τV ). We naturally obtain a functor

γ : ã −→ Sh(a, τ)

which sends A ∈ A(U) to iU,!(Â) for Â ∈ Sh(A|U ). For V v U and B ∈ A(V ),
A ∈ A(U), we have ã(B,A) = A(V )(B,A|V ) and we obtain the canonical map

γB,A : A(V )(B,A|V ) −→ Sh(A|V , τV )(B̂, Â|V ) −→ Sh(A, τ)(iV,!B̂, iU,!Â).

The functor ϕ induces the equivalence of categories from Proposition 4.5.
The following theorem generalizes and refines [17, Theorem 8.18] and [12, The-

orem 3.22].

Theorem 6.13. Let A be a prestack on (U , τ) and let γ be as above. Let V ⊆ U
be a full subcategory for which the inclusion ϕ : V −→ U satsifies (G) and suppose

for every V ∈ V and A ∈ A(V ), the object Â ∈ Sh(A|V , τV ) is k-flat and for
X ∈ mod(k), we have

(13) Ext1
Sh(A|V ,τV )(Â,X ⊗k Â) = Ext2

Sh(A|V ,τV )(Â,X ⊗k Â) = 0.

Consider the topology τ ′ = ϕ−1τ on V, and the prestack A′ = Aϕ on V. Then there
is a canonical equivalence Sh(A, τ) ∼= Sh(A′, τ ′) and the canonical map

Defps(A′) −→ Defab(Sh(A′, τ ′)) : B 7−→ Sh(B, τ ′)

is a bijection.

Proof. In order to apply Theorem 6.10, It suffices to check conditions (1) and (2)
in Proposition 6.11. This can be done using the fact that A is a prestack and the
functors iU,! and iUV,! are fully faithful and exact. �

Example 6.14. [17, Theorem 8.18]. Let (X,O) be a ringed space as in Example 4.7.
Let B ⊆ open(X) be a basis of X such that for U ∈ B and X ∈ mod(k) we have

H1(U,X ⊗k O|U ) = H2(U,X ⊗k O|U ) = 0
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for the sheaf cohomology groups. Let τ be the standard topology on open(X) and
τ |B its restriction to B, and let O|B be the restriction of O to B. We obtain a
bijection

Defps(O|B) −→ Defab(Sh(X,O)) : F 7−→ Sh(F , τ |B).

6.7. Tails topologies. Let C be a Grothendieck category and let (U ,v) be a pre-
ordered set, considered as a category, satisfying (D0), with a map γ : U −→ Ob(C).
We define the U-graded category a with aU = {U} and

av(V,U) = C(γ(V ), γ(U)).

Let γ : ã −→ C be the canonical functor. Suppose γ induces an equivalence C ∼=
Sh(ã, Ttails) for the topology tails on U (see Theorem 5.20).

Theorem 6.15. Let γ : ã −→ C be as before. Suppose for all U ∈ U , γ(U) is
k-flat and satsifies (E0). Suppose there is a function ν : U −→ U with ν(U) v U
such that for all V v ν(U), the couple (γ(V ), γ(U)) satisfies (E1). Let U ′ ⊆ U be
associated to the preorder (6), and endowed with the tails topology tails′, and let a′

be the induced U ′-graded category as in §5.3. We canonically have C ∼= Sh(ã′, Ttails′)
and the canonical map

DefU ′(a
′) −→ Defab(Sh(ã′, Ttails′) : b 7−→ Sh(b̃, Ttails′)

is a bijection.

Proof. This follows from Proposition 6.12 and Theorem 6.10. �

Example 6.16. [14] Let X be a projective scheme over a field k with an ample
invertible sheaf L ∈ Qch(X) and consider U = (Z,≥), γ : Z −→ coh(X) : n 7−→ L−n
as in Example 5.21. By the cohomological criterion of ampleness, for fixed L−m,
there exists ν(m) ≥ m such that for all n ≥ ν(m), we have

Ext1(L−n, X ⊗k L−m) = 0,

that is, the couple (L−n,L−m) satisfies (E1). If we further suppose that

(14) H1(X,OX) = H2(X,OX) = 0,

then every L−n satsifies (E0) and Theorem 6.15 applies. Thus, for the class of pro-
jective schemes satisfying this restraint (14) on their cohomology, all deformations
can be described as “non-commutative projective schemes” over some deformed
(Z,≥)-category. This includes the original cases treated in [21] and [20]. See also
[7] for the setup in which we can take ν(m) = m.
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