Venera Intrepid Tessera Lander (VITaL)

Alex Ren and Luke Moon

Overview

- VITaL Mission Overview
- Venus Tessera Environment
- Problem Definition
- Analysis
- Failure prediction

VITal Mission Goal

- Venera Intrepid Tessera Lander
 - Proposed lander for Venus missions
- Part of proposed ADEPT series of vehicles for interplanetary missions
- Aimed to cover two goals
 - Collect Tessera region samples
 - Collect Venus atmosphere samples

Venus Tessera

- Tectonically deformed regions with unclear formation method/model
- Tessera regions are consistently found to contain the oldest surface materials
 - High chance of accessing rocks from the first 80% of planet's history
- Mission looks to obtain samples from tesserae region

Tessera Interpretive Heatmap

"High" Definition Recreation

Lava Pond vs Giant Impact

Atmospheric Samples

- Compositional measurements
 - Trace/Noble gasses and isotopes
- Physical parameters
 - Pressure
 - Temperature
 - Wind velocity
- Objective: Improve understanding of surface-atmosphere interactions

Extreme Temperatures and Pressures

- Average surface temperature of Venus: 467C
- Average surface pressure of Venus: 92 atm
- Estimated temperature in tessera region: 447C
- Estimated pressure in tessera region: 80 atm

Corrosion

Gas Type	Percentage
Carbon Dioxide	96
Nitrogen	3.5
Carbon Monoxide	<1
Water Vapor	<1
Argon	<1
Sulfur Dioxide	<1

Lander Design

 Pressure vessel is enclosed in heatshield and impact rings to reduce entry heat or impact damage

Fig. 4 Primary geometrical design variables.

Pressure Vessel Design from Proposal

- Three shell layers
- Cylindrical cupola
- Extending struts
- Two layers of insulation
- Three windows for camera views
 - Inner and outer window for thermal protection

Figure 19: Thermal sketch of lander

Pressure Vessel Dimensions

- Pressure vessel is 0.747 meters diameter
- Thickness is determined by material
- Safety factor of 1.4
- Window dimensions
 - Diameters of 6.5cm, 2.4cm, and 3cm
 - Minimum thickness determined through calculation

Figure 10: Aeroshell Dimensions (in mm)

Simplified Pressure Vessel Design

- Single shell
 - Assume spherical
- Three windows
 - Single pane
 - No discontinuity between window and shell
 - Windows made of sapphire

Objectives

- Review potential pressure vessel materials
- Determine required pressure vessel thickness and deflections for each material
- Determine required window pane thickness and deflection

Pressure Vessel Materials Survey

Table 3 Material results after exposure to simulated Venus atmosphere

Material	Outcome Thin surface oxide; no further reaction		
Ti			
Ti-6Al-4 V	Thin surface oxide; no further reaction		
Mo	Thin surface sulfide/oxide layers; no further reaction		
Cr	Thin layers of sulfide, carbide, and oxide		
Co	$Co_x S_y$ crystals		
Pd	PdS layers form and peel off		
Zr	Porous ZrO ₂ throughout sample		
Nb	Nb ₂ O ₅ and disintegrates		
Ta	Ta ₂ O ₅ layers that flake off		
W	WO ₃ layers that peel off		

Analysis Method: Pressure Vessel

- Assume thin-walled spherical pressure vessel
- Determine the minimum thickness for the vessel to prevent failure
 - Multiply by safety factor of 1.4
- Calculate displacement due to pressure
- Select a material based on mass

$$\sigma = \frac{(P_i - P_o)r}{2t} \qquad u_r = \frac{(P_i - P_o)r^2(1 - \nu)}{2Et}$$

Pressure Vessel Analysis

Material	Min. Thickness (mm)	Displacement (mm)	Mass (kg)
Ti (Titanium)	9.5	-0.33	73.1
Ti-6Al-4V (Titanium Alloy)	2.1	-1.5	16.7
Mo (Molybdenum)	4.8	-0.24	84.9

Pressure Vessel Design

- Based on the significantly lower mass of a Ti-6Al-4V vessel,
 Ti-6Al-4V was chosen as the material
- Due to the large deflection compared to the vessel thickness, the safety factor was adjusted.
- With a safety factor of 5, the resulting thickness is 7.7mm with a -0.41mm displacement.
 - Mass is still less at 58.6kg

Analysis Method: Window

- Bending of thin circular plate
- Uniform load with clamped edges
- Determine maximum allowable stress for sapphire material
- Derive equation for maximum stress in window
- Calculate minimum thickness of window

Window Pane Analysis

Determine stress-strain relation

$$\begin{bmatrix} \sigma_{rr} \\ \sigma_{\theta\theta} \\ \sigma_{zz} \\ \sigma_{\thetaz} \\ \sigma_{rz} \\ \sigma_{r\theta} \end{bmatrix} = \begin{bmatrix} 397.41 & 94.95 & 57.50 & 11.50 & 0 & 0 \\ 94.95 & 397.41 & 57.50 & -11.50 & 0 & 0 \\ 57.50 & 57.50 & 334.36 & 0 & 0 & 0 \\ 11.50 & -11.50 & 0 & 103.46 & 0 & 0 \\ 0 & 0 & 0 & 0 & 103.46 & -11.50 \\ 0 & 0 & 0 & 0 & -11.50 & 151.23 \end{bmatrix} \begin{bmatrix} \varepsilon_{rr} \\ \varepsilon_{\theta\theta} \\ \varepsilon_{zz} \\ \varepsilon_{\theta z} \\ \varepsilon_{rz} \\ \varepsilon_{r\theta} \end{bmatrix}$$
 *GPa

Determine minimum thickness

$$\left. \left. \sigma_{rr} \right|_{z=h,r=a} = rac{3qa^2}{16h^2} = rac{3qa^2}{4H^2}
ight. \qquad \left. egin{array}{c} t_{rr} = 0.0048 \ m \ t_{ heta heta} = 0.0013 \ m \end{array}
ight.$$

Window Pane Analysis

Determine max displacement

$$w(r) = -rac{q}{64D}(a^2-r^2)^2$$

$$D = \frac{Et^3}{12(1 - v^2)}$$

Determine stráin values

$$w_{z,max} = -0.00004 m$$

Out[11]//MatrixForm=

0.000698222 0.0000417236 -0.000127249 -0.0000729725 0. 0.

Failure Prediction

Potential Sources of Failure:

- Camera windows
 - Lower factor of safety means this is most likely to be source of failure
- Corrosion
 - Corrosion in pressure vessel can weaken structure and lead to failure or break hermetic seal
- Landing Impact
 - Improper landing can lead to puncturing of pressure vessel

References

- [1] https://www.nature.com/articles/s41467-020-19336-1
- [2] http://photojournal.jpl.nasa.gov/catalog/PIA00241
- [3] https://en.wikipedia.org/wiki/Tessera_(Venus)
- [4] pdf (iop.org)
- [5] Venus' Atmosphere: Composition, Climate and Weather | Space
- [6] https://arc.aiaa.org/doi/pdf/10.2514/1.A34617
- [7] Spherical Pressure Vessel Radial Displacement (structx.com)
- [8] Titanium, Ti (matweb.com)
- [9] ASM Material Data Sheet (matweb.com)
- [10] Structural Sizing and Synthesis of Venera-Class Landers (aiaa.org)
- [11] http://ia800304.us.archive.org/35/items/VenusIntrepidTesseraLanderConceptStudy/03_Venus_Intrepid_Tessera_Lander.pdf
- [12] Schott Sapphire Optical Window (matweb.com)
- [13] https://dcc.ligo.org/public/0027/T030228/000/T030228-00.pdf
- [14] Microsoft Word 06_PlateTheory_01_PlateTheory.doc (auckland.ac.nz)