
School of Computing
FACULTY OF ENGINEERING AND

PHYSICAL SCIENCE

Indoor Localisation and Navigation

Thomas Carroll

Kane Easby

Kevan Jordan

Tomáš Martínek

Samuel Palabiyik

Matthew Pawson

Usama Usman

Submitted in accordance with the requirements for the degree of

MEng Computer Science

2021/2022

30 credits

i

The candidates confirm that the following have been submitted.

Items Format Recipient (Date)

Report PDF Minerva (April 28, 2022)
Source code URL Assessor (April 28, 2022)
Video demo URL Assessor (April 28, 2022)

The candidates confirm that the work submitted is their own and the appropriate credit has
been given where reference has been made to the work of others.

We understand that failure to attribute material which is obtained from another source may be
considered as plagiarism.

Thomas Carroll Kane Easby Kevan Jordan Samuel Palabiyik

Matthew Pawson Tomáš Martínek Usama Usman

c○ 2021/2022 The University of Leeds and Thomas Carroll, Kane Easby, Kevan Jordan, Tomáš
Martínek, Samuel Palabiyik, Matthew Pawson & Usama Usman

ii

Summary

Indoor navigation as a concept has existed for many years. However, there are very few
examples being used in human-occupied environments. Similarly to standard outdoor
navigation, it provides users with their location and a route to their required destination. It
also introduces new challenges to overcome.

One particular challenge is how to actually locate a user within a building. Most current
systems are built for outdoor navigation and use GPS, which is not suitable for indoor
navigation due to interference caused by the surrounding environment.

Another challenge is mapping itself, buildings introduce a third dimension. Whilst traditional
navigational maps account for a 2D space, they are not required to take into account the
multiple elevations a building contains. Currently there are no consistent methods of
implementing this. Not only will the mapping have to take into account this third dimension,
localisation and navigation will also need to overcome this problem such that a system can tell
users which floor of the building they are on.

This project will focus on indoor navigation, mapping and localisation. Our aim is to develop a
system of mapping, storing, and localising a user using the existing systems already available.
For each of these systems we hope to develop concepts that will provide users with a better
navigation system than traditional signs and static maps. This project will also be constrained
by the limitation of our budget. Our plan is to implement this system without the need for
additional hardware.

The bulk of the project can be split into three distinct groups: mapping, server and
localisation. Throughout this report we will identify aspects of these sections, methods we used
to implement the systems, and how we overcame any potential challenges.

iii

Acknowledgements

We would like to thank Dr. Evangelos Pournaras for his guidance and supervision, and
Professor Raymond Kwan for his advice and help organising this project.

We would also like to thank:

• Dr Sam Wilson, for providing floor plans and Wi-Fi router maps

• OpenStreetMap Project, for lots of very important information and thoughts about
mapping

• All experiment participants

Contents

1 Introduction 2
1.1 Problem . 2
1.2 Project Aim . 3
1.3 Objectives . 3
1.4 Deliverables . 4
1.5 Ethics . 4

2 Planning 5
2.1 Methodology . 5

2.1.1 Issues with Project Management . 6
2.2 Plan . 6
2.3 Version Control . 7

2.3.1 Branch Strategy . 7
2.3.2 Continuous Integration . 7

3 Mapping 8
3.1 Initial Ideas . 8

3.1.1 Existing Solutions . 8
3.1.2 OpenStreetMaps . 11

3.2 Making the Map . 11
3.2.1 Levels and Stairs . 12
3.2.2 Tags . 13

3.3 File Formats . 13
3.4 Further Work . 14

4 Localisation 15
4.1 Existing Solutions . 16
4.2 Possible Solutions . 17
4.3 Proposed Solution . 18
4.4 Implementation . 19

4.4.1 Recording Router Information . 19
4.4.2 Trilateration . 20

4.5 Tuning the Parameters . 22
4.5.1 Data Collection . 23
4.5.2 Search Method . 24
4.5.3 Implementation . 25
4.5.4 Parallel Processing . 28
4.5.5 Outcomes . 31

4.6 Future Work . 33

iv

CONTENTS v

5 Server 34
5.1 Architecture . 34

5.1.1 Parser . 35
5.1.2 Database . 35
5.1.3 API . 36
5.1.4 Path-finding . 37

5.2 Build & Deploy . 37
5.3 Further Work . 39

6 App 41
6.1 Implementation . 41
6.2 Design . 41

6.2.1 Technical . 41
6.2.2 UI / UX . 43

6.3 Design Iterations . 46
6.4 Further Work . 48

7 Evaluation 49
7.1 Experiment . 49

7.1.1 Sampling . 49
7.1.2 Metrics . 49
7.1.3 Search Locations . 50
7.1.4 Survey . 50
7.1.5 Baseline Experiment . 50
7.1.6 App Experiment . 51

7.2 Results . 51
7.2.1 Baseline Survey . 51
7.2.2 App Survey . 53
7.2.3 Comparison of Results . 55
7.2.4 Survey Comparison . 58

7.3 Revised Procedures . 59

8 Conclusion 60
8.1 Mapping . 60
8.2 Localisation . 60
8.3 Implementation . 60
8.4 Teamwork . 61

References 62

Appendices 65

A Source Code 66
A.1 Project Repository . 66
A.2 Map Repository . 66

CONTENTS 1

A.3 Video demo . 66
A.4 Survey . 66
A.5 Consent Forms . 66
A.6 Experiment Data & Survey Results . 66

B List of Libraries / Software Used 67
B.1 Server . 67

B.1.1 Software . 67
B.1.2 Python libraries . 67

B.2 Client . 67

C Parameter Tuning Graphs 69

D Parameter Tuning Tables 71

E Listings 72

F Evaluation 74
F.1 Consent Form . 74
F.2 Information Sheet . 75
F.3 Invigilator Instructions . 77
F.4 Participant Instructions — Baseline . 78
F.5 Participant instructions — App . 79
F.6 Survey Questions . 80

Chapter 1

Introduction

1.1 Problem

Finding your way inside large buildings, such as offices and university campuses, is hard. We
have found that the newly constructed Sir William Henry Bragg building is no exception. It
can be a struggle to find a certain room using signs or static maps, as they can be misleading
or confusing. For example, Figure 1.1 shows signs that are both incorrect and inconsistent with
each other.

Signs and printed maps require constant updates as the building changes over time. Even
temporary changes, such as blocking corridors for maintenance or restricting room access
out-of-hours, need to be communicated in a clear and timely manner. Doing this requires a
person to physically access the building and change the signage.

These systems are also not very accessible. Visitors with disabilities, or people whose first
language is not English may not be able to read signs easily, or ask people in the building for
help.

We can see that a digital system would be able to help in these scenarios, even if we do not
directly implement these accessibility features. Creating a framework that is open for extension
means a reduction in time and effort as there is only one central repository for building data.
Some parts may even be automated (e.g. showing room bookings, or updating office allocations
dynamically).

Figure 1.1: Two signs that are completely wrong.

2

CHAPTER 1. INTRODUCTION 3

1.2 Project Aim

This project aims to create a solution that provides users with a method for navigating
buildings. The proposed solution will involve creating a scheme for mapping buildings and use
Wi-Fi-based localisation. These maps will be served using a web service that a mobile app will
connect to. The user should be able to enter their destination and be shown a path from their
current location they can follow.

To be successful, this app should provide users with a method that does not only meter level
accurate but in conjunction is a better method of finding their way around the building. We
will evaluate this with user testing by running an experiment testing one group without the
app, and one without.

1.3 Objectives

For this project, our main objectives are to:

• Produce a scheme for indoor mapping and navigation

• Define and implement an API for map retrieval

• Implement indoor localisation using wireless access points

• Create an application for indoor navigation using our localisation method

• Evaluate our application through user testing

A method for mapping commercial buildings will be produced. This method should be suitable
for navigation primarily; precise details should not be recorded, but enough information should
be present to allow users to contextualise their location within the map. Further, this method
should allow for a ‘bottom-up’ creation of maps by users that might not have access to the
architectural plans. This would allow users to produce their own maps similar to the Open
Street Maps project, allowing maps of buildings to be crowd-sourced.

A method for localisation within a building will be produced. This should not use any
additional hardware; instead, it will extend upon existing functionality within mobile devices.
This method will use Wi-Fi access points and trilateration based on signal strength to locate
the user relative to a number of access points. Not using extra hardware will keep the cost of
the project to zero, whilst allowing the scheme to be used in any buildings that have multiple
access points.

Server software that takes the map files and stores them in a database, for use by client
implementations, should be created. This server will be agnostic to the specifics of the data so
that client implementations can be created when requirements for the mapping data are
changed. This means that the server should only use the data that is absolutely necessary, to
allow client implementations to have their own rules around how the maps are displayed.

CHAPTER 1. INTRODUCTION 4

The server should also implement a basic routing service that clients can use to find a path
through the building.

Finally, a reference client mobile app should be produced that allows users to view the map
and navigate through it. This client app should implement the localisation method and use the
features of the mapping method to allow for this navigation.

1.4 Deliverables

The deliverables for this project are:

• This report, containing systems for mapping and localisation

• Source code for the server and app, implementing these systems

• Video demo of the app

1.5 Ethics

Creating tools that empower any person to create and distribute maps of buildings, potentially
against the owners wishes, is a potential ethical issue. We do not believe that this is a large
enough problem to weigh against the project as we are using techniques that could have
already have been conceived and executed. For example, there is nothing to stop someone
making a sketch of a building already. If there are legal issues with mapping certain buildings
this is another issue to deal with at a larger scale; as it stands our project only contains maps
of one building, of which the floor plans are already freely available online.

Using a Wi-Fi based localisation method comes with no ethical issues. A potential concern in
this area may be if the app connected to networks without authorisation. Our method only
uses the Wi-Fi beacon frames; these are broadcast ‘advertising’ messages that announce the
access point’s information. These facilitate a device being able to detect networks, which does
not require a connection or authentication. Hence, we would not connect to networks that we
are not authorised to do so.

When running user experiments it is important that General Data Protection Regulation
(GDPR) is acknowledged [21]. It should be ensured that all participants in the experiments
both know how their data will be used, and have the ability to withdraw at any time. We
should also ensure we are gathering informed consent for their data to be used in this study.

Chapter 2

Planning

2.1 Methodology

The project adopted an Agile methodology [5], with Rapid Application Development (RAD) as
an agile project management strategy and SCRUM technique.

SCRUM
A classic Agile methodology centred around sprints that requires a SCRUM master — a
person who represents the stakeholders and is not involved in development [28].

RAD
A project management strategy that is specifically designed for creating components
quickly after an initial planning phase [19]. Unlike SCRUM, the RAD strategy allows for
changes in strategy during sprints rather than at the end. In the RAD methodology,
there are four phases: a planning phase, a user design phase, a series of sprints focused on
creating components, and a cut-over phase where the product is released.

Agile in general is more flexible than traditional development methodologies (e.g. Waterfall)
due to its ability to account for errors produced within the planning phase. This added
flexibility is especially important for research projects, where unexpected obstacles are often
encountered. Agile methodologies are good in places where the final requirements are not clear
from the outset, and may change over time. However, it came with new challenges as the
success of the project relied on self-organising skills and commitment of individuals.

Throughout the project we has group meeting every week and a supervisor meeting every two
weeks. Regular meetings ensured that the group was familiar with the state of the project, and
that progress was made consistently. New functionalities were demonstrated on a regular basis
in both group and supervisor meetings.

During development of the app we used the RAD framework:

• The app features were updated rapidly in separate branches to prevent merge conflicts

• The integrity of every commit was checked through the use of DevOps and CI, in order to
prevent code changes from breaking the app

• The whole implementation was tracked with branches being merged when complete/no
longer required

5

CHAPTER 2. PLANNING 6

2.1.1 Issues with Project Management

We began the project with SCRUM, but moved on from it later on. Our reasoning for this was
that we could not host daily stand-ups due to schedule conflicts, and we could not separate the
SCRUM master from the development as that would reduce the number of developers from our
app increasing the workload on the other group members

We then transitioned to using Discord — a popular instant messaging platform [11]. We set up
a Discord group for day-to-day communication and sharing resources, however, Discord did not
help with prioritisation and important information could be missed due to the overwhelming
number of messages. To mitigate this, we used sub-channels, pinning and member tagging.

Figure 2.1: Organising a meeting using Discord.

The Mythical Man-Month says “The added burden of communication is made up of two parts,
training and intercommunication.” [6] This goes beyond verbal communication, and includes all
aspects of software engineering. In our case, the ‘training’ part involved setting up the
development environment, learning a new framework and standardising coding style.
‘Intercommunication’ includes all forms of communication, as well as branching and version
control of the whole project.

2.2 Plan

We created a Gantt chart to show the time allocations for each part of the project (see
Figure 2.2). Most components were developed simultaneously by groups of 2-3 people and
reviewed regularly. This setup allowed us to iterate quickly over the tight 6-month schedule.

Figure 2.2: Gantt chart showing the initial plan of the project

CHAPTER 2. PLANNING 7

Figure 2.3: Git stats for the project

2.3 Version Control

Version control is necessary for collaborative team projects to ensure that members are
up-to-date with software implementation and able to revert unwanted changes. GitLab was
used throughout the project to keep track of changes and updates.

2.3.1 Branch Strategy

All development was carried out in feature branches, and merged to dev when completed. The
dev branch was used for testing before merging to main. This helped to ensure that the code in
the main branch was always stable and could be deployed at-will.

2.3.2 Continuous Integration

We added automated linting and testing through GitLab’s Continuous Integration (CI) feature
to ensure high-quality code. Code would only be merged if it passed all the pipeline checks.
This ensured that a commit did not cause a regression and that code style remains consistent.
Chapter 5 covers this in more detail. We set up a pre-commit hook to format code before
pushing to GitLab, which helped to reduce pipeline failures.

Listing 2.1: Pre-commit hook

#!/bin/sh

cd app
npm run lint -- --fix

cd ..
black server

Chapter 3

Mapping

3.1 Initial Ideas

To use path finding algorithms a graph representation of a building needs to be developed;
there are multiple methods to create such a representation of a building. For example, a naive
approach would be to put a node in the centre of every room and put an edge between nodes if
the rooms have a door in between. This has a few issues: distances between nodes are not
represented, and hallways can not be represented easily.

3.1.1 Existing Solutions

Maps are an ancient technology, there are thousands of years of existing solutions to consider.
The art of cartography (and it is an art) is also deeply entwined with scientific progress. All
cartography creates an abstraction away from the real ‘ground-truth’ of the world; in
Figure 3.1, we see a map that is purposefully more narrative and spiritual. In the same way,
our map needs to be accurate enough to allow for navigation, but does not need to represent
every millimeter of the building.

Figure 3.1: Hereford Mappa Mundi

It is useful to keep in mind that our map is a combination of geometric and semantic data. The
Bragg building’s floor plans only contain the geometric information. We have to assign
semantic meaning (e.g. room names, their functions) to each of the geometries.

8

CHAPTER 3. MAPPING 9

Richard Atterer proposes another interesting solution for creating maps without access to the
floor plans of a building. He attached two gaming mice to the wheels of a suitcase to act as an
‘augmented trundle wheel’ that can be used to accurately map the paths that one might take
around a building [4].

He also mentions recording Wi-Fi signal strength at multiple points in the building. This is
more of a bottom-up approach than the top-down approach that we have taken. Since we have
the floor plans and the positions of all the Wi-Fi routers, we do not need to map the building
ourselves.

Figure 3.2: Richard Atterer’s ‘Position Mouse’ [4]

This does show however that the art of indoor cartography has not been fully explored. Since
this project in 2010, there has not been much more research towards a similar bottom-up
method of creating maps.

That is not to say that the art of indoor cartography is not a deep and rich field, but the idea
of a navigation-forward approach perhaps is not as much as the approach taken by architects or
interior designers. These cartographers are much more focused on the experience and emotion
of being in a building, while we are more interested in how people move through and interact
with the space. A review paper published in 2019 states that “[w]hile CAD and BIM provide
greater support for symbolization (Chen & Clarke, 2017; Petrie, 2016), their niche focus on
building construction ends up working against sound cartographic principles due to excessive
detail, limited geometric and semantic flexibility.” [9]

This shows us that maps of buildings serve many different purposes, where a retailer may want
to create a map with the purpose of promoting and selling goods, a factory owner may want to
create a ‘digital twin’ of their factory for simulation and training. Hence, we should consider
exactly what the creation of our map is seeking to achieve and what it should represent to the
user.

It is also important to consider the mental models that people make of the building. Do they
consider it as a collection of 3D spaces first and foremost (this is what the architect may like to
think) or is it acceptable to represent the building as we might a road or park on a paper map?

The same review paper [9] compares a variety of companies’ approaches to indoor map
representations, with all but one (‘WRLD’) approaching the problem with 2D maps. For

CHAPTER 3. MAPPING 10

Figure 3.3: Aisle411 in-store mapping [8]

example, Aisle 411 has created an add-on screen for shopping trolleys that helps users to find
products in retail stores [Figure 3.3].

Since these applications are for commercial environments, they exist in a much more top-down
methodology; there is very little scope for more ‘clandestine’ mapping, à la Atterer [4]. These
maps can be created by anyone, similarly to OpenStreetMap, where everybody has the power
to collaborate in the act of cartography.

For these maps, a popular data format is IndoorGML, a standard developed by the Open
Geospatial Consortium (OGC). This is a fairly low-level format, but includes concepts like
semantic and geometric representation. The space is broken down into multiple cells, which
represent ‘the smallest organisational or structural unit of indoor space’ [22]. However, this is
an incredibly complex standard and is infeasible for this project. It focuses more on the
topological relation of these cells, rather than the geometric relation we want for navigation.

Figure 3.4: Current approaches to representing indoor spaces in the context of mapping and
modelling (Reproduced from [9])

Another option is OpenStreetMap’s proposed indoor mapping tags [24]. This would enable us
to use our maps in collaboration with the OSM project. This gives a good compromise between
measured data (point clouds) and human-centric data (paper maps), placing this in the ‘area of
opportunity’ above (Figure 3.4).

CHAPTER 3. MAPPING 11

3.1.2 OpenStreetMaps

We used QGIS, a free and open source software suite, to create OSM-compatible maps known
as ‘shapefiles’1 that define geospatial data. These files contain points, lines and polygons, all of
which have associated metadata.

OSM has its own representation of paths that it uses for roads, footpaths, etc. that it calls
‘Ways’ [23]. These represent linear traversable paths, an abstraction away from roads, paths
and highways. In OSM, these ways can have attributes that change how they are displayed,
and how they affect navigation.

We must also recognise that we are choosing the ‘room’ or polygon as the basic building block
of a building. Whilst this makes sense for the Henry Bragg building, does it fully represent
every building that one might want to map? For instance, it may not be the perfect model for
a sports stadium, which has few rooms but many distinct locations that one might want to find
a path to (e.g. a specific seat in the stands).

Whilst ‘ways’ are generally suitable for a building, we need to consider that a building is not in
fact a series of connected linear paths, but is instead multiple contiguous spaces. For example,
this system may work well for commercial buildings, but does not make much sense for smaller
buildings. Therefore, we have chosen to implement this standard because it works well with our
choice of buildings (buildings on a university campus) and the larger OSM project.

3.2 Making the Map

To relate the floor plans we were given to the geographical coordinates we used the QGIS
‘georeferencer’ plug-in. We took measurements at known points around the outside of the
building using GPS and referenced these to the floor plans we were given. The plug-in then
re-projects the reference image to the correct position and rotation of the world map.

(a) Geo-referenced floor plan for Bragg Building
Floor 2

(b) Floor plan after features digitised

Figure 3.5: Floor plans of the Bragg building before and after digitising

1In fact, OSM has its own special XML-like format it uses, but they are roughly analogous.

CHAPTER 3. MAPPING 12

Then, all the rooms and walls were traced digitally from the reference images and labelled with
their metadata. These features are then organised into separate layers representing floors of the
building. Paths between rooms are represented as ‘ways’, and are annotated with their type
(hallway, stairs, etc). To represent intersections, we use the ‘split on line’ option in QGIS,
which ensures that intersecting lines share a common point.

3.2.1 Levels and Stairs

Buildings often have more than one floor. To represent floors in our map, all features have a
‘level’ attribute containing the floor that they reside on. Hence, all features can be stored in
one file and still be filtered by floor. This is the suggested solution from OSM’s ‘Indoor
Mapping’ wiki page [24].

Figure 3.6: Stairs and Lifts in the Bragg Building

For stairs and lifts, we used a single attribute that specifies the range of floors (i.e. ‘2;5’
connects floors 2 through 5) they are connected to. Since these are the only features that span
across floors, we an use them directly in existing path finding algorithms. This is a slight
deviation from the recommended approach, which uses multiple ‘level’ attributes. Staircases
and lifts are tagged differently so path finding can be handled differently in each case.

Some staircases look strange in Figure 3.6 because we trace the shape of the staircase at the
bottom floor. In the case of Stair 1 GR.A07, the shape on the ground floor is different than on
the other floors. To fix this issue, we would need to specify per-floor geometries of the
staircases, however, this is not possible with QGIS.

CHAPTER 3. MAPPING 13

3.2.2 Tags

We defined optional tags for each of the elements in the map, these were in line with OSM’s
existing tagging system, and many elements (for example Wi-Fi routers) already have
well-defined schemas. The server exists to be as agnostic to the map data as possible, allowing
the client to implement the way it handles tags. These tags enable additional functionality as
explained in Chapter 5.

Polygon Tags

Attribute Name Type Example Note

room-no String “GR.A07”
room-name String “Wormery”
indoor String “room” One of: corridor, area, room2

stairs String “yes” Stairs is set only on stairs, OSM-compatible
highway String “elevator” Only used for elevators, OSM-compatible
level String 1;3 Represents multiple floors (floors 1 to 3)

Linestring Tags

Attribute Name Type Example Note

indoor String “wall” Type of line, one of: wall, way
level Float 0

Point Tags

Attribute Name Type Example Note

amenity String “water fountain” PoI tag, OSM-compatible
mac_addres String “ac:3a:67:08:25:a0”
SSID String “wap70254”
internet String “yes” Indicates whether this is a WAP
door String “no” Doorway: can be ‘yes’, ‘no’3

indoor String “door” Only used for doors, OSM-compatible
level String 0

3.3 File Formats

QGIS produces files in the shapefile format (.shp), which has one file for each layer in the
project. To convert these to other formats, we can use a utility called ogr2ogr, which is part of
the gdal library.

The .shp format is an old format and has certain limits that we did not realise in early stages.
One of these is a 10-character limit on the name of the field, which means that we had to
truncate mac_address to mac_addres. On reflection, we should have used a more modern
format, but it was too late to change our approach.

2‘Type’ of room , this is for path finding, and was added to try and facilitate path generation
3‘no’ confusingly means just the threshold, can be more specific e.g. ‘revolving’

CHAPTER 3. MAPPING 14

Since the .shp files have a binary format and hard to parse, we chose to use an intermediate
data format. We chose GeoJSON as it is easy to parse and preserves all the features. We
automated this by setting up a GitLab CI pipeline that takes these .shp files and converts
them to GeoJSON. We also created a script that automatically downloaded the most
up-to-date GeoJSON artifacts. We used a separate Git repository, example_maps, to keep
version-controlled maps.

3.4 Further Work

Our scheme works well, but it does not scale well to larger maps. Automating path generation
would allow cartographers to handle only the rooms and hallways, with the paths being
handled for them by software. Another option would be to let the computer define NavMeshes,
which decompose the polygons in our map into convex shapes, and therefore, any path inside
those polygons is valid. This would be easier with a different scheme (such as IndoorGML)
since we do not have an innate sense of topology to the building and would have to employ
computational geometry to find what polygons are ‘next-to’ each other. As it stands, polygons
do not have to perfectly align, so this would be a significant challenge.

Another problem with our scheme is lack of software. We currently have to build maps using
QGIS, which is a daunting piece of software. In the future, it would be useful to have an
application that can handle maps with multiple floors, and perhaps making it easy to
georeference and trace floor plans.

Chapter 4

Localisation

Localisation is the method of using contextual information, such as landmarks and known
locations, to discover an approximate position of something. It is used across many industries
and in many forms. Examples of localisation that can be observed throughout every day life
are:

Supermarkets
The use of signage above aisles telling a customer what category of products are stored
there is a simple form of localisation. On their websites, supermarkets will sometimes tell
a customer the aisle, and potentially the position, where a product is located.

Warehouse management
Warehouses use a form of localisation using a combination of a database, unique barcodes
and QR codes. This information is used to allow the warehouse employees to look up a
product and find its exact location for inspection and picking.

Malls/Shopping centres
These have maps spread throughout the facility. These maps display their current
location, usually marked with ‘You are here’ (see Figure 4.1b), and information about
surrounding shops or other points of interest. This allows a user to find where a shop is in
relation to where they currently are.

(a) A corridor in a mall with a map for visitors to
use.

(b) Close-up of the map showing the users location
and surrounding shops.

Figure 4.1: A map used for localisation in Opry mills mall (accessed from [7])

These methods are good in spaces that are designed with a single use in mind. For example, a
warehouse exists solely to store and retrieve items in the most efficient way. Products of a
similar category will be organised together in a way that makes their access efficient. This is a
tightly controlled environment, and so the building can be designed around the use of the space.

15

CHAPTER 4. LOCALISATION 16

In the Bragg building, we do not have this luxury, as it is a multi-use environment and is
designed with the experience of its visitors in mind. This makes the building more complex to
model. All of the examples above are environments where the localisation method is provided
by the building owner. We are taking a more bottom-up approach, such that the localisation
method does not require their cooperation.

It is also important to note that we are developing a human-focused method of localisation.
For this reason a certain amount of error is acceptable. In a warehouse, robots may require
millimeter-level accuracy, while the resolution of our system is in metres.

4.1 Existing Solutions

When outdoors, we can use the GPS system, which is the most commonly used localisation
method in the world. However, walls, floors and roofs interfere with its signals, causing it to
have much lower accuracy indoors. This is caused by the signals reflecting and refracting due to
the construction of buildings, especially those built using materials such as steel. This changes
their time of flight and hence drastically affects any calculations attempting to use them. Due
to this interference, GPS is usually 5-20 meters off [29], which is infeasible for indoor navigation.

Indoor localisation is a difficult task. While some implementations exist, there is a distinct lack
of universally viable and applicable solutions. The existing systems that are currently in use
are in a very niche sector, and are unlikely to become widespread due to their high cost of
implementation [18]. These implementations are sometimes called Indoor Positioning Systems
(IPS).

Dead Reckoning
This is a technique that uses sensor data to figure out direction and position, famous for
use at sea. It relies on the knowledge of an initial prediction, and then using sensor
information to update the location. This would be a compass heading on a ship, but in
the context of mobile phones, it could use accelerometer data or other sensors. The main
problem with this technique is that errors compound over time. Without a known
location, the error in the position can increase rapidly. When we do know the location,
we can set the error back to zero. This idea has been extended in Simultaneous
Localisation And Mapping (SLAM) for robots, which uses sensor information to build a
belief map of where the robot is. The belief map is then updated with new information
from sensors [12].

RTT
Wi-Fi Round Trip Time (RTT) is a new feature in the 802.11mc standard for Wi-Fi.
This enables devices to measure the time of flight to a Wi-Fi access point and thus
approximate the distance to it. The stated accuracy is less than 1 meter, which is perfect
for our needs. However, this is a relatively new standard and there are very few devices
supporting this feature [1]1.

1At time of writing, there are 4 routers that support this standard.

CHAPTER 4. LOCALISATION 17

5G 5G mmWave technology provides angle-of-arrival measurements which can be used to
triangulate the user. This has been used in China as an IPS in metro stations, where it
achieved an accuracy of “3 to 5 m [. . .] in 90% of the platform and hall areas.”[16]

OCR & QR
A potential idea would be to use various methods to display a variety of visual markers.
This would fit into the larger field of computer vision - existing solutions utilise the user’s
camera to match a captured image against a set of known images. These images would be
tagged with locations, so finding a match would return the user’s location. This has the
downside of being very intensive in terms of the amount of data that would need to be
collected and is prone to errors in labelling. It would also be fairly computationally
expensive and need to be offloaded from the phone itself.

Barometric Pressure
Some smartphones are equipped with a barometric sensor, which can be used to
determine the elevation of the user. Theoretically, the pressure would decrease as
elevation increases.

Magnetic Field Fluctuations
Another possible IPS uses magnetometers. takes into account of fluctuations in the
Earth’s magnetic field over the space of a building. This is a fairly novel method, but has
merit.

Figure 4.2: Magnetic field positioning (Reproduced from [15])

4.2 Possible Solutions

Bluetooth Transmitters
By using Bluetooth transmitters, we could make use of Bluetooth Low Energy (BLE)
Advertising Packets to localise the user. These packets are sent by BLE transmitters and
received by mobile devices [17]. BLE Advertising Packets carry a lot of information. In
our case, we would make use of its ability to send out its location and a connection
frequency. From this information, a mobile device can derive its location.

CHAPTER 4. LOCALISATION 18

QR Codes
Quick Response codes work by encoding data into a 2D barcode [27]. Interestingly,
localisation was the original use of QR codes, albeit using a different method. They were
originally created to track vehicle parts along an assembly line during the 90s, with each
part having its own QR code. This code was then scanned as it entered a new area [13].

Our method would use a similar concept. In our implementation, there would be multiple
QR codes at key points in the building. The user would scan the QR code, transmitting
the QR code’s position to the app. This would then allow the app to show the user where
they are.

Wi-Fi Routers
Similar to Bluetooth receivers, Wi-Fi routers can be used to locate a person using the
strength of transmitted signals, which is referred to as Received Signal Strength Indicator
(RSSI). This can be used to calculate the distance of the receiver from the router. By
combining signals from multiple routers with known locations, we can trilaterate the
user’s approximate location.

4.3 Proposed Solution

Our proposed solution should be straightforward to set up. Additional infrastructure being
required would add significant overhead to the set-up of the solution, increasing its complexity
and difficulty to maintain. In the case of QR codes, the building would require hundreds of QR
codes to be distributed throughout it. The additional traffic these would create, due to visitors
stopping to scan them, would be a concern.

With BLE receivers, the owner of the building would need to purchase tens, or even hundreds,
of receivers and then spend time and money distributing them throughout the building. The
time and money necessary to install Wi-Fi routers has already been committed, meaning the
solution would make use of existing infrastructure.

By using Wi-Fi routers for localisation, we can take advantage of the infrastructure that is
already in place by the university IT team. Therefore, we decided to base our solution on
Wi-Fi router localisation. Our solution does not need additional hardware or infrastructure,
and can be implemented at no extra cost. Most large buildings, such as university buildings
and shopping malls, have numerous Wi-Fi routers distributed throughout the premises. As
such, this solution will scale well to larger buildings, if they have sufficient Wi-Fi coverage.

Finally, we wanted the solution to be easy to operate. The use of Wi-Fi routers means that the
application can automatically update itself, without requiring user input. Any changes to the
building’s layout can be immediately reflected on all client devices with no overhead. Most
importantly, the solution would be on the user’s own device; no stops to scan a code or other
medium would be required.

CHAPTER 4. LOCALISATION 19

Figure 4.3: The Wi-Fi routers present on the second floor.

4.4 Implementation

For the solution, we created a prototype in Python and then implemented into a React Native
application for use on mobile devices. The core library facilitating this process was
Geodesy2/PyGeodesy3. This library contains functions and classes to aid the trilateration
process.

4.4.1 Recording Router Information

We were able to obtain a floor plan of the building, which contained the location of every
access point present across all floors4. This data also came with a list containing each router’s
model, asset tag and unique MAC address (BSSID). In the case that a map of Wi-Fi router
locations is not available, they can be manually mapped and located.

Using both the floor plan and list of access points, we were able to augment the QGIS map
with Wi-Fi nodes. A node was placed on the location of each access point on the floor plan,
recording its BSSID and unique ID. The SSID was discarded, as all routers broadcast multiple
Wi-Fi networks with different MAC addresses (‘eduroam’, ‘MeetInLeeds’ and ‘WiFi Setup -
University of Leeds’).

Any networks scanned by the mobile device can be cross-referenced against this data with its
BSSID to discern which access point provided the signal. Since the routers broadcast multiple
networks with slightly different BSSIDs, we compare the entire MAC address except the final
digit, which changes depending on the network being broadcast.

2https://www.npmjs.com/package/geodesy
3https://pypi.org/project/PyGeodesy/
4A special thanks to Sam Wilson for the assistance in acquiring this data
5‘mac_addres’ is not an error, see Chapter 3

CHAPTER 4. LOCALISATION 20

level internet ssid mac_addres

0 yes wap70173 5c:a6:2d:ce:b1:a0
0 yes wap70174 5c:a6:2d:cf:c4:a0
0 yes wap70175 5c:a6:2d:ce:b8:20
0 yes wap70176 ac:3a:67:08:26:20
0 yes wap70177 ac:3a:67:08:06:20
0 yes wap70178 5c:a6:2d:86:69:60
0 yes wap70179 5c:a6:2d:cf:e0:60
0 yes wap70180 ac:3a:67:07:fc:20
0 yes wap70181 5c:a6:2d:cf:ab:a0
0 yes wap70182 5c:a6:2d:af:8d:e0
0 yes wap70183 ac:3a:67:08:32:40
0 yes wap70184 5c:a6:2d:cf:c3:c0

Figure 4.4: A subset of the node data5

4.4.2 Trilateration

The localisation method we deemed to give the most accurate and consistent results was
trilateration. The method of trilateration we implemented for this project made use of 3
distinct points and calculated distances in order to locate a user.

In this case, trilateration takes the user’s distances to 3 known locations to approximate the
user’s location. In triangulation, we take the average position of the three inputs, while in
trilateration, we use the distances from the points as well [31].

Figure 4.5: Illustration of trilateration (Reproduced from [31])

4.4.2.1 RSSI

RSSI stands for Received Signal Strength Indicator, which measures the quality of the
connection between two devices over a wireless signal. The value is most commonly used to let
a user know which nearby connections are the strongest, such as the strongest Wi-Fi signal in
the local area.

RSSI is affected by many different environmental factors, including the physical makeup of the
surroundings (e.g. steel, brick), temperature and humidity. An example of this is the fact that
RSSI can be affected by just a small change in temperature and humidity. As can be seen in
Guidara et al. [14], a slight change of 3.5deg Celsius can lower the signal strength of RSSI by as

CHAPTER 4. LOCALISATION 21

much as 3dBm. An increase of 8% humidity can positively increase the signal strength by as
much as 8dBm.

We used the following formula to calculate the distance from the Wi-Fi routers given the RSSI
value:

dist(RSSI) = 10
A−RSSI

10n

This equation has two parameters:

A RSSI strength when the receiver is 1m from an emitter

n Accounts for all environmental factors that can affect signal strength

The A parameter depends on both the emitting and receiving device, though devices with the
same chipset should give consistent results. For n, A major factor that affected the received
RSSI values for our project was the sheer amount of steel used in constructing the Bragg
building. There is no standardised way of working out n and so it is up to the person using the
formula to calculate it themselves.

4.4.2.2 Input Choice

To choose the input points for trilateration, we tested two different choices before settling on
our final approach:

Three Strongest
Takes the 3 nodes with the strongest signal strength, which should be the closest routers.
This would on paper be the best data to trilaterate the position of the user with.

However, this gave an error radius of 5-10 metres, which was too large to work in our
proposed solution, especially considering 5 metres may be the length of a corridor.

Three Weakest
Takes the 3 nodes with the weakest signal strength, which should be the furthest routers.
We theorised that by using the furthest away nodes the inaccuracies caused by the walls
of the building would be of a similar magnitude to each other, as opposed to the closest
where the signal from one node would pass through anywhere from zero to three walls.

Unfortunately, this was not the case; the inaccuracy when using the three weakest signals
was similar to the three strongest, but had wild fluctuations where the predicted location
was drastically incorrect.

4.4.2.3 Chosen Method

In the end, we decided to try all possible combinations of nodes and take the average of all
their predicted locations. This should reduce the effect of interference from walls through sheer
data quantity, at the cost of a slight processing overhead.

CHAPTER 4. LOCALISATION 22

Figure 4.6: Two examples of trilaterated points and their average locations

This method proved to be far more accurate, but came with its own issues. During testing, the
error radius would vary between 3 and 50 metres due to outliers.

To mitigate this, we added statistical filtering. We calculated the mean of all points and all
data outside of two standard deviations from the mean was discarded. We repeated this
process until either no points were removed, or the removal would lead to insufficient data to
calculate a user’s location.

The final solution was sometimes burdened by a significant amount of data, which
exponentially grew the processing time of the application. In some areas of the building, the
application would find upwards of 20 access points at any one time. Generating and processing
all possible triplets of these nodes would create

(
20
3

)
= 1140 possible locations for the user.

Thankfully, the overhead from this large amount of data processing was negligible and caused
no noticeable lag when testing the application.

Android’s limitations of Wi-Fi scanning also impacted performance. Even when circumventing
the four scans every two minutes limit, scans took around 5 seconds to complete, leading to all
data being shown to the user being somewhat out of date. This was a hardware limitation that
is beyond the scope of this project to try and circumvent.

4.5 Tuning the Parameters

Thus far, the parameters for the distance formula were chosen based on background research.
These parameters assign A = 50dBm, and n = 3. However, these parameters require tuning to
the specific building. Comparing the same formula and parameter pair across different
buildings and locations will lead to varying degrees of accuracy. Walls, floors and the structural
makeup of a building all affect the strength of Wi-Fi networks. The walls and floors of the
Bragg building contain high amounts of steel, which causes mild interference [10].

CHAPTER 4. LOCALISATION 23

Due to this, we decided to try and tune the parameters for the RSSI conversion formula, to get
the most optimal setup for our chosen building. Initially, we had planned to tune the
environmental factor, n; most of the factors affecting the conversion were due to the building’s
construction, which is an environmental factor. A is derivable by taking scans at a fixed
distance from an access point. However, we chose to tune A as well, for two reasons:

Type of access point
The Bragg building contains both generic Wi-Fi access points, as well as smaller
extenders. Both are used in trilateration calculations, but the extenders would have a
different A parameter, reducing the accuracy of the conversion.

Better attribute combination
There was a chance that we could find a better combination of A and n outside of the
previously defined ranges, as A is not a parameter that is usually changed. This extended
the scope of the task into an exploration of the best possible pair of parameters.

It is important to note that this tuning process was intended to match the execution of the
application to the maximum degree possible. Any inaccuracies would lead to the results
obtained being useless in the application. This concept informed a lot of decisions throughout
the algorithm creation process.

4.5.1 Data Collection

To facilitate this process, a large amount of data was collected from the entire Bragg building.
We wanted our generated parameters to be as accurate as possible; even varying on a
floor-by-floor basis, if deemed to be optimal by a measurable margin.

In total, we chose:

• 10 points for floors 0 to 3,

• 6 points for floor 4, and

• 3 points for floor 5.

The decreasing number of points is because floor 4 is a lot more closed off than previous floors
(and we only had corridor access, rather than entering all the post-graduate rooms and labs),
and because floor 5 consists of a single corridor and then the roof. These points were spread
around the most accessible parts of each floor, normally on corridors or actively used rooms.
This choice ensured the points covered the most commonly travelled areas on each floor.

A total of 10 scans were taken per point. This was facilitated by an access point scanner in the
application, which now stored the detected access points in memory. A button was added to
save all the recorded data to a file; however, this file was located in the root storage for the
application which is not readily available. To circumvent this, the file would be copied to the
phone’s Downloads folder. This was accessible via a connected laptop, which could be used to
copy the contents of the file into QGIS.

CHAPTER 4. LOCALISATION 24

In QGIS, a new layer was added for these points. This layer stored all the provided data in a
SQLite database, which was necessary due to the very large data strings provided from saving
10 scans at once6. A limitation was found where the data strings were too long for even QGIS
to handle; they had to be manually added to the database, at times.

Figure 4.7: Map of scan locations on floor 3

4.5.2 Search Method

The idea to tune parameters was introduced late into the development cycle. Plans were being
made at the time to finalise the user testing process and start to run the first tests with
participants. The chosen solution had to be easy and quick to implement, in order to not divert
resources away from more important tasks. Developing a complex, efficient algorithm would
take time that we did not deem available. Hence, a simple solution was chosen; perform a grid
search.

A grid search is a simple iteration over a search space with a uniform step size, forming a
multi-dimensional grid upon which the value of the function can be evaluated and minimised.
It is essentially a brute-force method, but for our example, where there are only two variables
to explore and a small search space, it was easier to use than a more informed method like
gradient descent.

This has the added benefit of creating a mesh of results, due to testing across a finite, complete
set of values in two different dimensions. This mesh could then be passed into libraries such as
Matplotlib in order to create graphs, creating a visual way to identify the best result(s) and
find any patterns that arise.

6These strings would often exceed 65,000 characters.

CHAPTER 4. LOCALISATION 25

4.5.3 Implementation

The tuning algorithm was written in Python using a Jupyter notebook. Python was chosen for
this task due to ease of prototyping and the host of easy to access libraries to help facilitate
this process.

The data from the SQLite database was loaded into the notebook. From this database, every
point’s network list had its relevant location mapped onto it. This MAC address mapping
replicates the process the JS app uses before trilateration. As much code as possible was
directly taken from the app solution, with slight syntax modification to make the code work in
Python.

To perform the grid search, the NumPy library was used. This allowed a linear scale of
numbers to be defined between two bounds, with a third parameter defining the number of
divisions to make. Using two of these scales, a grid of values could be made and iterated
through, facilitating the grid search process.

A = np.linspace(0, -60, A_div)
n = np.linspace (2.5, 5.5, n_div)

Figure 4.8: Creating a map via two linear spaces. The A linear space is bounded by 0 and -60,
and will contain A_div divisions. The n linear space is bounded by 2.5 and 5.5, and will

contain n_div divisions.

While developing the solution to this task, several unexpected issues arose that required
solving. A brief overview of each major problem is as follows:

Insufficient nodes
In some cases, scanning for access points was unable to find a minimum of three nodes on
that given floor. This was identified in locations that were at the very edge of the floor
(normally by a set of stairs), surrounded by thicker walls and away from any major points
of interest. This was a problem as trilateration requires at least three nodes to be
performed. Without this minimum, the algorithm simply cannot be run. These data
points were thus rendered useless and caused indexing errors until the root issue was
identified. To handle this, the points with insufficient coverage were removed. Points with
this problem were found on floor 3 and 5 of the building.

CHAPTER 4. LOCALISATION 26

Scan Number

Latitude Longitude 1 2 3 4 5 6 7 8 9 10

-1.55410325 53.8091697 19 17 17 19 22 19 19 19 20 19
-1.55392658 53.8091468 17 18 17 18 17 19 18 18 18 14
-1.55392563 53.8089408 11 17 16 15 17 18 17 15 15 16
-1.55417203 53.8089675 16 23 21 25 18 25 22 23 23 26
-1.55421388 53.8090438 17 19 19 17 20 18 19 17 18 19
-1.55420374 53.8087844 14 14 12 13 13 13 14 14 13 12
-1.55428850 53.8089485 16 15 15 14 14 15 16 15 14 15
-1.55416584 53.8092765 19 20 18 19 19 19 19 21 18 18
-1.55424165 53.8092384 12 12 14 13 15 15 15 15 15 15
-1.55434846 53.8092308 1 1 2 4 1 2 1 6 5 5

Figure 4.9: The points on the third floor of the Bragg building and the number of networks
detected at each scan there. At the last location, a significantly lower number of access points

had been scanned; trilateration is only possible on scan number 4, 8, 9 and 10.

Floor 5 data starvation
The fifth floor of the Bragg building is still very much a work in progress. Only two
staircases lead to this level; one of which leads to a very short corridor before the roof.
The few rooms on the floor are still in construction and unusable.

Figure 4.10: A map of the fifth floor, showing all three access points.

This floor has a total of three access points, located in the rooms and corridor off one
flight of stairs. This means that unless all three are detected, trilateration cannot occur;
if it does, the statistical analysis cannot be performed due to a lack of data. In addition
to this, while detectable by an access point scanner, the nodes on this floor are not active,
and cannot be connected to at the time of writing.

CHAPTER 4. LOCALISATION 27

For this reason, this floor was not used for the final tuning solution, as any results gained
would be of highly limited use. Furthermore, they would skew any processing of all floors
cumulatively in a negative fashion.

After the removal of the unusable nodes and floor, we were left with:

• 10 points on floor 0, 1 and 2

• 9 points on floor 3

• 6 points on floor 4

Each point still had 10 scans performed at it, with sufficient nodes being obtained on
each scan.

Library language specifics
As mentioned previously, the trilateration solution hinges around the Geodesy library,
which supplied helper functions and classes to significantly speed up the development of
the algorithm. Without it, significant development time would have been spent on
implementing functions that already exist, as well as debugging any inaccuracies that
were added during the development process. Geodesy has a sister module for use in
Python, called PyGeodesy. This allowed us to easily port the trilateration algorithm to
the notebook, instead of having to re-implement the specifics manually and risk adding
errors to the calculation.

However, upon testing the code, our tuning solution was exclusively returning errors on
every single trilateration attempt. This initially displayed as a math error, but closer
inspection identified the root cause to be an IntersectionError7, from PyGeodesy.

In the JS implementation used in the mobile app, a trilaterated point outside of the circle
radii drawn from all three nodes is allowed; the predicted position is returned without
issue. In the Python implementation, an error is instead thrown.

The Python implementation is technically correct. Trilateration requires the intersection
of points to be accurate. We mitigated this with the sheer amount of data produced by
trilaterating on every possible triplet, followed by refining the predictions using statistics.
In addition to this, this tuning was performed late into the project; it would not be
practical to rebuild and retest the trilateration algorithm with this new knowledge.

To combat this problem, we simply did not use the Python implementation of the
trilateration function. We instead copied over the JS version directly and ensured the
changes made so that it ran on Python did not impact the functionality or results. Using
the function implemented in the application increased the accuracy of the tuning
algorithm, due to directly using code from the main library instead of its sister
implementation.

7https://mrjean1.github.io/PyGeodesy/docs/pygeodesy.errors.IntersectionError-class.html

CHAPTER 4. LOCALISATION 28

def trilaterate(point1 , distance1 , point2 , distance2 , point3 , distance3 , radius
=6371e3 , point_nvectors=point_nvectors , Nvector=Nvector):

from en.wikipedia.org/wiki/Trilateration

n1 = point1.toNvector ()
n2 = point2.toNvector ()
n3 = point3.toNvector ()

delta1 = distance1/radius
delta2 = distance2/radius
delta3 = distance3/radius

the following uses x,y coordinate system with origin at n1
x axis n1->n2

unit vector in x direction n1 ->n2
X = n2.minus(n1).unit()
signed magnitude of x component of n1->n3
i = eX.dot(n3.minus(n1))
unit vector in y direction
eY = n3.minus(n1).minus(eX.times(i)).unit()
distance n1->n2
d = n2.minus(n1).length
signed magnitude of y component of n1->n3
j = eY.dot(n3.minus(n1))

x component of n1 -> intersection
x = (delta1*delta1 - delta2*delta2 + d*d) / (2*d)
y component of n1 -> intersection
y = (delta1*delta1 - delta3*delta3 + i*i + j*j) / (2*j) - x*i/j

note don’t use z component; assume points at same height
n = n1.plus(eX.times(x)).plus(eY.times(y))

return Nvector(n.x, n.y, n.z).toLatLon ()

Figure 4.11: The JS implementation of trilaterate, ported to Python. Some slight changes to
comment layout were made for readability.

4.5.4 Parallel Processing

Upon running the tuning process, we quickly came to the conclusion that the solution was
unfeasibly slow. There are two primary reasons for this:

Dataset size
The sheer size of the dataset lead to processing taking a long time. In total, there were
450 scans used, each with a various number of networks detected. On average,
approximately 15 networks were found on each scan, leading to
450 ∗

(
15
3

)
= 450 ∗ 455 = 204, 750 calls to the trilateration function for a single given A

and n; this magnitude of operations would take significant time to process.

PyGeodesy
Though it offers many functions that make trilateration easy to implement, the execution
of methods using PyGeodesy is rather slow. They involve casting values into objects
multiple times in a verbose manner, which adds up to a significant overhead over time.

CHAPTER 4. LOCALISATION 29

To combat these issues, an attempt was made to pre-process some of the data. The
trilateration function ported directly from the JS implementation involved creating several
LatLon objects - one for each location passed to the function, for a total of three per point.
These locations were used upwards of 20 times in a single scan in some cases, making the
constant creation of these objects a significant use of resources.

A lookup dictionary was used to help reduce this overhead. Upon a LatLon object’s creation, it
was added to a dictionary, with the tuple of its location as the key. This dictionary could then
be searched in future to see if the object already existed, avoiding the creation of a new object.

This helped, but not enough. The bulk of the time overhead was due to Vector classes
embedded deep into the PyGeodesy call stack; rewriting and removing them would take a
significant amount of time, and introduce many bugs that would risk the integrity of this
tuning process.

Figure 4.12: A profile of the main trilateration function using SnakeViz8. The majority of the
execution time is locked in functions provided by PyGeodesy.

Pre-processing could only go so far. Python applications are subject to a Global Interpreter
Lock (GIL)[26], preventing a Python application from executing multiple processing threads
simultaneously. This stems from Python’s memory access not being thread-safe; this behaviour
is useful in most cases, but can be overwritten to increase execution speed by using the full set
of logical cores on the machine.

Three different approaches were experimented with to try and increase the execution speed;
threads, processes and a processing pool.

Threads
These share the same memory as the global Python scope, but try to execute
simultaneously in an attempt to run in parallel. However, this does not circumvent the
GIL; instead, it just creates competition over processor time. An increase in execution
time was observed when used, leading to this approach being discarded.

8A profiling tool for Python. jiffyclub.github.io/snakeviz

jiffyclub.github.io/snakeviz

CHAPTER 4. LOCALISATION 30

Processes
These differ from threads by bypassing the GIL, but each have their own private memory
region. They can be executed in tandem, but incur an overhead by having to copy
memory states from the global scope into each process. This overhead counteracts any
gain from parallel execution, leading to the same execution time of 594s when tested.

A Processing Pool
This is similar to using processes, but the user instead creates a pool of them to be polled
from. The class itself splits the input data and assigns processes to each task, rather than
this having to be defined manually [25]. Using this pool lead to a significant time
reduction, taking 194s on a 10x10 grid search.

However, despite being by far the best solution, using the processing pool had an unusual
teething issue.

Upon being used, the process spawned by the pool could not find any functions outside of the
one it started in. The produced errors would repeatedly report that the function was missing
from the declared scope, despite all being in the same global scope in the same file. This was
not an issue caused by using a notebook - downloading into a Python file and running it caused
the same issues.

To solve this, each function required for any other functions that it called to be passed in as
arguments. This then allowed the function direct access to the scope in which they were
declared, allowing the process to execute properly.

After all of the above, the tuning algorithm produced relevant and useful results, at a much
faster pace than before; at the cost of stressing the machine we ran the solution on for a time.

Figure 4.13: Resource usage by the computer used to run the parameter tuning. The CPU
would be running at 100% for multiple hours at a time.

CHAPTER 4. LOCALISATION 31

4.5.5 Outcomes

As discussed previously, the lack of data available on the fifth floor, due to exceptionally poor
Wi-Fi router coverage, led to any data obtained being either unable to be processed, or being
the cause of inaccurate results. Due to the possibility of any values obtained skewing the
overall building results dramatically, it was stricken from the optimisation; hence no results for
it were obtained.

The tuning algorithm was ran on each floor individually, as well as upon the entire building at
once. Initially, scans were taken over a range similar to the base parameters; in the range of -30
to -70dBm for A, and 2 to 4 for n. However, upon testing this, the best results obtained were
always on the edge of the grid bounded by these values. Furthermore, the same ‘trench’ pattern
was present across all floors and subsets of data; this was not some coincidence or one-off
occurrence.

The search area was expanded repeatedly, until far out of the usual scope for these values. This
was evidence that a better combination of parameters did exist, that was likely bespoke to this
building. The final search area ranged from 64 to -64dBm for A, and from 2 to 8 for n. To
account for this wide search area, two scans were executed on each data set - a scan over the
entire area, followed by a scan around the best point located. This second scan had a search
area with a delta between maximum and minimum value of 20dBm for A and 2 for n. The
search area for each produced graph will be noted next to it.

Data obtained by running the algorithm on each floor individually can be found in Appendix
C. For the purpose of visualisation, the error on each graph is capped to 10m. Without this
cap, certain parameter combinations would lead to an error of upwards of 200m, making any
patterns difficult to observe due to the adjusted scale. The darker the colour of the mesh, the
lower the error is.

(a) A: 64 to -64dBm | n: 2 to 8
Wide scan.

(b) A: 30 to 10dBm | n: 7 to 9
Narrow scan.

Figure 4.14: Graphs produced from the Wi-Fi scan data for the entire Bragg building.

CHAPTER 4. LOCALISATION 32

The best parameters obtained for each floor were:

Floor A (dBm) n

Ground 37.00 8.36
1 25.57 7.71
2 28.00 8.71
3 19.86 7.07
4 19.86 7.07

All 25.71 7.71

The new parameters of A: 25.71dBm, n: 7.71 were implemented into the app for evaluation in
user testing.

To test these new parameters, we recorded the error obtained at every point used in the
optimisation process. This could then be compared to the error when using the old parameters
(A: -50dBm; n: 3), in order to draw conclusions about its effectiveness.

These tables can be found in Appendix D. Every entry is the average distance (in metres)
between the calculated location of the user and the actual location, for that specific point.

For ease of comparison, below is a table directly comparing the error of the new parameters to
the old set.

Floor
Point Ground 1 2 3 4 Average

1 -1.16 -0.26 -1.59 -1.62 -5.85 -2.09
2 -1.81 -4.22 -1.04 -4.33 1.30 -2.02
3 -0.98 -2.67 -1.34 -4.41 -4.00 -2.68
4 -1.53 -3.06 -2.54 -1.91 -1.40 -2.08
5 -6.81 -2.08 0.64 1.24 -2.46 -1.89
6 -3.62 -3.81 -0.53 -2.83 -1.23 -2.40
7 -4.17 -4.26 5.09 -6.18 -2.38
8 5.70 -2.62 -0.31 -2.89 0.10
9 -1.98 -4.40 1.77 -1.10 -1.43

10 -3.51 3.15 -2.36 -0.91
Average -1.99 -2.43 -0.16 -2.68 -2.2 -1.81

Std. Dev. 1.59 0.01 1.28 -0.89 -1.69 0.44

Figure 4.15: The performance of the new set of parameters, compared to the original set. An
increase in performance is marked in green; a decrease is marked in red.

Over all the data points, the average error distance decreased by -1.81m. This is supported by
the general distance metrics in the table; the majority of comparisons had the new parameters
cause a notable improvement. There do exist outliers however, which are sometimes a drastic
increase. An example of this is point 8 on the ground floor; +5.70m is a significant change,
skewing the standard deviation. In general, the standard deviation when using the new

CHAPTER 4. LOCALISATION 33

parameters did increase. This implies that while localisation is more accurate, any inaccuracies
are more pronounced than before.

As observed in Appendix D, we obtained an average error of between 4 and 6 meters. The
overall averages were skewed by some significant outliers, which can be attested to data
starvation in remote parts of the Bragg building.

Though this is not a measurable metric, it is worth noting that the app did feel more accurate
after tuning. The predicted location was more accurate and reactive when the mobile device
was moved; transitions between rooms were represented more accurately than before.
Furthermore, the app reacted less dramatically when stairs were taken, being able to locate the
user in fewer scans than previously. We were not able to test this with user surveys; this was
only via anecdotal evidence whilst developing.

4.6 Future Work

Path snapping
If it can be proven that the path produced by the application is optimal, the predicted
location could be ‘snapped’ onto this path. This operates under the assumption that the
user does travel along this optimal path. Instead of being a true localised position within
a building, this would instead represent a ‘progress’ metric of travel along this optimum.
However, this would pose issues if the user did not follow the path; be it via user error or
an event such as the way being blocked. In such a case, the user straying would leave
them without information on where they are located, leading to them becoming lost.

Weighted prediction heuristics
Most navigation through a building like Bragg is performed via corridors. Instead of
snapping to a path, more weight could be given to predicted locations that lie within
corridor regions. This is more likely to give a useful user location, as they should not be
navigating through a series of rooms to get to their end goal. This would add some
processing overhead to test what region a predicted location lies in however.

Data starvation testing
Bragg is a building with strong Wi-Fi coverage. Removing a proportion of the test dataset
could provide information on how the current parameters work with less data, thus giving
insight as to how the app would operate in a building with far fewer access points.

Wi-Fi RTT
When the Wi-Fi 802.11mc standard is more widely supported, it could be used for indoor
localisation. It may perform better than our RSSI-based method and may be faster. This
standard is similar to how GPS works and would work as an ‘indoor GPS’.

Chapter 5

Server

5.1 Architecture

The overall architecture of the server is fairly standard, there is a database that talks to the
API which talks to the client. We aimed for the server to be as agnostic as possible to the
format of the map, this is because there is more flexibility in the client’s representation of the
map than the server.

To achieve this we use only the most basic elements of a feature (e.g. geometry, IDs, etc.) and
leave all the other data in a ‘tags’ field. There are a few places that implement strictly optional
behaviours if those elements are present, the pathfinding for example weights room-to-room
pathing if it can as this can create paths that might be disruptive to people in the building; we
don’t want people wandering through offices.

Figure 5.1: Diagram of server architecture & map data processing

This leads to a fairly robust and open-ended server that can deal with changes both from the
client and mapping end, the server is more loosely coupled than if we were to agree on a schema
that all applications in our ‘stack’ should follow. This also means that if a mapper can’t find
out specific pieces of information about certain map elements, they shouldn’t worry about how
the server (which is furthest from their control) will deal with it; this is then up to the client.

34

CHAPTER 5. SERVER 35

5.1.1 Parser

A major part of the server is the ability to read GeoJSON and turn it into a suitable data
format for our purposes.

Some challenges were raised in the fact that the path was represented as a LineString feature,
we took each of the points in the LineString and converted them to the PathNode dataclass.
To de-duplicate nodes we took the coordinate tuple and used that as a lookup in a python
dictionary, this assumes that two points with the same coordinates are the same point, which is
a not-unreasonable assumption to make, however this might have its downsides if specific
mapping results were desirable.

Another point that required work was the check for if a node is in a given polygon. At first, we
were using the PyGeodesy library, this has a check to see if a given point is in a polygon,
however it is very slow. To get around this we wrote a bounding box check that only called the
PyGeodesy check to resolve where there were more than one bounding boxes that were
intersected. This too was complex and slow, so we decided to ignore the curvature of the earth
and use the Shapely library whose geometry types were much less expensive to instantiate and
polygon bounds checking was much faster overall. This does have the drawback that if our
system was used to map a building on the North or South Pole it may not work as intended
(it’s hard to put a precise latitude number on when this assumption becomes unworkable).
Overall it is fairly easy to swap out the libraries here, so there is little concern over this.

This is also the stage where edges between each node in staircases and lifts are created, this is a
weak point of the scheme we are using as it isn’t encoded in the map itself, however a
GeoJSON file could be produced after parsing that did encode this information; and in-fact the
app recreates a GeoJSON format to render geometry.

We used this intermediary format because we needed to create the graph in a way that python
would understand. This also made it easier to store in the graph format in the database. A
totally valid way of approaching this problem would be to not use a parser and serve the
GeoJSON files directly, just using a regular relational database (e.g. MySQL or Postgres) or a
document database to store them. This would be the best way if we didn’t have to process the
map further after QGIS creation, in the future if software was created that let us create the
final GeoJSON directly this would be a good solution to explore.

5.1.2 Database

We chose to use Redis with the graph and search extensions for the database part of the server
application. The RedisGraph extension fit the structure of the mapping data that we chose,
with relations between nodes that have data attached to them. This works with the RediSearch
module to allow full-text search over properties in the graphs to be very easily developed.

We didn’t take full advantage of the graph database portion of RedisGraph as not everything is
included with relations due to limitations of how the full-text search with RediSearch works;
ideally polygons and path nodes would have a one-way ‘inside’ relation between them and the
same with PoIs and path nodes having a ‘closest’ relation.

CHAPTER 5. SERVER 36

Currently, these have a prefix of the graph they should be in along the lines of
‘<graph_name>:polygon:’ which we can therefore scan the database for and split on the colon
character.

Polygon Node PoI
Contains

Connected

Closest

Figure 5.2: Data structure of graph

Ultimately for our small application this doesn’t lead to many possible queries that are hit by
this, the biggest being the query for nodes within a given room (using search). Also, the
returning of all polygons and PoIs suffer from this. In the future we could include all of these
pieces of data in one graph.

There are some overall problems with scalability using RedisGraph as it cannot be clustered like
a regular Redis database, however different graphs can be distributed across different database
hosts. To implement this we could have a master or clustered Redis database that contains
keys that correspond to each graph and an address of the database host they are stored on.

5.1.3 API

The API that the client application uses to access the server uses GraphQL, we chose this over
a REST API since it allowed prototyping the app faster, and has the added benefit for a much
more flexible API whilst developing. GraphQL allows you to define types and queries that
return those types (or some collection of primitive types). By doing this the control over the
specifics of the query are handed off to the client and the server just exposes the data and the
structure of the data that it is willing to send to the client.

This GraphQL API was implemented using the Ariadne library, for which you have to write a
series of resolvers for each of the types you define in the GraphQL schema (see Appendix E).
There are also resolvers for queries, these contain little logic and defer to the database
controller in most cases.

Each of these types have properties similar to a class in Object-oriented programming, by
allowing a query to just the properties that client needs we can save on both processing time
and bandwidth. For example in the Node type there is a polygon field that corresponds to the
polygon that the node is contained in. The query for this involves looking up the polygon by id
and thus has a higher latency than if we didn’t request it. Similarly the levels field in the
Path type must loop over all of the nodes in a path to find the levels that the path spans, if we
don’t need that data we can simply not process it.

CHAPTER 5. SERVER 37

Most queries simply return a specific by-id piece of data, or a list of all the available data. This
means that we can save on the amount of data sent if for example we ask only for the nodes’
IDs and the edges and only look up data about the specific nodes along the path we are
travelling, whilst this isn’t a concern for the moderately sized Bragg building, it could help in
larger buildings, or in applications where this mapping scheme might store documents
alongside a room for example.

Search queries simply take a single search string, but there could be improvements in the future
to allow for options to be passed to RediSearch for different search options in client
applications. Some improvements were made to the default search, notably increasing the
maximum number of results from 10 to 20 which allows more general searches e.g. ‘office’ to
work more effectively.

A scalar type for tags was also written, this is just a type that returns a python dictionary as a
JSON object that Ariadne can understand and return properly for the client.

These queries were mostly written in anticipation for the data that the client would need to
operate, for this reason some changes needed to be made after the initial application was
written but for the reasons outlined above this was very fast.

5.1.4 Path-finding

Server-side path-finding is completed by passing a set of nodes and edges into a class that uses
NetworkX to run A* with a heuristic function that tries to stop paths being generated that are
undesirable (for example paths that run between rooms when a hallway is available). Overall
this class is fairly simple, some attempt was made at generating text instructions for a given
path, but we decided it would be better for client applications to do this as they could
implement it using their own idioms.

We discovered in our testing that there were some bugs with pathing around staircases in rare
instances it would direct the user to go downstairs then back up again. This is because our
heuristic function adds no extra weight for staircases and lifts. In the future this will have to be
explored and tuned to make more realistic paths.

It should be noted that the paths we are trying to generate are not ‘optimal’ in terms of
distance but instead are trying to fit to a perceived convenience and accuracy to a path that
someone would actually take. Paths that take you through an active office might be optimal in
time and distance on paper but would actually involve more time to navigate as you would
probably have to apologise to everyone in it!

5.2 Build & Deploy

To build the application we decided on using ‘Pants’ which has the ability to package an
application as a .pex binary that packs all the dependencies into one binary. This pex file was
then built into a docker image using a Docker file which, was uploaded to GitLab’s container
repository by the CD pipeline. Docker-compose could then used to deploy the app to Azure

CHAPTER 5. SERVER 38

web-apps, this was done automatically by defining a web-hook so that on any event that caused
a new docker image to be built Azure would pull it and restart the server.

Listing 5.1: Dockerfile

FROM python :3.8
ENTRYPOINT ["/bin/mapping -app"]
COPY server.src/app.pex /bin/mapping -app
EXPOSE 80

Listing 5.2: docker-compose.yml

version: ’3.7’
services:

redisgraph:
image: redislabs/redismod
container_name: redisg
ports:

- "6379:6379"
restart: unless -stopped
networks:

- redisgn
hostname: redis
volumes:

- redis :/data
mappingserver:

image: registry.gitlab.com/comp5530m -mapping -project/
comp5530m_mapping_project/mapping -app:main

container_name: mapping
ports:

- "80:80"
restart: unless -stopped
networks:

- redisgn
networks:

redisgn:
volumes:

redis:

Builds are completed using GitLab CI with docker-in-docker to build the docker image and
pushed to the GitLab container repository where then a webhook is triggered telling Azure to
pull the new image. This is a fairly flexible system for deployment to the single Azure instance
but would need to be more complex if we were running multiple servers (even if they were all
mirrored). Builds are completed if there is a change to the server code or any of the build
config files on any branch, and the images are tagged with the branch name, this means that
we don’t have to merge to main to test out features. To use another branch you can then
simply change the ‘image’ line in under ‘mappingserver’ to point to the branch tag.

CHAPTER 5. SERVER 39

Figure 5.3: Diagram of CI/CD process

We also ran tests on the server, and lint on the server and the app to ensure we had nicely
formatted code, and that there weren’t any regressions with server changes. These were
handled using pants for python and ESLint for JavaScript.

Since we used the Azure free tier for development, there were some problems with the server
being de-provisioned whilst we were working on the app (especially if there had been no
activity for a while). We also ran into issues with usage limits if we had been developing the
client app and were refreshing a lot. Both of these issues were solved by moving to the paid tier
during user testing, but were a concern.

5.3 Further Work

As mentioned above, it would be good to have everything in the RedisGraph structure itself,
this would mean that we could make queries in general faster if there were many buildings in
the database. I think this is the major limitation of the scheme that is currently implemented,
but it is not slow.

Another issue with the system is its overall scalability, this is not only because of RedisGraph’s
own limitations, but the fact that there are no mechanisms that could load balance the API
and the database components separately from each other. At such a small scale this has no real
impact but if this application was used globally we may want to look at something like a
microservice-based architecture. This isn’t without its problems however as there is only really
one domain that the database can refer to meaning we’d have to figure out where the data
should be stored and cached (which would be a problem that had to take into account the
location of data centres etc.).

Finally, it would have been nice to implement a way of generating paths, as outlined in the
conclusion of Chapter 3. This would have made the parse more complex and slow, which we

CHAPTER 5. SERVER 40

were trying to avoid and ended up just being out of the scope of the project.

Finally, we could improve server by adding a query for nearest buildings given the current GPS
location. This would allow us to load building maps before a user enters the building. This
could be used to load a map before the user was inside the building, allowing for multiple
buildings to have been mapped and tested. This functionality would use Redis’ geospatial
abilities to query a radius around a coordinate and would involve adding a polygon or point in
the building that could be added to the database to query against.

Chapter 6

App

6.1 Implementation

Initially, we wanted to create a web application. Web apps can be used across platforms and do
not require installation on the user’s device. However, after deciding to use Wi-Fi information
as our localisation method, we found that web applications can not access network information.
There is currently an experimental API which measures network quality [20], but it does not
return the RSSI values necessary for localisation. Therefore, we chose to write the client as a
native application, which can access the RSSI directly from the operating system.

We chose to implement the application in React Native, which is a JavaScript framework for
writing native applications for Android and iOS. React Native is also cross-platform, allowing
the application logic to be written once and compiled for each operating system; it also allows
us to bundle other JavaScript libraries to add functionality e.g. drawing vector graphics or
querying a GraphQL server.

6.2 Design

6.2.1 Technical

React Native uses the React UI library to structure the application. Each ‘screen’ of the
application is made up of multiple nested components, defined by the JSX format. They can be
functional components, or defined by classes. Components specify the data they depend on and
how the data is displayed, and React orchestrates the creation, modification and deletion of
components as the data changes.

An example of a component is a button, these buttons can be composed together by other
parent components, much like HTML.

41

CHAPTER 6. APP 42

Figure 6.1: Architecture of the app by component

CHAPTER 6. APP 43

6.2.1.1 Client-Server Communication

When loading the initial map or requesting a path to a room, the app needs to contact the
server and retrieve the appropriate data in the correct format. We use Apollo [3], a GraphQL
implementation for JavaScript, to write and execute queries.

6.2.1.2 Network Information

As mentioned in Chapter 5, the localisation relies on the strengths of Wi-Fi signal between a
device with app installed and nearby Wi-Fi routers. Devices with Android 9 onward have
Wi-Fi throttling enabled by default, which limits the Wi-Fi network scanning to four times
every two minutes [2]. Worldwide market share of Android devices using version 9 or newer is
over 70% as of April 2022. [30]. For our localisation to provide real-time data, we need to scan
the networks every few seconds. Therefore, for the app to work as intended, the devices with
the app must open developer settings and disable Wi-Fi throttling.

6.2.2 UI / UX

We aimed to recreate the design and functionality of other successful outdoor map apps, such
as OsmAnd, Waze and Google Maps. These all use a fairly standard design language and as
such have created an expectation from users as to how a map app should behave and even
where certain buttons should be. For this reason the problem of creating such an app is fairly
constrained, and we should strive to repeat successful examples of such.

The most obvious is the map itself. The map should support pan and zoom operations at a
very minimum, a lot of apps also support the ability to rotate the map. Panning and zooming
is core to being able to contextualise where you are in the map.

Figure 6.2: Google Maps interface

The map is visualised as a two-dimensional floor plan with different colour schemes for rooms
and corridors. The location of the device is displayed as a marker, and the starting and target
location is shown with a distinct colour. Additionally, the map can optionally display room

CHAPTER 6. APP 44

labels and points of interest. This visualisation is generated with a third-party JavaScript
library d3: a library for producing dynamic and interactive data visualisations.

The map is drawn using SVG, this was a good solution as it allowed us to use d3’s geo libraries
to project polygons to an SVG path easily. SVG is a simple and fairly light-weight solution but
doesn’t work well with React-Native’s refresh and re-render strategy. For this reason picking a
more specialised graphics library might have been better for performance; SVG did however
work well in the end and allowed us to create a final product quickly. Another potential
optimisation here would be to allow the SVG to be ‘pre-calculated’ then save it to memory,
loading it back if it’s already been created. This would avoid re-calculating each element’s
projection from latitude and longitude to the screen coordinate paths. This pre-calculation
could only be done for the static elements of the map.

6.2.2.1 Location

The location is represented as a circular marker, this has a translucent circle around it
representing error. It is updated every time the access points are scanned, which takes five
seconds; this is a process that cannot be sped up as it depends on the radio in the phone. We
therefore use the accelerometer and compass to provide an estimated location between scans,
represented by a triangle shaped marker, this works as a sort of basic pedestrian dead
reckoning.

If the user is moving (as detected by a weighted sum of accelerometer readings) the triangular
marker will move a set amount in the direction of the compass heading reported by the phone.
This ends up in a sometimes wildly inaccurate prediction, but we felt that it helped let the user
know that the app was doing something between the full Wi-Fi scans as otherwise there was no
feedback.

Inspired by Google Maps, after unsuccessful network scan the location marker turns grey to
alert the user that location data could not be obtained.

6.2.2.2 Search

Search is handled by sending requests to the server on each character change, the app
dispatches a request and shows the results. The search bar is at the top of the screen, and
opens a modal over the map window to select the room to navigate to.

6.2.2.3 Floor Changes

Since other apps do not have this idiom, we needed a way to handle floor changes. Ideally the
user would be able to look ahead and see what was the floors above and below where they
were, but also the app should change floors automatically when they reach the next one.

Initially we had a toggle between a sort of ‘free browse’ mode and a ‘follow mode’ similar to
how Google Map’s button works (see bottom right of Figure 6.3b). But decided that this was
not communicating the idea properly.

CHAPTER 6. APP 45

(a) Google Maps displays a grey dot when using
the old location

(b) Google Maps displays a blue dot when it has a
fresh location

Figure 6.3: Google Maps location markers

We worked out that we could actually remove the toggle and enable a follow flag if the user was
looking at the floor they were currently on, if they switched floors to look ahead this flag was
set to false. This meant that if they switched to the floor they were looking ahead to the flag
would be re-enabled and follow them again. This took a button away from the user interface,
simplifying interaction.

As an example if the user was on floor 1 and wanted to see what was ahead on floor 2 they
would press the button to move one floor up, setting the flag to false. If the user walked up the
stairs to floor 2, the app would locate them and set the flag to true. The user could then walk
up the stairs again and the app would follow them to floor 3.

This made sense with how people would use the app, the toggle in Google Maps makes sense as
the map is significantly larger and enables a zoom and pan to the user’s current location. Our
map does not need this as the whole map fits onto a phone screen easily.

6.2.2.4 Other Affordances

Visual feedback was key when developing the application, but we also decided to add vibration
feedback when pressing buttons and importantly when a new location update was received.
This was intended to let users know that the app had updated the predicted position even if
they were not currently looking at the screen. We also added vibration when pressing the
buttons in the app, just to let people know they were received.

CHAPTER 6. APP 46

(a) Position indicator (b) Level change icon

Figure 6.4: UI affordances for navigation

6.3 Design Iterations

(a) Sketch — Home View (b) Sketch — Search View

Figure 6.5: User Interface Sketches

The app design was initially drafted with hand-drawn and digital sketches. The most important
aspect of the design was to make it simple and usable without any prior app exposure.

Later, when the application was developed, the design was going through multiple iterations.
We have been experimenting with various ways of room searching, button placements, and
colour schemes until we achieved a pleasant and intuitive user interface. Throughout the
iterations, we also graphically represented a lot of debugging data, that we decided to not
include in the final release version.

CHAPTER 6. APP 47

(a) Design 26/02/2022 (b) Design 04/03/2022 (c) Design 15/03/2022

Figure 6.6: User Interface Iterations

Figure 6.7: Final design

CHAPTER 6. APP 48

6.4 Further Work

The application lacks client-side support. If a user has any issues or improvement ideas, there
is nowhere to report them at the moment. There is currently no need for client support as the
app is not meant to be released publicly, and we collect all the feedback through user testing
and forms. Although, if the app was about to be released, we would have to introduce a way to
provide support.

Map data is downloaded from the server every time the app is started on the user device. This
approach is very inefficient as users are likely to need the same map multiple times. In future
development, the app would benefit from data caching. It would not only speed up app startup
but also limit server usage. Additionally, path-finding could also be done on the client-side,
rather than on server.

The current map visualisation solution works, but is very limited. Initially, we planned on
visualising the building in 3D, which would require a different library with a 3D rendering
utilities, such as React Native 3D Model View package.

The app provides functionality for displaying points of interest, although there is currently no
option for user to enter new points. Initially we planned on collecting additional data from
users after they reach the final destination and automatically update points of interest on the
map using the collected data.

Lastly, our solution was meant to be integrated with Open Street Map project. User can be
unfamiliar with a building itself but also with the location of the building. Integration with
Open Street Map would enable user to use already implemented outdoor navigation systems to
find a target building (e.g. Sir William Henry Bragg building) and then the navigation would
switch to our indoor navigation solution, so the user could find a room.

Chapter 7

Evaluation

7.1 Experiment

To evaluate the app, we designed an experiment to compare navigation provided by the app
and traditional navigation methods (e.g. using signs and door plates). The experiment
consisted of two groups: a baseline group that did not use the app, and a treatment group that
did. Participants of each of these groups were given a survey which helped to evaluate the
effectiveness of the methods they used and to gather demographic information.

Hypothesis
The use of the app aids participants in finding and travelling to rooms regardless of prior
knowledge of the building.

The experiment consisted of gathering participants and asking them to find specific rooms.
They were accompanied by two invigilators: one measuring times and one recording metrics,
such as turns, stops and floor changes. The invigilators’ responsibilities are explained in
Appendix F.3.

7.1.1 Sampling

We chose participants by convenience, offering an incentive of cookies. The majority of
participants selected were currently within the Bragg building and were chosen for their
willingness to complete the evaluation. For this reason, the data skewed towards people who
were staff or students at the University of Leeds.

7.1.2 Metrics

The metrics were selected to measure each participant’s ability to navigate in the building and
to make them comparable between the baseline and treatment groups. Initially, we wanted to
measure time and distance travelled before reaching goal destinations. Unfortunately, distance
proved itself to be infeasible to measure, so we took the number of turns, stops, and floor
changes instead.

We started recording time as soon as the room name had been given to the participant and
stopped once the participant touched the door of the given room. The timer was stopped
whilst the participant was changing floors; this was to prevent the data from being affected by
transition times between floors (be it via lifts or stairs).

We defined a turn to be rotation greater than a 45◦ angle, followed by movement of three steps
in that direction. These turns by definition also account for U-turns (180◦ turn). We did not
count turns onto or off of a staircase or lift.

49

CHAPTER 7. EVALUATION 50

Stops were defined as any time the participant came to a complete stop for more than two
seconds; this was likely to be because they were reading signs or were interacting with the app.
More stops may indicate that the participant was trying to gather more information about
their surroundings.

We measured the number of times participants changed floors. In some cases, participants
changed floors more than they needed to. If a group had fewer floor changes, it might indicate
they understood their position in the building better. We also recorded the ways people
changed floors; whether they took the stairs or the lifts.

7.1.3 Search Locations

For consistency, we gave the same four room locations to every participant. We chose rooms on
different floors to eliminate the chance that someone would know the location of all the rooms.

1. 24h-hour lab 2.15

2. Prof. Raymond’s office 3.34

3. Kitchen/Print room 1.48

4. Gender neutral bathroom GR.26

The difficulty in finding each room in the experiment varies; the 24-hour lab and Prof.
Raymond’s office are relatively easy to find, whereas the other two rooms are harder. The signs
pointing to the Kitchen/Print room (1.48) are incorrect (see Figure 1.1), and the
gender-neutral bathroom (GR.26) is behind the café and has no signs pointing to it specifically.

7.1.4 Survey

Once the participants finished searching for the rooms, they were given a survey. This was to
collect qualitative data from the experiment: demographic information about the participants,
additional data related to the room searching, and general feedback. The survey questions can
be found in Appendix F.6.

7.1.5 Baseline Experiment

The first of the two experiments was the baseline, focusing on the efficacy of travelling between
two rooms in the building using existing signage. We did not allow participants to ask other
people in the building for help, as that would not reflect the difference in using signs and the
app. We also did not allow participants to use the large interactive map in the foyer as it was
introduced after we started experiments and could hence potentially lead to inconsistent results.

CHAPTER 7. EVALUATION 51

The experiment started after the participant read the information sheet (Appendix F.2),
instructions, and signed the consent form. Each participant was taken through the same
procedure:

1. Give the participant the instructions in Appendix F.4 and get consent for the experiment
(using Appendix F.1).

2. Give the participant the room to travel to.

3. Start the timer as soon as the room is given.

4. If a participant takes a turn or stops mark these in the notes.

5. When the participant touches the door of the room the invigilators were directed to stop
the timer and mark down the time taken.

6. Repeat steps 2–5 for all the rooms in the test 7.1.3.

7. Once the list of rooms has been completed the participant is returned to the start to
complete the survey and claim their incentive.

7.1.6 App Experiment

This second experiment required a participant to have access to the app. We decided to
provide an Android phone with the app installed ourselves, to save time with additional setup
on participants’ phones.

The same steps outlined in the baseline were taken, differing only in that the instruction sheet
in Appendix F.5 was given instead, and that the participants were prompted to use the
navigation app.

7.2 Results

7.2.1 Baseline Survey

In the survey we included questions about the signage quality and invited participants to share
potential improvements. Overall, the participants felt confident that they knew where they
were going throughout the experiment. [Figure 7.1a]

“How would you improve the signage?” The most common response to this question was
that the signs were wrong. The signage for the kitchen was incorrect; two of the signs for this
room pointed in opposite directions to the kitchen. Other comments included the distance
between consecutive door numbers (e.g GR.25 and GR.26 are on opposite sides of the
building). [Figure 7.1b]

“Is there anything that could help you with navigation in the building?” Here we
noticed three types of answers: the first pointed out inaccuracies in the signs (see Figure 7.1c),
the second mentioned easily accessible maps, and the third talked about the creation of a

CHAPTER 7. EVALUATION 52

(a) Participant’s confidence as to how sure they
were of where they were throughout the

experiment

(b) How would participants improve signage

(c) How accurate the participants found the
signs in the building

(d) Participant requests as to what would have
aided them most in finding a location.

Figure 7.1: Questions from the Baseline Survey

system of localisation using an app in the building (see Figure 7.1d). In the final case it should
be noted that we tried to not tell participants about our project to create such an app.

CHAPTER 7. EVALUATION 53

7.2.2 App Survey

During the experiment, it was found that the path suggested from room 2 to room 3 sometimes
routed users back down to the first floor. This is due to an error in the path finding algorithm
that doesn’t weight lifts and staircases correctly.

We also received feedback that we should mark staircases in a different way to regular rooms.
Since these have metadata attached that differentiate them already, we could easily change the
colour or add an icon in the center.

Wi-Fi scans took five seconds to complete, meaning that the location data provided was never
fresh. This caused some participants to be misled, even if the old data was accurate. This is
strictly a hardware limitation and is discussed in Chapter 4.4.2.3.

Participants requested the functionality to rotate the map. This could be implemented in two
ways; the first being a gesture, similar to Google Maps, allowing manual reorientation of the
map using two fingers. Alternatively, sensor-based rotation could be used, which would align
the map to the direction of the internal compass in the user’s device.

A lot of users found it difficult to navigate as the performance of the app was slow, especially
when room labels were enabled. This issue is further discussed in Section 6.2.2.

CHAPTER 7. EVALUATION 54

Figure 7.2: Themes compiled from the long-answer questions about improving the app
.

(a) How accurate was the app to predict your
location?

(b) How easy was the path to follow?

(c) How aesthetically pleasing is the app?

Figure 7.3: Questions from the App Survey

CHAPTER 7. EVALUATION 55

7.2.3 Comparison of Results

The following headings refer to the graphs on the following page, comparing the metrics
between the baseline experiment with the app experiment.

Room 1 (24-hour visualisation lab) Data for room 1 shows that the baseline was faster in
both cases of familiarity and non-familiarity with the building. Both cases show a nearly two
times increase in their average time (See Figure 7.5a). We believe this is due to users
familiarising themselves with the app.

Room 2 (Prof. Raymond’s office 3.34) We saw a small improvement in the time for
room 2 in the familiar case, but the baseline was still faster in the non-familiar case. A
potential explanation here could be over-confidence in the baseline experiment.

Room 3 (Kitchen 1.48) This room was the only room in the app experiment to include
any dropouts.

The dropout in the app case was likely caused by an error in the map which routed users down
two floors, then back up one, confusing them (see Section 7.2.2).

Room 4 (Gender neutral bathroom GR.26) This room was chosen to be difficult to find
due to its signage. However, using the app’s search users were able to locate it on the map.
These results show the clearest benefit, both eliminating dropouts completely and resulting in a
speedup in both cases.

This suggests that the app is good for finding obscure, hidden rooms, with limited signage.

General Trends In the case of the last two rooms, the stops and turns metrics were lowered
significantly. This suggests that the users were generally less lost; these metrics are around the
same for the first two rooms.

Floor changes remained reasonably constant between all tests, except the third. This implies
that people probably knew the floor a room was on by its name on the card. In the case of the
third room: in the baseline test some participants followed incorrect signs and went downstairs
to the ground floor, and in the app test the bug outlined in Section 7.2.2 likely increased this
metric.

Hypothesis: The use of the app aids participants in finding and travelling to rooms
regardless of past knowledge of the building

The app aids participants that report they are not familiar with the building; in the case of
those who say they are familiar, we saw less improvement.

The early rooms may have taken longer to find based on participants learning to use the app.
This overhead might be something which would diminish over time given experience with the
app; an issue that could be overcome by adding more rooms to the experiments.

CHAPTER 7. EVALUATION 56

Figure 7.4: The difference in average times to baseline; negative values indicate the baseline
test was faster

(a) 24-hour lab 2.15
.

(b) Prof. Raymond’s office 3.34
.

(c) Kitchen 1.48
.

(d) Gender-neutral bathroom GR.26
.

Figure 7.5: Times taken per room
.

CHAPTER 7. EVALUATION 57

Figure 7.6: Dropout rate

(a) The average number of times participants
stopped

.

The
(b) Average number of times participants made a

turn
.

(c) Average floor changes participants made

Figure 7.7: Turns, Stops and Floor Changes.

CHAPTER 7. EVALUATION 58

(a) p-values per room (b) t-test per room

Figure 7.8: Statistical significance measures

In the app experiment, there may have been bias due to familiarity; participants may have not
used the app and went straight to the first two rooms by memory.

We can see that our experiment had limited statistical significance (Figure 7.8a), so more
testing should be completed to make any concrete claims.

7.2.4 Survey Comparison

How well did you know where you were going throughout the experiment?
Participants scored themselves 1–5 on if they knew where they were in the building: the
average value was 3.26 in the baseline and 3.48 in the app experiment. This suggests that the
app did help with the perception of localisation.

When asked participants were almost twice as likely to say the app’s given path was easy to
use 57% with a score of 4–5 as opposed to the ease of use of the signs.

Figure 7.9: How confident were users in their location?

CHAPTER 7. EVALUATION 59

7.3 Revised Procedures

Following the first experiment and feedback from our supervisor, we decided that if we were to
have had time to run this experiment again we would change how it operated.

More work should be done to define questions about familiarity with the building. We ask for
familiarity with specific floors or rooms rather than about the building in general.

The more qualitative questions should have also been developed and tested to ensure they were
interpreted consistently. This would mean we could make better conclusions from them; as
they stand, they do not tell us much other than a general idea about our experiments.

During the app experiment participants were not restricted to navigating using only the app.
Some participants barely used it; if we ran the app experiments again, we would specify that
the participants should mainly use the app instead of the signs. This would give us a better
comparison of searching rooms with and without the app.

The turns and stops were not optimal metrics to take. We thought that turns could reflect the
distance travelled between rooms, but some paths of similar distance required participants to
do a different number of turns, making the data unclear.

Increasing the number of participants would limit bias and result in more statistically
significant data.

Using only one survey at the end of the experiment made it hard to control bias over some
questions, such as familiarity. We could ask demographic questions at the start of the
experiment, and experience-based questions at the end.

Another hypothesis to explore would be that the app helps users find obscure rooms more
consistently. A focus on harder to find rooms may reveal further information.

Chapter 8

Conclusion

Overall, we have a good proof-of-concept that mapping and localisation using our methods is
feasible, and that use of it may help in navigating commercial buildings such as Bragg. More
work can be done to improve existing implementations, but our solution is sufficient for basic
navigation.

8.1 Mapping

The scheme for mapping is open to extension but closed to modification and, whilst
time-consuming, it is easy to create maps. The solution is hampered by software support for
multiple floors, meaning there had to be implementation server-side. Overall the map created
of the Bragg building was fit for the purpose of navigating the building.

8.2 Localisation

Localisation within the app performs well, proving sufficient for our use case. Limitations due
to implementation details and hardware do exist; however, the app is able to follow the users
position within a range of on average between 4 and 6 meters. This is appropriate for an indoor
navigation system.

A parameter tuning algorithm was successfully implemented. This expanded on the scope of
the background research performed, finding a combination of parameters outside of the ranges
we predicted. These new parameters felt better when tested on the app, while showing a
demonstrable improvement when assessed on 450 scans of input data.

Future work in this scope includes testing how the improved localisation method responds to
data starvation, as well as the potential implementation of newer localisation methods such as
Wi-Fi RTT. Closer integration with the rest of the app would also be appropriate, via methods
such as path-snapping or weighting locations.

8.3 Implementation

The server implementation is good, and is suitable for our solution. It is flexible to changing
mapping requirements, but not scalable. At the scale we are using it, it is fast: full-text search
works quickly and is only limited by connection speed.

The app has shown promise in aiding navigation indoors for users who do not know a building.
Further testing is needed to see if this app would help long-term for users of the building.
Similarly, more testing would need to be done to see if the detrimental effect of using the app

60

CHAPTER 8. CONCLUSION 61

in the first two rooms was caused by an unfamiliarity with its operation or from failings of the
app.

8.4 Teamwork

As a team we worked well together, with all team members contributing in a significant way to
the project. We were also able to adapt to changing situations and plans. Despite how well we
worked as a team we was unable to stick to the plan we originally conceived in chapter 2. This
was due to time constraints, scheduling conflicts and issues outside of our control. However, we
were able to communicate effectively to understand people’s situations and scale back
unnecessary features.

References

[1] Android developers. Wi-fi location: ranging with rtt, 2022. https:
//developer.android.com/guide/topics/connectivity/wifi-rtt#supported-devices

[Online; accessed 10-April-2022].

[2] Android developers. Wi-fi scanning overview, 2022.
https://developer.android.com/guide/topics/connectivity/wifi-scan [Online;
accessed 19-April-2022].

[3] Apollo GraphQL. Apollo graphql, 2022. https://www.apollographql.com/, [Online;
accessed 22-April-2022].

[4] Richard Atterer. Leadme - map creation for pedestrian navigation, 2010.
http://atterer.org/leadme, [Online; accessed 4-april-2022].

[5] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave
Thomas. Manifesto for agile software development, 2001. URL
http://www.agilemanifesto.org/.

[6] Frederick P. Brooks. The Mythical Man-Month: Essays on Software. Addison-Wesley
Longman Publishing Co., Inc., USA, 1st edition, 1978. ISBN 0201006502.

[7] brwhiz. Opry mills mall entrance 1, 2013.
https://www.waymarking.com/waymarks/WMHNMB_Opry_Mills_Mall_Entrance_1 [Online;
accessed 25-April-2022].

[8] Business Wire. Indoor retail mapping leader aisle411 delivers in-store 3d mapping on
google’s project tango, 2014. https://www.youtube.com/watch?v=6QHaUAnecuM [Online;
accessed 4-April-2022].

[9] Jorge Chen and Keith C. Clarke. Indoor cartography. Cartography and Geographic
Information Science, 47(2):95–109, 2020. doi: 10.1080/15230406.2019.1619482. URL
https://doi.org/10.1080/15230406.2019.1619482.

[10] Dell. How to identify and reduce wireless signal innterference, 2021.
https://www.dell.com/support/kbdoc/en-uk/000150359/

how-to-identify-and-reduce-wireless-signal-interference [Online; accessed
20-April-2022].

[11] Discord. Discord your place to talk and hang out, 2022. https://discord.com [Online;
accessed 10-April-2022].

62

https://developer.android.com/guide/topics/connectivity/wifi-rtt#supported-devices
https://developer.android.com/guide/topics/connectivity/wifi-rtt#supported-devices
https://developer.android.com/guide/topics/connectivity/wifi-scan
https://www.apollographql.com/
http://atterer.org/leadme
http://www.agilemanifesto.org/
https://www.waymarking.com/waymarks/WMHNMB_Opry_Mills_Mall_Entrance_1
https://www.youtube.com/watch?v=6QHaUAnecuM
https://doi.org/10.1080/15230406.2019.1619482
https://www.dell.com/support/kbdoc/en-uk/000150359/how-to-identify-and-reduce-wireless-signal-interference
https://www.dell.com/support/kbdoc/en-uk/000150359/how-to-identify-and-reduce-wireless-signal-interference
https://discord.com

REFERENCES 63

[12] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part i. IEEE
Robotics Automation Magazine, 13(2):99–110, 2006. doi: 10.1109/MRA.2006.1638022.

[13] Erin Rodrigue. What is a qr code + how does it work? everything marketers should know,
2021. https://blog.hubspot.com/blog/tabid/6307/bid/16088/
everything-a-marketer-should-know-about-qr-codes.aspx [Online; accessed
6-April-2022].

[14] Amir Guidara, Ghofrane Fersi, Faouzi Derbel, and Maher Ben Jemaa. Impacts of
temperature and humidity variations on rssi in indoor wireless sensor networks. Procedia
Computer Science, 126:1072–1081, 2018. ISSN 1877-0509. doi:
https://doi.org/10.1016/j.procs.2018.08.044. URL
https://www.sciencedirect.com/science/article/pii/S187705091831322X.
Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the
22nd International Conference, KES-2018, Belgrade, Serbia.

[15] Janne Haverinen and Anssi Kemppainen. Global indoor self-localization based on the
ambient magnetic field. Robotics and Autonomous Systems, 57(10):1028–1035, 2009. ISSN
0921-8890. doi: https://doi.org/10.1016/j.robot.2009.07.018. URL
https://www.sciencedirect.com/science/article/pii/S0921889009001092. 5th
International Conference on Computational Intelligence, Robotics and Autonomous
Systems (5th CIRAS).

[16] Huawei. The world’s first 5g indoor positioning — verified by china mobile suzhou and
huawei, 2021. https:
//www.huawei.com/en/news/2021/3/5g-indoor-positioning-china-mobile-suzhou,
[Online; accessed 22-April-2022].

[17] Jim Katsandres. Bluetooth low energy – it starts with advertising, 2017. https:
//www.bluetooth.com/blog/bluetooth-low-energy-it-starts-with-advertising/

[Online; accessed 6-April-2022].

[18] Jorge Chen & Keith C. Clarke. Indoor cartography, 2018.
https://www.tandfonline.com/doi/full/10.1080/15230406.2019.1619482 [Online;
accessed 7-April-2022].

[19] Lucid Content Team. 4 phases of rapid application development methodology, 2022.
https://www.lucidchart.com/blog/rapid-application-development-methodology

[Online; accessed 18-April-2022].

[20] MDN. Network information api - web apis | mdn, 2022.
https://developer.mozilla.org/en-US/docs/Web/API/Network_Information_API

[Online; accessed 19-April-2022].

[21] Official Journal of the European Union. General data protection regulation, 2016.
https://gdpr-info.eu/ [Online; Accessed 26-April-2022].

[22] OGC. Indoorgml, 2019. http://indoorgml.net/ [Online; accessed 4-April-2022].

https://blog.hubspot.com/blog/tabid/6307/bid/16088/everything-a-marketer-should-know-about-qr-codes.aspx
https://blog.hubspot.com/blog/tabid/6307/bid/16088/everything-a-marketer-should-know-about-qr-codes.aspx
https://www.sciencedirect.com/science/article/pii/S187705091831322X
https://www.sciencedirect.com/science/article/pii/S0921889009001092
https://www.huawei.com/en/news/2021/3/5g-indoor-positioning-china-mobile-suzhou
https://www.huawei.com/en/news/2021/3/5g-indoor-positioning-china-mobile-suzhou
https://www.bluetooth.com/blog/bluetooth-low-energy-it-starts-with-advertising/
https://www.bluetooth.com/blog/bluetooth-low-energy-it-starts-with-advertising/
https://www.tandfonline.com/doi/full/10.1080/15230406.2019.1619482
https://www.lucidchart.com/blog/rapid-application-development-methodology
https://developer.mozilla.org/en-US/docs/Web/API/Network_Information_API
https://gdpr-info.eu/
http://indoorgml.net/

REFERENCES 64

[23] OpenStreetMap Wiki. Way, 2021.
https://wiki.openstreetmap.org/w/index.php?title=Way&oldid=2173770 [Online;
accessed 22-November-2021].

[24] OpenStreetMap Wiki. Indoor mapping — openstreetmap wiki,, 2022. https:
//wiki.openstreetmap.org/w/index.php?title=Indoor_Mapping&oldid=2285214

[Online; accessed 4-April-2022].

[25] Python Software Foundation. multiprocessing — Process-based parallelism — Python
3.10.4 documentation, 2022.
https://docs.python.org/3/library/multiprocessing.html [Online; accessed
12-March-2022].

[26] Python Wiki. GlobalInterpreterLock — Python Wiki, 2020.
https://wiki.python.org/moin/GlobalInterpreterLock [Online; accessed
19-April-2022].

[27] Scott - Sprout QR. How do qr codes work? qr code technical basics, 2020.
https://www.sproutqr.com/blog/how-do-qr-codes-work [Online; accessed
6-April-2022].

[28] Scrum.org. What is scrum?, 2022. https://www.scrum.org/resources/what-is-scrum
[Online; accessed 20-April-2022].

[29] Senion. How accurate are indoor positioning systems?, 2019.
https://senion.com/insights/accurate-indoor-positioning-systems/ [Online;
accessed 7-April-2022].

[30] StatCounter. Android version market share worldwide, 2022.
https://gs.statcounter.com/os-version-market-share/android [Online; acessed
19-April-2022].

[31] Junhua Yang, Yong Li, and Wei Cheng. An improved geometric algorithm for indoor
localization. International Journal of Distributed Sensor Networks, 14:155014771876737,
03 2018. doi: 10.1177/1550147718767376.

https://wiki.openstreetmap.org/w/index.php?title=Way&oldid=2173770
https://wiki.openstreetmap.org/w/index.php?title=Indoor_Mapping&oldid=2285214
https://wiki.openstreetmap.org/w/index.php?title=Indoor_Mapping&oldid=2285214
https://docs.python.org/3/library/multiprocessing.html
https://wiki.python.org/moin/GlobalInterpreterLock
https://www.sproutqr.com/blog/how-do-qr-codes-work
https://www.scrum.org/resources/what-is-scrum
https://senion.com/insights/accurate-indoor-positioning-systems/
https://gs.statcounter.com/os-version-market-share/android

Appendices

65

Appendix A

Source Code

A.1 Project Repository

https://gitlab.com/comp5530m-mapping-project/comp5530m_mapping_project

A.2 Map Repository

https://gitlab.com/comp5530m-mapping-project/example-maps

A.3 Video demo

https://www.youtube.com/watch?v=Wyd1FNRDyYw

A.4 Survey

https://forms.gle/fBCQBnDYbWsmxUaT7

A.5 Consent Forms

The scanned consent forms are available on request.

A.6 Experiment Data & Survey Results

These are available on request.

66

https://gitlab.com/comp5530m-mapping-project/comp5530m_mapping_project
https://gitlab.com/comp5530m-mapping-project/example-maps
https://www.youtube.com/watch?v=Wyd1FNRDyYw
https://forms.gle/fBCQBnDYbWsmxUaT7

Appendix B

List of Libraries / Software Used

B.1 Server

B.1.1 Software

• gdal — Conversion between geographic data formats

• Redis — Database

• Docker — Development containers, deploy

• docker-compose — Container composition, deploy

• Pants — Build system

• flake8 — Linter

• pytest — Tests

• Azure App Service — Cloud platform for container deployment

• Jupyter — Notebook for prototyping

B.1.2 Python libraries

• networkx — Path finding, graph algorithms

• redis — Database

• redisgraph — Graph database

• redisearch — Full-text search

• ariadne — GraphQL API definition

• pydantic — Dataclass validation

• shapely — Computational geometry

• uvicorn — Serving GraphQL API

• pyproj — Coordinate projection

B.2 Client

Important packages from app/package.json:

67

APPENDIX B. LIST OF LIBRARIES / SOFTWARE USED 68

• @apollo/client — GraphQL client for querying server

• @react-navigation/native — Implements native navigation for apps

• @react-navigation/stack — Stack navigator for React Navigation package

• d3 — Data handling and transformation library

• expo-sensors — For gyrometer readings

• geodesy — Handles geodesic information

• react — Base React framework

• react-native — Allows native development for Android and iOS

• react-native-compass-heading — Handles compass readings

• react-native-plotly — Plot library

• react-native-svg-pan-zoom — SVG rendering with gesture support

• react-native-wifi-reborn — Handles Wi-Fi information and scanning

Appendix C

Parameter Tuning Graphs

(a) A: 64 to -64dBm | n: 2 to 8
Wide scan over the ground floor.

(b) A: 37 to 17dBm | n: 7 to 9
Narrow scan over the ground floor.

(c) A: 64 to -64dBm | n: 2 to 8
Wide scan over floor 1.

(d) A: 37 to 17dBm | n: 7 to 9
Narrow scan over floor 1.

(e) A: 64 to -64dBm | n: 2 to 8
Wide scan over floor 2.

(f) A: 28 to 8dBm | n: 7 to 9
Narrow scan over floor 2.

69

APPENDIX C. PARAMETER TUNING GRAPHS 70

(g) A: 64 to -64dBm | n: 2 to 8
Wide scan over floor 3.

(h) A: 19 to -1dBm | n: 5.3 to 7.3
Narrow scan over floor 3.

(i) A: 64 to -64dBm | n: 2 to 8
Wide scan over floor 4.

(j) A: 37 to 17dBm | n: 6.5 to 8.5
Narrow scan over floor 4.

Figure C.1: Graphs of average errors (n) in parameter tuning process. A lower result is better.

Appendix D

Parameter Tuning Tables

Floor
Point Ground 1 2 3 4 Average

1 3.24 6.84 3.94 3.89 14.16 6.41
2 8.89 6.95 3.54 11.72 4.14 7.05
3 5.97 7.87 3.14 11.26 15.64 8.78
4 4.58 6.54 10.57 7.89 4.49 6.81
5 11.99 9.88 2.75 2.69 6.20 6.70
6 12.99 5.10 4.30 7.51 6.35 7.25
7 10.16 9.50 10.11 7.66 — 9.36
8 17.26 4.90 9.09 13.87 — 11.28
9 6.08 10.75 7.56 3.11 — 6.88

10 9.02 4.13 6.11 — — 6.42
Average 9.02 7.25 6.11 7.73 8.50 7.72

Std. Dev. 4.06 2.13 2.86 3.77 4.62 1.52

Figure D.1: The error (m) at each point on each floor with the base parameters.
A: -50dBm | n: 3

Floor
Point Ground 1 2 3 4 Average

1 2.08 6.58 2.35 2.27 8.31 4.32
2 7.08 2.73 2.50 7.39 5.44 5.03
3 4.99 5.20 1.80 6.85 11.64 6.10
4 3.05 3.48 8.03 5.98 3.09 4.73
5 5.18 7.80 3.39 3.93 3.74 4.81
6 9.37 1.29 3.77 4.68 5.12 4.85
7 6.00 5.24 15.20 1.48 — 6.98
8 22.96 2.28 9.40 10.89 — 11.38
9 4.10 6.35 9.33 2.01 — 5.45

10 5.51 7.28 3.75 — — 5.51
Average 7.03 4.82 5.95 5.05 6.22 5.91

Std. Dev. 5.65 2.14 4.14 2.88 2.93 1.96

Figure D.2: The error (m) at each point on each floor with the new parameters.
A: 25.7dBm | n: 7.71

71

Appendix E

Listings

Listing E.1: GraphQL Schema

type Query {
node(graph: String!, id: Int!): Node
nodes(graph: String !): [Node!]
search_nodes(graph: String!, search: String !): [Node!]
walls(graph: String !): [Node!]

edges(graph: String !): [Edge!]

poi(graph: String!, id: Int!): PoI
pois(graph: String !): [PoI!]

search_pois(search: String !): [PoI!]
search_pois_in_graph(graph: String!, search: String !): [PoI!]

polygon(graph: String!, id: Int!): Polygon
polygons(graph: String !): [Polygon !]
search_polygons(graph: String!, search: String !): [Polygon !]

find_route(graph: String!, start_id: Int!, end_id: Int!): Path!
}

type Mutation {
add_graph(graph: String!, polygons: String!, points: String!, linestring:

String !): Boolean!
flush_all: Boolean!

}

type Node {
id: Int!
graph: String!
level: Float!
lat: Float!
lon: Float!
polygon: Polygon
tags: Tags
neighbours: [Node!]

}

type Polygon {
id: Int!
graph: String!
level: Float!
sw: [Float !]!
ne: [Float !]!

72

APPENDIX E. LISTINGS 73

vertices: [[Float !]!]!
tags: Tags

}

type PoI {
id: Int!
graph: String!
level: Float!
lat: Float!
lon: Float!
tags: Tags
nearest_path_node: Node

}

type Path {
ids: [Int!]!
nodes: [Node !]!
instructions: [String !]!
levels: [Float !]!

}

type Edge {
edge: [Int!]!
graph: String!
adjacent_nodes: [Node !]!

}

scalar Tags

Appendix F

Evaluation

F.1 Consent Form

Consent to take part in Indoor Mapping Project Add your initials next to the statement if you
agree

Initial this box to indicate
consent

I understand that my name will not be linked with the re-
search materials, and I will not be identified or identifiable
in the report or reports that result from the research. I un-
derstand that my responses will be kept strictly confidential
I confirm that I have read and understand the information
sheet explaining the above research project and I have had
the opportunity to ask questions about the project
I understand that my participation is voluntary and that I
am free to withdraw at any time without giving any reason
and without there being any negative consequences. In ad-
dition, should I not wish to answer any particular question
or questions, I am free to decline. Until the end of day of
the experiment and before data can be compiled completely
the data will be removed from the pool and no further data
will be collected.
I understand that members of the research team may have
access to my anonymised responses.
I understand that my name will not be linked with the re-
search materials, and I will not be identified or identifiable
in the report or reports that result from the research. I un-
derstand that my responses will be kept strictly confidential
I understand that the data collected from me may be stored
and used in relevant future research in an anonymised form
I understand that relevant sections of the data collected dur-
ing the study, may be looked at by individuals from the Uni-
versity of Leeds or from regulatory authorities where it is
relevant to my taking part in this research.
I agree to take part in the above research project and will
inform the lead researcher should my contact details change.

74

APPENDIX F. EVALUATION 75

Name of participant’s signa-
ture
Date
Name of lead researcher [or
person taking consent]
Signature
Date*

*To be signed and dated in the presence of the participant.

F.2 Information Sheet

Title of the Project: Indoor Mapping You are being invited to take part in a research
project. Before you decide it is important for you to understand why the research is being done
and what it will involve. Please take time to read the following information carefully and
discuss it with others if you wish. Ask us if there is anything that is not clear or if you would
like more information. Take time to decide whether you wish to take part.

Purpose of the project: This project intends to create a functioning method of mapping
and navigation for indoor areas and compare it against traditional means such as signposting in
the aim of improving navigation methods for areas where GPS would be unsuitable.

Do I have to take part? It is up to you to decide whether to take part. If you do decide to
take part, you will be given this information sheet to keep (and be asked to sign a consent
form) and you can still withdraw at any time without it affecting any benefits that you are
entitled to in any way. You do not have to give a reason.

What do I have to do? You will need to arrive at the William Bragg building for your
assigned/chosen time slot and navigate between several indoor locations followed by a short
survey. In all the experiment should take no longer than 1 hour (though very likely less) and at
the end you will receive a slice of pizza. Travel expenses are not available for participation and
should require no changes to lifestyle before or after the experiment is completed. The survey
should last no longer than 5 minutes, though it is not timed, and will not require any personal
information. The survey will be a mix of 1–5 scale questions, pick from a list of options
questions, with some open questions which you are free to write as you like.

It is expected that on the day you will not ask directions from anyone in the building and will
simply use the signs posted around the building to find the given locations. Then to finally go
to the final room for the survey. It is asked that you be as honest as possible during the survey
for the best results.

What are the possible disadvantages and risks of taking part? There are no known
disadvantages or risks further than those that would be expected when travelling within a
building.

APPENDIX F. EVALUATION 76

What are the possible benefits of taking part? For starters, you will gain a slice of
pizza given upon completion or end of the experiment as well as the team’s gratitude.

Dissemination and storage of research data Any data gathered from this experiment
will be stored securely with a password as well as data from the experiment not requiring any
identifying data (other than on consent forms) with this data to only be used for the
completion of these masters level module.

What will happen to my personal information? Your personal information on these
consent forms will be held for no longer then is required by the university upon completion of
the experiment and once this time elapses all personal information will be destroyed. However,
the data gathered during the experiment will not include identifiable information and at most
might have a number identifier given which will in no way be identifiable to you. The data will
be compiled with other participants to form conclusions on the suitability of the available
signage.

All the contact information that we collect about you during the course of the research will be
kept strictly confidential and will be stored separately from the research data. We will take
steps wherever possible to anonymise the research data so that you will not be identified in any
reports or publications.

What type of information will be sought from me and why is the collection of this
information relevant for achieving the research project’s objectives? For the purpose
of this experiment, we will take several measurements to define how easy it is for general travel
between two points within the building. This information will later be used to contrast against
an app of our creation in determining the usefulness of the signs and evaluate our performance.

Who is organising/ funding the research? This research is taken as a part of general
studies in the university through the module COMP5530M Group Project and has gained no
further/external funding.

Those in the group are:

• Supervisor: Evangelos Pournaras

• Kane Easby

• Usama Usman

• Matthew Pawson

• Thomas Carroll

• Tomas Martinek

• Samuel Palabiyik

• Kevan Jordan

APPENDIX F. EVALUATION 77

For further information or to ask any questions please contact Samuel (Sam) Palabiyik at the
email sc18stp@leeds.ac.uk

Or Supervisor Evangelos Pournaras at: E.Pournaras@leeds.ac.uk

You will be given a copy of the information sheet and, if appropriate, a signed consent form to
keep.

Finally, from all of us in this project we would like to thank you for considering participation
into this project and hope you will join us and get the easiest slice of pizza of your life

F.3 Invigilator Instructions

Rules

• Do not give the participants any further directions to the next room

• Do not allow them to stop for extended periods to talk or ask directions, start with a
request, then if they ask directions end the experiment immediately, if it was simply a
chat warn them of the possibility of early termination.

• Be sure to get valid consent before starting

• Have your stopwatch/notepad ready before giving the location

• Do not give out or allow them to see this document

Instructions

1. Take the valid consent form and check all is filled in.

2. Sign and date where it calls for the invigilator in the consent form.

3. Check they have fully understood all instructions.

4. Give them the first room from the list

5. As soon as you give the room start the timer

6. Time and record the metrics, if the participant takes more than five minutes, mark as
DNF and move to the next room

7. Follow them until they find the location given repeating step 6 as necessary

8. Repeat for All other rooms (noting the rooms in the Room Order which you are to lead
them to)

9. Once the final room from the “Room Order” is found take them somewhere quiet for the
survey and incentive.

APPENDIX F. EVALUATION 78

Room Order

1. Front entrance with revolving doors (to be lead there by the invigilator as close to the
door as is reasonable)

2. 2.15 — 24h lab

3. 3.35 — Raymond’s Kwan Office

4. 1.48 — Kitchen / Print

5. GR.26 — Gender neutral bathroom (behind café)

6. Incentive room — Depends on availability

F.4 Participant Instructions — Baseline

We would like to thank you for your participation.

For the purpose of this document: Participant refers to you or the person volunteering for the
experiment Invigilator refers to the person in the group who will join you through the
experiment and give you the destination.

Rules

• Once the experiment begins, we ask you not to speak to anyone other than the
invigilator, including lecturers, other students, janitorial staff, etc.

• Please try to follow the signs/signposts around the building as best you can to find the
locations.

• No help in finding locations will be provided by the invigilator*.

• Please try to get to the destination as efficiently and quickly as possible while following
the previous rules.

*If you need reminding of the destination or room you are travelling to, feel free to ask, and it
will be given to you.

Instructions

1. The experiment will begin when you are told the location of the first room which we ask
you to navigate to.

2. Once you are told the destination please walk to the destination. Hint: It is likely you
will not know where the room is. Please try to find signs or signposts around the building
to get information.

3. While travelling feel free to make any comments about the experiment, navigation or
signs in the building known to the invigilator.

4. Move to the room you have been told, then come to a full stop in front of the door.

APPENDIX F. EVALUATION 79

5. You will then be told the next location to travel to a new location, so please repeat what
you did in steps 2–4.

6. Once the invigilator says the final room is found please follow them to the final room

7. You will now be asked to fill in a simple survey about the experience.

8. On completion, please take the reward from an invigilator.

F.5 Participant instructions — App

We would like to thank you for your participation.

For the purpose of this document

• Participant refers to you or the person volunteering for the experiment.

• Invigilator refers to the person in the group who will join you through the experiment
and give you the destination.

Rules

• Once the experiment begins, we ask you not to speak to anyone other than the
invigilator; including lecturers, other students, Janitorial staff, etc. *

• Please try to follow the app around the building as best you can to find the locations as
best as you can. Though you can still use signs if you need to.

• No help in finding locations will be provided by the invigilator.

• Please try to get to the destination as efficiently and quickly as possible while following
the previous rules.

• Before you begin please read the App Instructions given.

*If you need reminding of the destination or room you are travelling to, feel free to ask, and it
will be given to you.

Instructions

1. The experiment will begin when you are told the location of the first room which we ask
you to navigate to.

2. Once you are told the destination please walk to the destination. Hint: It is likely you
will not know where the room is. Please try to use the app where possible.

3. While travelling feel free to make any comments about the experiment, navigation or
signs in the building known to the invigilator.

4. Move to the room you have been told, then come to a full stop in front of the door.

APPENDIX F. EVALUATION 80

5. You will then be told the next location to travel to a new location, so please repeat what
you did in steps 2–4.

6. Once the invigilator says the final room is found please follow them to the final room

7. You will now be asked to fill in a simple survey about the experience.

8. On completion, please take the reward from an invigilator.

F.6 Survey Questions

Demographic questions

• Are you familiar with the Sir William Henry Bragg Building? — Yes/No

• If ‘Yes’, how familiar are you with the building? — Likert scale

• Are you part of the School of Computing? — Yes/No

• Are you part of the University of Leeds? — Yes/No

• How would you rate the below methods for finding a room in a building?

– Follow signs — Likert scale

– Ask someone — Likert scale

– Blindly searching — Likert scale

• What do you usually remember rooms by?

– Location — Likert scale

– Room number (e.g. 2.14) — Likert scale

– Room name (official name, e.g. ‘Comp office’) — Likert scale

– Room use (unofficial name, e.g. ‘Steve’s office’) — Likert scale

• What floor do you usually call the floor with the main entrance? — Ground Floor, First
Floor, Other

• What kind of phone do you own? Android, iOS, other

• Is there anything that makes traversal of the building difficult for you? — Long answer

• Is there anything that could help you with navigation in the building? — Long answer

• How well did you understand the instructions given at the start of the experiment? —
Likert scale

Baseline Experiment

• If an alternate method of navigation was available, would you use it? — Yes/No

APPENDIX F. EVALUATION 81

• How easy to use are the signs around the building? — Likert scale

• How accurate are the signs around the building? — Likert scale

• How well did you know where you were going throughout the experiment? — Likert scale

• How would you improve the signage? — Long answer

App Experiment

• Would you use the app if it was publicly available? — Yes / No

• How easy was the app to use? — Likert scale

• How aesthetically pleasing was the app? — Likert scale

• How easy was the path given by the app to follow? — Likert scale

• How accurately did the app predict your location? — Likert scale

• How well did you know where you were going throughout the experiment? — Likert scale

• How would you improve the app? — Long answer

The final survey is as follows: https://forms.gle/fBCQBnDYbWsmxUaT7

https://forms.gle/fBCQBnDYbWsmxUaT7

	Introduction
	Problem
	Project Aim
	Objectives
	Deliverables
	Ethics

	Planning
	Methodology
	Issues with Project Management

	Plan
	Version Control
	Branch Strategy
	Continuous Integration

	Mapping
	Initial Ideas
	Existing Solutions
	OpenStreetMaps

	Making the Map
	Levels and Stairs
	Tags

	File Formats
	Further Work

	Localisation
	Existing Solutions
	Possible Solutions
	Proposed Solution
	Implementation
	Recording Router Information
	Trilateration

	Tuning the Parameters
	Data Collection
	Search Method
	Implementation
	Parallel Processing
	Outcomes

	Future Work

	Server
	Architecture
	Parser
	Database
	API
	Path-finding

	Build & Deploy
	Further Work

	App
	Implementation
	Design
	Technical
	UI / UX

	Design Iterations
	Further Work

	Evaluation
	Experiment
	Sampling
	Metrics
	Search Locations
	Survey
	Baseline Experiment
	App Experiment

	Results
	Baseline Survey
	App Survey
	Comparison of Results
	Survey Comparison

	Revised Procedures

	Conclusion
	Mapping
	Localisation
	Implementation
	Teamwork

	References
	Appendices
	Source Code
	Project Repository
	Map Repository
	Video demo
	Survey
	Consent Forms
	Experiment Data & Survey Results

	List of Libraries / Software Used
	Server
	Software
	Python libraries

	Client

	Parameter Tuning Graphs
	Parameter Tuning Tables
	Listings
	Evaluation
	Consent Form
	Information Sheet
	Invigilator Instructions
	Participant Instructions — Baseline
	Participant instructions — App
	Survey Questions

