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Abstract 

Eelgrass (Zostera marina) is a critical component of coastal ecosystems, providing essential 

services such as habitat for marine species, nutrient cycling, and shoreline stabilization. 

Understanding the spatial and temporal distribution of eelgrass is vital for conservation and 

management efforts, particularly in the face of environmental changes. This study employs 

spatiotemporal modeling techniques to predict the distribution of eelgrass habitats in Casco Bay, 

Maine.   

Using MaxEnt, a species distribution modeling tool, I incorporate variables such as 

temperature, salinity, dissolved oxygen, total nitrogen, turbidity, and bathymetry to generate a 

presence-only predictive model of the region. Spatial statistics, including Local Moran's I and 

Emerging Hotspot Analysis (EHSA), are utilized to identify and analyze patterns of eelgrass 

presence and distribution across different temporal periods. 

This research contributes to the understanding of eelgrass ecology and provides a 

framework for predicting presence under varying environmental conditions. The findings can 

inform conservation strategies and management practices aimed at preserving and restoring eelgrass 

habitats in coastal Maine, ensuring their resilience in the face of climate change and anthropogenic 

pressures. 
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Chapter 1: Introduction 

This thesis investigates the distribution of seagrass (Zostera marina) in Casco Bay, Maine. 

Seagrass meadows play a crucial role in the ecosystem by serving as a habitat for juvenile fish species, 

preventing shoreline erosion from root anchorage and dampening wave energy, and perhaps most 

importantly, serve as one of the world’s major carbon sinks. Seagrass (also known as eelgrass) stores 

organic carbon in its peat and biomass, preventing CO2 from entering the atmosphere.  

 Seagrass has been relatively under-studied in the pantheon of scientific inquiries, but it has 

also had its share of fans. Erasmus Darwin, the father of Charles, dedicated a stanza of a poem to 

the seagrass:  

 ““Stretch’d on her mossy couch, in trackless deeps,  

Queen of the coral groves, Zostera sleeps;  

The silvery sea-weed matted round her bed,  

And distant surges murmuring o’er her head.” 

 – Botanic Garden (Part V), Erasmus Darwin, 1803 

The impact of urbanization was recognized to be a significant threat to seagrass by the turn 

of the 21st century.  In the seminal textbook Seagrasses: Biology, Ecology and Conservation by 

Larkum, Orth and Duarte in 2006, the authors echo concerns raised by earlier researchers such as 

C. den Hartog regarding the pivotal role seagrass appeared to play in nearshore ecosystem functions 

and what would happen with their continued decline (Seagrasses of the World, 1970).  
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Seagrasses are also threatened by agricultural pollution, invasive species, and rising sea 

temperatures. The focus of this thesis is on Casco Bay because it is the heart of industrial activity in 

Maine and comprises several historically important cities, including Portland, Freeport, and 

Brunswick.  

 

Research Questions 

In this thesis, the following questions are posed:  

● Using geospatial analysis, what is the extent and distribution of active seagrass beds 

in Casco Bay, Maine?  

● What does the restoration potential of these seagrass meadows represent for the 

state?  
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Chapter 2: Literature Review  

Through this literature review, I will first explore the various facets of seagrass ecology to 

establish a foundational understanding of this critical marine ecosystem. The initial section will 

delve into the biology, distribution, and ecological roles of seagrasses, highlighting their significance 

in coastal environments. By examining the life cycle, growth patterns, and interactions with other 

marine species, this section aims to provide a comprehensive overview of seagrass ecology.  

The subsequent section focuses on the importance of seagrass for future climate resilience 

in Maine. I will review recent studies that emphasize the role of seagrasses in carbon sequestration, 

shoreline protection, and as a buffer against the impacts of climate change. This part of the chapter 

will synthesize research findings that underline the potential of seagrass meadows to mitigate 

climate-related challenges and support coastal resilience in Maine.  

Finally, the chapter examines studies utilizing ArcGIS and predictive spatial ecological 

modeling, specifically the MaxEnt model, to identify likely locations for eelgrass beds that warrant 

policymaker’s attention and protection. By analyzing methodologies and outcomes from various 

research efforts, potential habitats can be mapped, and conservation strategies identified. The aim is 

to illustrate the advancements in technology that aid in the sustainable management of eelgrass 

ecosystems, which are a crucial blue carbon resource.  

 
Seagrass Ecology 

Broadly, seagrasses are one of the three primary carbon sinks in the ocean, alongside 

mangrove reefs and tidal marshes. They were first classified under this name by the scientist 



Wu  

   
 

4 

Ascherson (1871), although they had long been known to coastal farmers, fishers, and inhabitants 

as a source of insulation, fertilizer, roofing material, and of course, as weaving material. They are the 

only flowering plants found in the marine environment and are typically located in coastal or 

nearshore environments and form dense meadows or beds that serve as important marine habitats. 

To the visible eye, blades of seagrass resemble their terrestrial counterparts but retain greater 

complexity – four defining characteristics are that they are purely marine organisms, require a soft 

substrate for rooting, immersion in salt water, and need sufficient irradiance for growth 

(Zimmerman, 2006).  

 
 

Figure 1: Seagrass schematic (Friday Harbor Labs, University of Washington, n.d.) 

Based on the diagram above (Figure 1), a cursory overview of seagrass morphology will 

prove handy in understanding why various shifts in ocean mechanics, solar irradiance, and invasive 

species can pose a problem – as well as explain how this species has thrived over the millennia.  
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Seagrasses have rhizomes that extend beneath the substrate and are uniformly thin. The 

rhizomes contain large spaces, or lacunae, that influence air pressure during photosynthesis 

(Hemminga and Duarte, 2000). Notably, the rhizome also provides structural support for the plant 

and stores nutrients. Extending from underneath the rhizome are narrow roots. The expansion of 

seagrass meadows is achieved through self–propagation via meristematic cells within each node, 

allowing it to grow horizontally – sections between nodes are thus called internodes (Smith, 2008). 

The most familiar parts of the plant are likely the stem and distal blade, which are numerous and 

rise above the substrate, and occasionally, the surface of the water (Figure 2). Water vapor 

transpiration and gaseous transfer occurs through these green blades, as does photosynthesis (Kuo 

and Hartog, 2006). One can imagine seagrass as a plant that grows horizontally, forming beds or 

meadows, and upwards.  

Asexual reproduction, as described in the horizontal clonal growth above, is not the only 

way seagrass can propagate. They also are capable of reproduction akin to their terrestrial cousins, 

with male seagrass flowers releasing pollen from their stamens, which are carried along by water 

currents until they encounter a female pistil. The fertilized seagrass form seeds that can be buoyed 

for long distances before germinating on sandy bottom (Reynolds, 2018). If small marine animals, 

such as crustaceans, inadvertently track seagrass pollen or seed along, this can assist in their 

dispersion and contribute to greater genetic variation.  
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Figure 2: Zostera marina morphology. (Source: Howarth, et al. 2021) 

There are over 70 species of seagrasses and three primary genera, but in this thesis Zostera 

marina will be examined. This common species of seagrass is distributed along shallow coastal 

waters along both the Pacific and Atlantic, from Baja California through Alaska and the entire 

Eastern Seaboard of the United States, surrounding Japan and East Asia, as well as around Western 

and Northern Europe (Figures 3 and 4).  
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Figure 3: Spatial distribution of Zostera marina. Locations in yellow indicate presence.  
(Source: Gundersen, et al. 2021). 

 

Figure 4: Seagrass spatial distribution showing the number of species at each site.  
(Source: Short, et al. 2007) 
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Ecosystem Services 

Seagrasses can absorb CO2 at rates up to 35 times faster than rainforests (World Wildlife 

Fund, n.d.), and draw carbon dioxide from water to store in soil or mud, where the gas can remain 

indefinitely if undisturbed. To put their importance in other words, seagrass covers merely 0.1% of 

the ocean but provides 18% of its carbon storage, per a 2020 United Nations Environmental 

Programme press release. The CO2 sequestration of seagrass globally has been estimated to exceed 

80 million metric tons per year (Howard, et al. 2017). The paper noted an acre of seagrass could 

potentially store 740 pounds of carbon per year, an amount equal to a vehicle traveling almost 

3,900 miles (about 6,300 km).  

Seagrass ecosystems go further than carbon sequestration when it comes to their overall 

importance – they also play a crucial role in preventing shoreline erosion during inclement weather 

and serve as a valuable habitat for a variety of marine species, such as juvenile fish and bivalves. 

They are also capable of providing a source of refuge for larger animals ranging from octopi to 

manatees, which may even eat the leaves directly for food (Reynolds, 2018). These meadows are 

also important for slowing water flow to capture silty particles and anchoring sediment. In fact, 

they can serve as an oceanic nutrient pump by releasing nutrients absorbed from their roots back 

into the water (Reynolds, 2018).  

The importance of seagrass to ecosystem services has been recognized around the world. 

The International Union for the Conservation of Nature (IUCN) has a dedicated Seagrass 

Specialist Group that consists of a global membership of biologists and the Smithsonian Institution 
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hosts a similar monitoring network called SeagrassNet, which has been operating continuously 

since 2001. From SeagrassNet, participant countries and bioregions include Australia, Canada, 

Colombia, Denmark, Malaysia, Mexico, Micronesia, the United Kingdom, the United States, 

Tanzania, and Vietnam (SeagrassNet, n.d.). This network mirrors the coverage and quantities of 

seagrass species around the world (Figure 4).  

Major news outlets, including the Guardian (Brown, 2023) and New York Times 

(Schlossberg, 2023), have also expounded on the plant's importance regarding the climate crisis.  

“Anchored on the shorelines of every continent except Antarctica, these plants (and they are plants, 

not algae, that sprout, flower, fruit and go to seed) are one of the most powerful but unheralded 

climate solutions that already exist on the planet.”  

 

Figure 5: Eelgrass meadow in Northern Europe. (Source: DHI Water & Environment, 2019) 
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Revisiting their morphology, much of what they offer to the marine world manifests in the 

form of their spatial arrangement, which expands both vertically as well as horizontally to form 

intricate beds (Phillips and Milchakova, 2003). This functionally provides four habitats to inhabit 

– on the seagrass blades itself, among the seagrass meadow (Figure 5), on the surface of the peat 

substrate, and burrowed within (Stauffer, 1973). If this network is undisturbed, they can provide 

food and shelter and nursery ground for a variety of species.  

It can be argued that coastal resilience depends on naturally occurring solutions like 

seagrass, whose importance ranges from being crucial carbon sinks to providing valuable 

ecosystems solutions. In fact, seagrass protection can meaningfully contribute to 16 of the 17 

United Nation Sustainable Development Goals (Unsworth, et al. 2022) through Sustainable Cities, 

Responsible Consumption, and Life Below Water, to name a few. To take a different tack on why 

seagrass conservation is critical, because of their role as a carbon sink, their degradation and 

eventual destruction by anthropogenic activities means more than collective guilt to shoulder –they 

will release carbon into the atmosphere and worsen the ongoing climate crisis.  

There are various steps that can be taken to address ongoing seagrass degradation. 

Environmental restoration tends to remain on the local scale, as there are no laws that govern the 

management of the plant on a broader scope.  
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GIS Applications 

Habitat suitability models in ArcGIS Pro have demonstrated excellent applications for 

seagrass in sites around the world. A baseline reference of species occurrence data and input 

variables that represent factors that contribute to or inhibit productivity are needed (Bittner, et al. 

2020). However, the software is capable of handling the rest, given appropriate tasks and 

commands, such as running a linear regression model on raster data. According to a meta-analysis 

of seagrass habitat modeling, the most common variables utilized as inputs were sea surface 

temperature, bathymetry, light availability, and salinity (Bertelli, et al. 2022). Substrate type and 

wave energy were also utilized in some studies.  

Sea temperature and salinity are crucial to Zostera marina’s survival. As seagrass in Maine is 

found in coastal estuarine and marine habitats, the fluctuation of freshwater from rivers can affect 

their growth and development. According to a Danish study, low salinity – defined as between 2.5 

and 5% – negatively affected the ability of eelgrass in a controlled environment to grow elongated 

shoots, photosynthesize and spawn (Nejrup and Pedersen, 2006). Salinity levels between 10% and 

25% were deemed optimal. Sea water temperature can also be too hot or cold, although the former 

was more harmful and led to eelgrass die-off by a factor of twelve and decreased the rate of 

photosynthesis by 50% (Nejrup and Pedersen, 2006). The researchers determined that 10 to 20 

degrees Celsius, or 50 to 68 degrees Fahrenheit, was optimal for growth and survival.  

Other factors are not so cut and dry. Light attenuation, which is crucial to eelgrass survival, 

can be affected by the presence of sediment in the water column or macroalgaes (Simpson and 
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Dahl, 2017). As with any other plant, if light cannot sufficiently reach an eelgrass meadow or bed, it 

will struggle to survive. In fact, eelgrasses require more light due to the respiratory demand of their 

root structures (Goodman, et al. 1995). Generally speaking, most eelgrass meadows and submerged 

aquatic vegetation (SAV) can be found where light attenuation is between 10 to 30% (Kemp, et al. 

2004). Other factors may also have varying impacts. For example, nutrient loading from 

agricultural or waste runoff can help seagrass meadows grow to a certain extent, but the cloudiness 

of the water and contribution to algal growth may then cause the meadows to struggle (van den 

Heuvel, 2019). This is one theory that is hypothesized for why eelgrass meadows appeared to 

abruptly blossom in Casco Bay in 2018. The third function was helpful in yielding interaction 

variables that indicated how the different covariates (e.g., salinity and turbidity, in this study) may 

have influenced each other.  
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Chapter 3: Data, Methods, and Context  

In this chapter, I describe the data and methods used in the thesis and the study location 

where they were applied.  

 
Data Table 

Variable Name Source Year Format 

Casco Bay Eelgrass 
Coverage 

State of Maine 
Geolibrary 

2013, 2018, 2022 Polygon 

Temperature Friends of Casco Bay  2022 Attribute Table 
(Points) 

Salinity Friends of Casco Bay 2022 Attribute Table 
(Points) 

Dissolved Oxygen 
(O2) 

Friends of Casco Bay 2022 Attribute Table 
(Points) 

Total Nitrogen (TN) Friends of Casco Bay 2022 Attribute Table 
(Points) 

Turbidity Friends of Casco Bay 2022 Attribute Table 
(Points) 

Bathymetric 
Contours 

State of Maine (C. 
Halsted) 

2019 Lines 

Gulf of Maine / 
Georges Bank Area 

National Oceanic and 
Atmospheric 
Administration 

2015 Polygon 

 
Table 1: Data Sources and Description 

 
This work built off a Maine DEP report which analyzed the changes in seagrass coverage 

between 2010, 2013 and 2018 (Barker, 2018). It also provides further context to a 2023 
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Normandeau Associates report prepared for the State of Maine, which continued Barker’s study 

and analyzed the 2022 seagrass cover using an aerial photography and field survey approach — 

incorporating geospatial predictive modeling can help subsequent seagrass studies determine the 

presence or absence of such meadows in Casco Bay.  

Bathymetry data (BATHYM100) came from the State of Maine in the form of coastal 

bathymetry lines at a scale of 1:100,000 in 10-meter intervals. These contour lines were converted 

to raster data through ArcGIS Pro’s Topo to Raster geoprocessing tool.  

 
 
Methods  

This analysis combined a quantitative and GIS approach with a literature review on eelgrass 

ecology and morphology. Geospatial methods were employed to analyze the current “state of 

seagrass” in Casco Bay. Geographic Information Science (GIS) refers to digital mapping that allows 

data to be associated with places and is widely used for natural resource management purposes 

(Audubon International, 2019). ESRI’s ArcGIS Pro software was used to visualize spatial data and 

for spatial statistics as well as for species modeling using the MaxEnt model.  

Local Moran’s I and emerging hot spot analysis were utilized to understand the spatial 

patterns and clusters of eelgrass presence and health. Local Moran's I helps to identify areas of 

significant spatial autocorrelation, revealing clusters of high or low eelgrass density that may 

indicate underlying environmental or anthropogenic factors. In ArcGIS Pro, high-high clusters are 

indicated in light red, high-low outliers are in dark red, low-high outliers are in dark blue, and low-
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low clusters are in light blue. Emerging hot spot analysis further highlights regions where eelgrass 

populations are either increasing or declining over time, providing insights into temporal trends 

and potential areas of concern or success in conservation efforts.  

Within ArcGIS Pro, there is also a tool called Maximum Entropy (MaxEnt) that is useful 

for spatial habitat suitability modeling. The original author of MaxEnt is Stephen Phillips, a 

researcher at the American Museum of Natural History and Princeton University, who wrote two 

seminal papers on applying this machine learning approach to species distribution modeling 

(Phillips, 2006 and 2008). The model estimates the relationships between contributing 

environmental variables, or covariates, and the likelihood of presence, resulting in a continuous 

map that represents the probability of said species occurring in a specific location. In ArcGIS, the 

MaxEnt feature defaults to a map with 0-25%, 25-50%, 50-75% and 75-100% in terms of predictive 

modeling output.  

MaxEnt creates a probability distribution for the species or variable of interest across the 

study area by finding the distribution that maximizes entropy, subject to the constraints created by 

the input data (Phillips, 2006). The premise of the model is fairly simple and requires just presence-

only data – where confirmed observations of the species in question has been spatially recorded – 

and environmental variables, or covariates, which can influence the distribution of said species. 

Some common covariates include temperature, precipitation, soil type, and elevation. The model's 

output is logistic and ranges from 0 to 1, with 0 being a low probability of presence and 1 being 

very likely.  
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Figure 6: Example of MaxEnt model and required inputs. (Source: ESRI, n.d.) 

I primarily obtained eelgrass coverage data from MaineDEP for the years 2013, 2018, and 

2022. I accessed this data from a portal hosted by ESRI and maintained by the Maine Department 

of Environmental Protection. By using methods such as emerging hotspot analyses and spatial 

clustering, I identified patterns in seagrass meadow growth or decline. This data was used both for 

the exploratory spatial data analysis as well as the MaxEnt model.  

For the MaxEnt model, I analyzed six covariates – temperature, salinity, dissolved oxygen, 

bathymetry, turbidity and total nitrogen (Figure 6). Empirical Bayesian Kriging (EBK) 

interpolation was used to generate rasters because it is suitable for larger areas and accounts for 

errors in estimating semivariograms. EBK is a geostatistical interpolation technique that is 

particularly useful for creating smooth and reliable spatial predictions from individual data points 

— in my case, the Friends of Casco Bay monitoring stations. When used for MaxEnt covariates, 
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this approach helps to generate continuous surfaces of environmental variables that can improve 

the accuracy and reliability of species distribution models. All covariate data except bathymetry was 

from the Friends of Casco Bay (FOCB), a local Maine nonprofit focusing on protecting and 

understanding the Casco Bay watershed. FOCB has a series of monitoring stations placed around 

the Portland and greater Casco Bay region, which collect this data on a continuous basis. For the 

sake of consistency, I chose to use data points from the first week of June 2022 for all FOCB 

variables.  

These MaxEnt outcomes may be included in existing integrated frameworks on how best to 

understand seagrass in Maine from a geospatial perspective, depending on their accuracy. For 

instance, they can be included in conservation planning techniques on identifying priority areas for 

seagrass protection, ecological corridors, and areas of high conservation value.  

 

Study Context of Maine 

Casco Bay is located in southern coastal Maine and is a major commercial, recreational and 

environmental hub for the state. A quarter of the state’s population resides within the boundaries 

of the greater Casco Bay watershed (Casco Bay Estuary Partnership, n.d.) and nearby institutes of 

higher education include the University of Southern Maine and Bowdoin College. 

The Gulf of Maine is warming more quickly than almost any other body of water in the 

global ocean. According to the Gulf of Maine Research Institute, the Gulf experienced record-

breaking sea surface temperatures in 2021 and 2022. While 2023 did not set a new high, it was still 
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two degrees Fahrenheit above normal. Shifts in two major ocean currents appear to be behind these 

changes. As the Gulf Stream current strengthens and draws additional warm water into the Gulf of 

Maine, the weakening Labrador Current flowing from the Arctic does not balance out the former 

as it did before (GMRI, 2023). This contributes to habitat suitability issues for sensitive species like 

Zostera marina, which may not be adapted to rising temperatures. Compounding the issue may be 

how the Gulf of Maine contains unique topography described by GMRI researchers as “a 

bathtub…with a deep center and shallow boundaries”, making these temperature changes starker 

than they otherwise may have been as hotter waters cannot easily escape. Seagrasses are not the only 

species affected – cod stocks have also dropped precipitously in the region due to climate change 

(Pershing, 2015).  

More than 50% of seagrass beds in Casco Bay have been lost in the last decade alone, 

making their decline staggering (Friends of Casco Bay, 2023). Warming waters, invasive species, 

agricultural runoff, and algal blooms have all contributed to these losses. Because seagrass meadows 

can take more than five years to propagate and have relatively low survival rates from existing 

restoration efforts (The Guardian, 2021), it is imperative to protect these existing ecosystems. 

According to the Middlebury Institute for International Studies, the seafood industry in Maine was 

valued at $3.2 billion in 2023. A decline in seagrass could threaten not just environmental stability, 

but economic growth, due to the numerous fisheries benefits the plant provides. To this end, they 

are particularly valuable to coastal communities as fishing grounds, ranging from intertidal to deep 

enough for watercraft (Nordlund, et al. 2017).  
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A recent report from the U.S. Environmental Protection Agency, Region 1 analyzed blue 

carbon reservoirs from New York to northern New England, representing a collected effort to 

understand the carbon sequestration potential and state of vegetated aquatic habitats in the region. 

Maine had the highest concentration of seagrass at approximately 21,700 acres, highest among the 

five states with Atlantic coastlines (Colarusso, et al. 2023).  

Zostera marina is capable of sequestering carbon primarily in two ways: one, by uptake of 

carbon dioxide into plant tissue through photosynthesis, and two, the decaying of plant tissue into 

peatlands beneath the seagrass beds, where it can remain indefinitely. Per the U.S. EPA, most 

eelgrass carbon sequestration occurs via the second pathway (Colarusso, et al. 2023). 

Much of the information gleaned from the report is available on the Northeast Ocean Data 

Portal, a publicly accessible, expert-reviewed geographic dataset on ocean ecosystems and the blue 

economy for coastal management and education purposes. This valuable resource was leveraged 

heavily when conducting predictive spatial distribution modeling in ArcGIS Pro.  
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Chapter 4: Results  

This chapter will present the results of the GIS and spatial analysis. The first section will 

include ESDA (Exploratory Spatial Data Analysis), and the second section will include the MaxEnt 

predictive model of eelgrass in Casco Bay.  

   

Exploratory Spatial Data Analysis 

As part of an exploratory spatial data analysis (ESDA), Local Moran's I, Optimized 

Hotspot Analysis, and Emerging Hotspot Analysis were conducted. To begin, the 2013, 2018, and 

2022 seagrass layers were converted to point data from vector polygons (ArcGIS Pro’s Feature to 

Point Tool) and reprojected to the UTM 19N coordinate system. The original MaineDEP data is 

depicted in Figure 7 as a series of polygons, with 2013 data in light blue, 2018 data in light green, 

and 2022 data in pale red. This allowed for a visual overview of seagrass distribution over each half 

decade, an approach also taken separately as seen in Figures 8, 9, and 10. Converting this polygon 

data to points and depicting them per study year was intended to demonstrate changes in where 

eelgrass meadows were found and whether they had meaningfully shifted.  

Figure 9 indicates eelgrass coverage for the year 2013, per MaineDEP. Figure 10 indicates 

eelgrass coverage for the year 2018, and Figure 11 indicates eelgrass coverage for the year 2022.  
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Figure 7: Original seagrass coverage for survey years 2013, 2018, and 2022. 
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Figure 8: Seagrass Locations from 2013 Survey. (Source: Author) 
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Figure 9: Seagrass Locations from 2018 Survey. (Source: Author) 
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Figure 10: Seagrass Locations from 2022 Survey. (Source: Author) 
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Local Moran's I  

In Casco Bay, it appeared that the only prominent high-high cluster in 2013 was just 

northeast of Portland, by Mackworth Island (Figure 11). The remainder of the high-high clusters 

were around Great Diamond Island and Peaks Island, the two islands directly east of Portland and 

south of the Harpswell coastline. High-low outliers were found a few miles north off Falmouth and 

on Great Chebeague Island, the largest Casco Bay island. In 2018, the high-high clusters are gone, 

and new low- high outliers around Great Chebeague Island and along Falmouth Foreside have 

taken their place (Figure 12). This picture changes in 2022, the most recent survey year as almost all 

high-high clusters and high-low outliers disappears (Figure 13) and are replaced by sporadic low-

high outliers in the bay as well as low-low clusters off Portland, Falmouth, and Harpswell / 

Sebascodegan Island, where eelgrass acreage was previously notable. 

 

Figure 11: Local Moran’s I of seagrass distribution, 2013. (Source: Author) 
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The disappearance of these high-high clusters suggests that areas previously characterized 

by strong, contiguous eelgrass populations are now experiencing a decline in density. The high-low 

outliers indicate regions where high eelgrass density is now surrounded by lower densities, pointing 

to a fragmentation or reduction in the overall health and extent of the eelgrass meadows, which 

could be caused by warming waters, invasive species, or non-point source pollution. Observing the 

transition from high-high clusters to high-low outliers highlights potential areas of concern where 

eelgrass populations are becoming less stable and more isolated, which could have implications for 

ecosystem health and resilience.  

 

Figure 12: Local Moran’s I of seagrass distribution, 2018. (Source: Author) 
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Figure 13: Local Moran’s I of seagrass distribution, 2022. (Source: Author) 

 

Moving onto the most recent set of 2022 data, there is little clustering to be seen at all. The 

few pockets that are observed are dark blue, meaning low-high clusters, or where eelgrass density is 

low compared to surrounding regions, again possibly due to environmental stressors. This is 

concerning because it points to an overall decline in population health. The lack of clustering, 

which is expected in healthy eelgrass meadows that expand as they grow, indicates there are no 

longer large patches to be found. The presence of primarily low-high clusters in the most recent 

study year suggests eelgrass meadows are becoming more fragmented over the years, with healthy 

beds shrinking, and remaining eelgrass becoming increasingly isolated. There may be continued 
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environmental stressors contributing to their decline or localized factors not being properly 

mitigated. 

 

Emerging Hotspot Analysis and Optimized Hotspot Analysis  

To better understand these results, I chose to analyze them in conjunction with an 

Emerging Hotspot Analysis (EHSA) and Optimized Hotspot Analysis (OHA) to provide a more 

comprehensive understanding of the spatial patterns and dynamics of the eelgrass population. For 

instance, spatial patterns from Local Moran’s I regarding clusters and outliers could be compared 

with the two hotspot analyses, which focuses on statistically significant hot and cold spots. Areas 

identified as high-high clusters in Local Moran's I should correspond to hot spots in the OHA, 

reinforcing the significance of these regions. Similarly, low-high clusters might align with cold spots 

or transitional zones in the OHA or EHSA. 

This required a bit of data preprocessing to complete. While information on study years 

was technically available in the attribute table, they were in ArcGIS Text format and unable to be 

analyzed with a temporal Emerging Hotspot Analysis until this information was converted to the 

proper Date format. These steps were carried out for each eelgrass study layer by utilizing the Field 

Calculator and adding a new column that used the Python string function datetime.now() to 

obtain the correct year. For instance, datetime.datetime.now() - datetime.timedelta(days=5.5*365) 

was used for 2018 data because the seagrass meadows were studied by MaineDEP in Summer 2018, 

and datetime.datetime.now() - datetime.timedelta(days=1.5*365) was used for Summer 2022.  
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After this was done for all three layers, the datasets were combined using the Merge Feature 

tool. The newly merged data was used to generate a space-time cube for emerging hotspot analysis. 

An optimized hotspot analysis (OHA) was also conducted using the existing point data. 99% 

confidence is dark red, 95% confidence is dark orange, and 90% confidence is light orange.  

 

Figure 14: Emerging hotspot analysis for merged data. (Source: Author) 

 

As seen in Figure 14 above, there were no persistent hotspots located, although most 

eelgrass locations in the southern half of the study area were identified as sporadic hotspots, with a 

pocket of oscillating hotspots south of Harpswell. Oscillating hotspots are areas where the intensity 

of a phenomenon fluctuates over time, alternating between being statistically significant hotspots 
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and not being hotspots. This means that these regions have experienced periodic increases and 

decreases in eelgrass density over the study years.  

Sporadic hotspots in the southern half suggest that high eelgrass density areas are not 

consistent over time but appear intermittently. This aligns with the idea of isolated, fragmented 

patches of eelgrass detected by the Local Moran's. The absence of a detectable pattern in the 

northern half of inner Casco Bay from the EHSA implies a lack of consistent spatial clustering over 

time, which corroborates the Local Moran's finding of no significant clustering in this region. Only 

one new EHSA hotspot was observed, east of Orr’s Island. Both the Local Moran’s and EHSA 

suggest fragmentation and inconsistency in eelgrass distribution – the former points to isolated 

patches of low density surrounded by higher density in the present day, while the EHSA’s sporadic 

and oscillating hotspots also indicate temporal inconsistency in regional eelgrass presence.  
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Figure 15: Optimized hotspot analysis for merged data. (Source: Author) 

Regarding the Optimized Hotspot Analysis, when seagrass coverage was observed in full 

from 2013, 2018 and 2022, hotspots with 99% confidence in dark red were shown in the waters 

between Portland and Falmouth along with nearby Peaks Island (Figure 15). Furthermore, there 

were hotspots found in north Falmouth in Broad Cove and Moshier Island to the northeast. 

Moving further up the coast towards Freeport, there are even 99% hotspots in Maquoit Bay and 

Harpswell. Hotspots with 95% and 90% confidence are found close to all the hotspots, except for 

Maquoit Bay, which has been indicated as containing hotspots with the highest confidence overall. 

There are no cold spots from this analysis, although this could be due to the influence of earlier 

2013 and 2018 data. 
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The 99% and 95% confidence hotspots from the OHA (Figure 15) provide a more 

definitive spatial delineation of the most critical areas for eelgrass. The presence of these high-

confidence hotspots supports the Local Moran's I results by providing a broader spatial context 

and reinforcing the significance of identified clusters, including those of eelgrass meadows or beds 

that have been prominent in the past but not in the present-day. 

 

MaxEnt Predictive Modeling  

The core of this thesis revolved around using presence-only predictive modeling, and the 

MaxEnt model revealed intriguing insights about potential locations where seagrass could thrive. 

As expected, the darkest purple areas were around the small islands in Casco Bay, where ecological 

conditions support their growth. This was validated by their confirmed presence in the latest 2023 

survey, such as off the coast of Portland, Maine and near Peaks Island. The map indicated that 

Harpswell and Sebascodegan Island were also likely locations for eelgrass to thrive.  

With the Empirical Bayesian Kriging tool, five variables were interpolated to create five 

rasters. All the data from these variables – temperature, salinity, dissolved oxygen, turbidity, and 

total nitrogen – came from the Friends of Casco Bay monitoring stations (Figure 16). The FOCB 

data was originally in an Excel spreadsheet and the 19 monitoring stations utilized were manually 

geocoded in ArcGIS Pro using the XY Table to Point feature, as each monitoring station had 

longitude and latitude coordinates associated with it. In the software, the output cell size was set to 
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30 meters for higher granularity. Geocoding these points was the first step towards being able to 

conduct data interpolation throughout the Bay.  

With the existing eelgrass point data and five interpolated layers, MaxEnt was run to predict 

the future location of eelgrass beds given recent environmental factors. The subsequent output was 

masked so that it would only focus on the Gulf of Maine region (Georges Bank, Figure A1), which 

was in the form of a vector shapefile from NOAA. Geospatial masking also had the benefit of 

taking significantly less time to run, as opposed to generating an output for the entire planet.  

The MaxEnt tool was configured to be largely accessible, and I was able to follow an ESRI 

guide to understand how to utilize it. I used my merged eelgrass points data layer as the confirmed 

species presence input, and the interpolated EBK layers as the environmental covariates. From 

there, I set my output cell size again to 30 meters for consistency.  

There was the option to include basis functions to transform the environmental data in 

order to better capture non-linear relationships, enhance model flexibility and improve 

performance of the model. Because of these benefits and the only tradeoff of a slightly longer run-

time, I chose to use Linear, Squared, and Pairwise. The squared function listed was useful for 

helping the model fit parabolic trends, as seagrass does not respond to environmental covariates in a 

linear, or necessarily even predictable, fashion. Finally, I ensured that projected coordinates were set 

at UTM 19N for northern New England and masked appropriately to the Gulf of Maine.  

A predictive raster (Figure 24) and response table (Figure 26) were generated for the model. 

I obtained additional model summary statistics from the MaxEnt tool (Figure A5).  
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Figure 16: FOCB Monitoring Stations.  (Source: Author) 
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Empirical Bayesian Kriging  

 

Figure 17: Temperature EBK (Source: Author) 



Wu  

   
 

36 

Sea surface temperature (SST) in Casco Bay ranged from 16.4-16.9 degrees Celsius (61.5 to 

62.4 degrees Fahrenheit) in the Back Cove neighborhood of Portland and between 14.7 to 16.3 

degrees C (58.5 to 61.3 F) in the nearshore waters (Figure 17). SST increased further north, with 

interpolated temperatures as high as 18.7 to 18.9 degrees Celsius (65.6 to 66 degrees Fahrenheit) in 

the inlets near Yarmouth, South Freeport, and Brunswick. Excessively warm waters pose hazards to 

eelgrass because they do not grow as well under high water temperatures. Furthermore, the invasive 

green crab, which appears to be one of Zostera marina’s greatest threats because of its tendency to 

uproot and clip seagrass in its search for food and shelter, prefers warmer oceans (Howard, 2019). 
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Figure 18: Salinity EBK (Source: Author) 

 
Salinity from FOCB was defined in Practical Salinity Units (PSU), which is where a gram of 

salt per 1000 grams of water represents one PSU (Reid, 2006). Per the Cornell Cooperative 

Extension, Zostera marina prefers estuarine or polyhaline waters where salinities range from 20 to 

31 ppt. If salinities drop below that level, eelgrass meadows can survive, but productive capacity is 

reduced by up to 50% (CCE, 2012). It appears that salinity ranged from 25.7 PSU near the 
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Yarmouth coast to 31.3 PSU in northeastern Casco Bay, but all these numbers fell within the 

acceptable range (Figure 18).  

 

 
Figure 19: Dissolved O2 EBK (Source: Author) 

 

Dissolved oxygen ranged from 6.5 to 7.2 mg/L near South Freeport and gradually increased 

in concentration from there (Figure 19). Moving in this striated pattern, the highest concentrations 

of dissolved O2 were found east of Cliff Island. Low levels of dissolved oxygen, such as less than <4 
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mg/L, were shown to be detrimental to eelgrass survival (Moore and Jarvis, 2008). Dissolved 

oxygen levels are expected to be lower near the shoreline due to increased nutrient loading, water 

exchange, and algal blooms, whereas higher water circulation moving into the bay stabilizes the 

level of DO2.  

 
 

Figure 20: Turbidity EBK (Source: Author) 
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Turbidity was measured in Formazin Nephelometric Units (FNU), a unit measuring 

infrared light scattered through the water at a 90-degree angle (USGS, n.d.). The higher the FNU, 

the cloudier the water is. Turbidity was the highest in coastal Yarmouth and South Freeport and 

gradually became clearer in bands moving southwest (Figure 20). Higher FNU is expected near the 

coastline because of wave action, sedimentary runoff, and human activities like boating, whereas 

dilution of suspended particulates occurs the further one gets away from the coastline.  

 

 
Figure 21: Total Nitrogen EBK (Source: Author) 
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Like turbidity, total nitrogen (TN) was found in higher concentrations along the coastline 

and gradually dissipated towards the open ocean (Figure 21). Levels up to 0.61 mg/L were observed 

near Yarmouth and South Freeport, while the Portland nearshore zone had TN levels ranging from 

0.32 mg/L to 0.37 mg/L. Higher total nitrogen concentrations near the coast are usually due to 

inputs from riverine discharge, urban runoff, agricultural runoff, wastewater discharge. Because 

eelgrass requires nitrogen for growth and photosynthesis, their presence in higher concentrations is 

beneficial for the environment. However, there is a delicate balance to be struck, as excessively 

elevated levels of TN can lead to eutrophication and the promotion of harmful algal blooms.  

 
Topo to Raster 
 

 

Figure 22: 1:100,000 Contour Lines for the Gulf of Maine (State of Maine) 
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Figure 23: Bathymetric Depth of Casco Bay (Source: Author) 

 
Bathymetry, which refers to the underwater topography or depth of the seabed, plays a 

crucial role in eelgrass growth and development. The 1:100,000 contour lines (Figure 22) were 

converted into a raster format using the Topo to Raster feature in ArcGIS Pro, resulting in the map 

above (Figure 23). This data conversion permitted the layer to be analyzed alongside the other five 

covariates in the MaxEnt model.  
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MaxEnt Results 

 

Figure 24: MaxEnt Results for Eelgrass (Source: Author) 
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As mentioned previously, this MaxEnt model (Figure 24) represents the likelihood of 

eelgrass presence in Casco Bay, which can be used for ecological conservation and policymaking 

purposes. Starting from the lower left corner of the map, near Portland, it appears the highest 

likelihood of presence is northeast of the city – between Portland and Falmouth – and includes the 

small, circular island called Mackworth Island. This would be a region that should be of highest 

priority to eelgrass conservationists, not only because of the high likelihood of eelgrass presence and 

habitat suitability, but also because of its proximity to the major economic engine of Portland, 

which can offer resources for outreach and protection. If this model is accurate, this continuous 

swathe would be very promising to protect. To the east, the coastlines of the three closest Casco 

Bay islands to the mainland are also indicated as very high likelihood for eelgrass, at 75 to 100%. 

Great Diamond Island is surrounded in a purple ring, and so is most of Peaks Island. Cushing 

Island also has a narrow band of purple around its northern end.  

Moving onto the deeper islands in the Bay, the islands near the Western Landing (Great 

Chebeague Island) and Cliff Island similarly experience the highest levels of eelgrass presence and 

are surrounded by dark purple. The trio of small islands in the form of Stave Island, Ministerial 

Island, and Bates Island (Figure 25) were also surrounded by dark purple, indicating promising 

eelgrass presence. This all aligns with the notion that nearshore and intertidal zones are considered 

highly suitable for eelgrass, and the gentle topography of coastal bathymetry in this region would 

also benefit eelgrass in terms of habitat and sufficient light for photosynthesis. Slightly northwest of 

these two islands is a zone that is demarcated as light blue and blue purple for likelihoods of 
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presence of 25 to 50%, and 50 to 75%, respectively. This region stretches from Cousins Island back 

towards the mainland, southeast of Yarmouth.  

 

Figure 25: Trio of islands with high likelihood of eelgrass. (Source: Author, Google Maps) 

Finally, moving towards the scattered islands and long peninsulas of northeastern Casco 

Bay, such as in Harpswell, Orr’s Island, and Sebascodegan Island – sweeping from left to right – it 

appears the last noticeable pocket of high eelgrass presence is on the coastline of the three-pronged 

peninsula of Harpswell. The sheltered coves and lower development in this part of coastal Maine 

may contribute to this zone being productive for eelgrass presence. Traveling northeastward from 

this geographic area, Cundy’s Harbor appears to be rather appealing for eelgrass as it is ringed by 

blue purple, indicating the MaxEnt model believes the likelihood of its presence in this area is 50 to 

75%. This amount is probably high enough to warrant a closer look by environmental deputies and 
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conservation agents, particularly as the working waterfronts would receive strong co-benefits from 

a robust blue economy, in part brought about by the continued thriving of eelgrass here.  

 

MaxEnt Tables and Plots 

 

 

Figure 26: Partial Response of Continuous Variables 
 

As temperature increases, the probability of eelgrass presence decreases, indicating a 

downward logistic trend. Eelgrass might prefer cooler water temperatures, and higher temperatures 

may be beyond its optimal range, leading to stress and reduced growth. Beyond said range, 
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metabolic stress, reduced growth rates, and increased susceptibility to disease can occur, as seen by 

Nejrup and Pedersen (2006). Out of the six variables analyzed, temperature appeared to have the 

largest impact on eelgrass presence and presumptive survival, based on these charts.  

The flat response curve indicates that salinity does not significantly affect the probability of 

eelgrass presence within the range of salinity values in the region. This makes sense as the salinity 

range did not vary significantly throughout the study area. Eelgrass might be tolerant to a wide 

range of salinity levels, or the variation in salinity within my study area might be too narrow to 

show a strong effect. In addition, eelgrass can often be found in both estuarine and coastal marine 

environments, which typically have varying salinity levels. The flat response implies that within the 

observed range, salinity is not a limiting factor for eelgrass growth and distribution, allowing other 

environmental variables to play a more defining role, at least in the context of Casco Bay. 

As dissolved oxygen levels increase, the probability of eelgrass presence slightly increases. 

The positive slope for the logistic curve for dissolved oxygen (DO2) suggests that higher oxygen 

levels increase the suitability for eelgrass presence. After all, dissolved oxygen is crucial for the 

respiration of eelgrass and associated marine organisms. Higher dissolved oxygen levels are generally 

beneficial for eelgrass, supporting better respiration and overall health. On the other hand, oxygen 

levels that are too low can lead to hypoxic conditions, threatening the meadows. This trend 

underscores the importance of maintaining good water quality with adequate levels of oxygenation. 

As turbidity increases, the probability of eelgrass presence increases. This is somewhat 

counterintuitive as high turbidity usually reduces light availability. However, this might indicate 
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that eelgrass in the Casco Bay area is adapted to turbid conditions, possibly because of reduced 

competition from other species or less predation. Turbidity in and of itself may be too “murky” of 

a factor alone, and light attenuation may have been a good option to analyze alongside it. Taken at 

face value, high turbidity could indicate areas with less competition from other light-demanding 

species or reduced grazing pressure from herbivores that prefer clearer waters. 

The probability of eelgrass presence initially decreases as total nitrogen levels increase, 

suggesting that moderate amounts of total nitrogen might be beneficial, but higher levels may lead 

to eutrophication, which can negatively impact eelgrass by promoting algal blooms and reducing 

light availability. The curve suggests that while some nitrogen is beneficial, high concentrations are 

detrimental, serving as a reminder that adequate total nitrogen management is important to 

maintain balanced nutrient levels.  

Finally, the probability of eelgrass presence sharply decreases with increasing depth. This 

was expected as eelgrass requires sufficient light for photosynthesis, which diminishes as the water 

becomes deeper. The sharp drop indicates a depth threshold beyond which eelgrass cannot survive 

due to insufficient light. Shallower, well-lit environments without the presence of competing 

species or nutrient oversaturation are generally considered ideal for eelgrass growth conditions.  

Analyzing each environmental variable or covariate was important for understanding this 

model (Figure 26). Each one, even the comparatively flat salinity, plays a distinct role in shaping the 

suitability of habitats for eelgrass. Temperature and depth are significant limiting factors, with 

eelgrass showing clear preferences for cooler, shallower waters. Dissolved oxygen and moderate 
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nitrogen levels support eelgrass health, while excessive nitrogen and high temperatures pose risks to 

be addressed in environmental management plans. 

 

 
 

Figure 27: ROC Plot (Source: Author) 

 
In Figure 27, the X- axis represents the proportion of true positive predictions, ranging 

from 0 to 1. It indicates how well the model correctly classifies actual presence points of eelgrass, 

with a value closer to 1 meaning accurate. The Y-axis represents the proportion of background 

points (e.g., areas where eelgrass is not present) that are incorrectly classified as potential presence. 

The range provided indicates the false positive rate, with higher values meaning more background 

points are misclassified as presence.  
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This concave downward yet increasing ROC curve indicates the model has good predictive 

ability. At lower thresholds where the curve is steeper, the presence of eelgrass is accurately 

predicted by the model, showing its efficacy at identifying areas where eelgrass is likely found, as 

seen in Figure 24.  False positives — as the threshold increases, the model starts to misclassify more 

background points as potential eelgrass presence, and following the curve as it flattens, true positive 

rates come at the cost of higher false positive rates.  

Using the ROC plot to assess the overall performance of the MaxEnt model helped me 

understand its performance and how it reliably distinguished between presence and absence of 

study points.   

 

AUC 0.8915 
Omission Rate 0.3402 

Table 2: MaxEnt Model Summary  

 

 Table 2 above describes the MaxEnt model summary for AUC and Omission Rates. AUC 

values close to 1 indicates excellent model performance, while a value closer to 0.5 suggests a model 

without discriminative ability, which could arise from guessing randomly. An AUC of 0.892 is 

considered high, indicating that the model has excellent predictive accuracy. The other factor, the 

omission rate, is the proportion of true presence points that the model fails to predict. The stated 

omission rate of 0.34 means that 34% of the actual presence points were not predicted by the model 
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(Figure A4). While this demonstrates that a significant portion of presence points were missed, the 

high AUC suggests that the model is still generally reliable.  

Interpreting these two points highlights where the model could be fine-tuned to reduce the 

number of false negatives. For future studies, I can aim to understand how specific environmental 

conditions were not adequately captured by the current set of covariates, such as turbidity, leading 

to lower accuracy. By addressing these factors, I can further enhance the MaxEnt model's utility for 

eelgrass conservation and management in Casco Bay. 

 

 

 

 

 

 

 

 

 

 

 



Wu  

   
 

52 

Chapter 5: Discussion, Policy Implications, and Future Work 

This predictive eelgrass model is intended to be an exploratory effort and does not fully 

encompass the range of factors influencing their ecological health (Figure 27). With that in mind, 

there are several key policy implications that the State of Maine, local municipalities, or 

environmental research groups in the region can note.  

One of the most important ones is to enact legislation that will permit eelgrass to be at the 

forefront of conservation efforts and allow them to exist in tandem with other economic drivers of 

the Maine economy, such as fisheries and tourism. State Law L.D. 593, “An Act to Restore Regular 

Eelgrass Mapping in the State”, was enacted in October 2021 through the efforts of State 

Representative Joyce McCreight and supported by the Friends of Casco Bay and the Nature 

Conservancy (Oliver, 2021). Through this act, each section of coastal Maine will be regularly 

mapped in five-year intervals to provide routine information about the status and health of eelgrass 

meadows and salt marshes, both crucial carbon sinks (State of Maine Legislature, 2021). Geospatial 

elements will be handled by the Maine Department of Environmental Protection and published on 

the Maine GeoLibrary site, a useful resource where I was able to get my footing on the GIS 

repositories available for the state.  

Sufficient funding should also be allocated on the state and regional level to important 

nonprofits and agencies, such as the Friends of Casco Bay, Casco Bay Estuary Partnership, and the 

Maine Department of Environmental Protection. Existing initiatives from these groups provide 

extremely valuable data, and I would not have been able to carry out this research without the type 
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of environmental information they made available for access or upon request. Their efforts should 

be widely supported to allow these scientists to keep on conducting their work.  

Additionally, conservation efforts should be targeted towards areas that were identified as 

high likelihood for eelgrass meadow presence, such as between Portland and Falmouth (particularly 

Mackworth Island) and the notable islands of Greater Chebeague, Long Island, Great Diamond 

Island, and Peaks Island. In the northeastern part of Casco Bay, by Maine’s Midcoast, the 

Harpswell Peninsula and Orr’s Island also contained significant eelgrass presence, revealing another 

region worth protecting (Figure 28). Considering the many working waterfronts that these areas 

comprise, it would be pragmatic to come up with strategies for habitat restoration and fisheries 

management that are mutually beneficial. Limiting boat dredging and promoting eelgrass beds in 

places where winter lobsters are known to reside, such as the Fore River of Portland (Heinig and 

Cowperthwaite, 1998) can strengthen the blue economy on the sides of both flora and fauna.   

Steps like these embody the type of actions that should continue to be taken to improve 

understanding of eelgrass, such as through regular mapping efforts or outright protection. Building 

upon this, additional legal protections that ensure funding is allocated towards habitat restoration, 

combating invasive species, and promoting nature-based solutions that prevent polluted runoff 

from reaching the ocean can make a significant impact. Urban planners should strengthen 

regulations regarding polluting bodies and greater public outreach on the topic of seagrass’s 

importance for biodiversity and carbon sequestration in the region should also be highlighted.  
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Figure 28: 1:30,000 map of nearshore Casco Bay, where the highest number of predicted and 

recorded eelgrass meadows were found.  (Source: Author) 

 
Future Work and Study Limitations 

There are some limitations of note to this research project, particularly in the realm of data 

granularity. Because my primary source of data came from nineteen monitoring sondes around the 

Portland and Casco Bay area, there was a fair amount of interpolation and subsequent assumptions 

made about the environmental variables in between monitoring sites. In addition, because 

measurements of interest were captured on a weekly basis and the data used is specifically from the 

month of June 2022, there may be changes in sea surface temperature or other factors that are not 

reflected in the MaxEnt model.  
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The Emerging Hotspot Analysis, which was performed with the space-time cube and 

NetCDF file, was interesting as it showed the presence of oscillating and sporadic hotspots but 

should likely be taken with a grain of salt, as the temporal granularity of this study involves only 

three years. The minimum time slicing for an EHSA using the tool in ArcGIS was around 3 

months, meaning there is insufficient granularity to draw any conclusions about whether the 

hotspots are insignificant, oscillating, or otherwise. However, this feature could be made much 

more insightful with the availability of more survey data from interim years to gauge whether 

certain seagrass meadows have shifted meaningfully in the last decade. 

Another limitation included the number of variables included in the MaxEnt study. Even 

though I was able to incorporate five relevant covariates, even more of them would have been ideal. 

Data availability presented a challenge in this arena, and I was not able to locate sediment or wave 

energy data to contribute to this analysis. If included in the MaxEnt model, I imagine it would have 

clarified seagrass distribution further, as great shifts in my model output occurred after 

incorporating each variable, particularly bathymetric data – this makes sense because eelgrass 

generally cannot survive in deep waters at all, whereas other factors, such as temperature or salinity, 

may certainly contribute to whether or not a certain bed thrives or struggles, but does not present a 

similar binary outcome.  

More directions I would have liked to take this thesis given enough time included a remote 

sensing component with machine learning models, such as unsupervised learning and Object-Based 

Image Analysis (OBIA). Broadly, OBIA is a method used in remote sensing that focuses on 



Wu  

   
 

56 

segmenting an image into meaningful objects instead of analyzing individual pixels. This approach 

is particularly useful for studying complex environments like eelgrass habitats, where similar-

looking species, such as widgeon grass or sargassum, may lead to difficulties in classification (Society 

for Ecological Restoration, 2018). 

Using OBIA could have given me a frame of reference for comparing what the MaxEnt 

predictive model “saw” as likely areas for seagrass meadows, compared to what the remote sensing 

analysis derived. There is verified information from the State of Maine regarding current seagrass 

meadows in polygon format and the results from the MaxEnt and OBIA eelgrass models in Casco 

Bay could have been compared to gauge the accuracy of these two approaches. This would likely 

have been carried out using ENVI software from L3Harris or possibly academic machine learning 

image processing algorithms. For example, a successful study on eelgrass modeling in Baja 

California used aerial imagery in conjunction with OBIA to estimate the probability of presence in 

local estuaries (Figure 29), illustrating an intriguing methodology.  
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Figure 29: Predictive model of eelgrass in Baja California using OBIA. (Krause, et al. 2021) 

 

Lastly, one more approach I would have liked to take – which would have been more on 

the applied ecology side – was surveying every site of interest in person through scientific dives. For 

example, because the MaxEnt model predicted high levels of seagrass coverage around Peaks Island 

and Mackworth Island, it would have been rewarding to physically document the seagrass levels in 

that region and ground-truth in a literal sense.  
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Chapter 6: Conclusion 

Presence-only predictive modeling can be a promising step towards identifying future 

seagrass presence in Casco Bay. It allows this information to be cross validated with existing 

government data as well as satellite remote sensing orthoimagery. Implications of a successful 

MaxEnt model would include improving recommendations from policymakers regarding how best 

to protect seagrass.  

Seagrass longevity in Casco Bay requires intervention to undo the anthropogenic harms 

done in years past. The exploratory spatial and preliminary predictive modeling of Zostera marina 

represents a longer work in progress but ideally provides some more information about what the 

current "state of seagrass" looks like in southern coastal Maine (Figures A2, A3) and how maximum 

entropy methods can reveal what may be in store for these pivotal blue carbon resources. 

By identifying key environmental factors and areas of likely presence, this research can 

inform targeted conservation efforts. Conservation strategies should focus on protecting high-

likelihood and suitability areas identified by the model, implementing measures to offset 

detrimental factors such as invasive species or excessively high ocean temperatures. Restoration 

projects should prioritize regions with high habitat suitability but current low eelgrass presence, as 

these areas have the potential for successful reestablishment of eelgrass meadows.   

Continued monitoring of eelgrass populations and environmental conditions is essential 

for adaptive management. Regular data collection and analysis, as the Casco Bay Estuary 

Partnership and Friends of Casco Bay have been doing, will enable the detection of changes in 
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eelgrass distribution and health, allowing for timely interventions. Adaptive management strategies 

should be flexible and responsive to new information, incorporating the latest research findings and 

technological advancements. This approach will ensure that conservation efforts remain effective in 

the face of dynamic environmental conditions and emerging threats.  

The policy implications of this research are significant. Policymakers should leverage the 

findings to support the development of regulations and policies that protect eelgrass habitats. This 

could include the establishment of national marine sanctuaries, as Stellwagen Bank in coastal 

Massachusetts was and is still the only sanctuary in New England (Quintrell, et al. 1995). In regions 

that may be identified as high-suitability, restrictions on activities that contribute to increased 

pollution or damage to eelgrass beds, and incentives for sustainable coastal development practices 

should be implemented. Policies should also promote collaboration between government agencies, 

research groups, and local communities to ensure comprehensive conservation efforts.  

Furthermore, integrating eelgrass conservation into broader climate resilience strategies is 

crucial. As eelgrass meadows play a vital role in carbon sequestration and shoreline protection, their 

preservation can contribute to mitigating the impacts of climate change. Policies that recognize and 

support the ecosystem services provided by eelgrass habitats will be essential for sustainable coastal 

management and climate adaptation efforts. Protecting these blue carbon habitats aligns with 

broader resilience strategies, emphasizing the need for policies that support the preservation of 

eelgrass meadows as part of climate change mitigation efforts.  
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Additionally, eelgrass provides essential habitat for a variety of marine species, including 

commercially important fish and shellfish. This makes eelgrass conservation vital for the health of 

working waterfronts, which depend on robust marine ecosystems for economic sustainability. By 

maintaining healthy eelgrass populations, the livelihoods of communities engaged in fisheries and 

aquaculture are supported, ensuring the long-term viability of these industries.  

Future research should focus on refining the models by incorporating additional 

environmental variables and higher-resolution data and exploring the impacts of climate change. 

Utilizing aerial or high-resolution satellite imagery to build machine learning models also serves as a 

promising path integrating more traditional efforts with technological advancements. Continued 

monitoring and adaptive management, as always, will be essential to ensure the resilience of eelgrass 

habitats in Casco Bay and continue the legacy of these unsung heroes.  

 
Eel-Grass, Edna St. Vincent Millay (1923) 

No matter what I say,  

All that I really love  

Is the rain that flattens on the bay,  

And the eel-grass in the cove;  

The jingle-shells that lie and bleach  

At the tide-line, and the trace  

Of higher tides along the beach:  

Nothing in this place. 
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Appendix 

 

 

Appendix 1: Georges Bank / Gulf of Maine polygon mask. 
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Appendix 2: MaxEnt Results Zoomed In, 1:50,000 Scale (Portland) 

 

Appendix 3: MaxEnt Results Zoomed In, 1:50,000 Scale (Harpswell) 
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Appendix 4: Classification Result Percentages (Source: Author) 

 

Appendix 5: MaxEnt Model Statistics (Source: Author) 


