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Abstract. We compute Hochschild cohomology of projective hypersurfaces starting from the

Gerstenhaber-Schack complex of the (restricted) structure sheaf. We are particularly interested
in the second cohomology group and its relation with deformations. We show that a projective

hypersurface is smooth if and only if the classical HKR decomposition holds for this group.

In general, the first Hodge component describing scheme deformations has an interesting inner
structure corresponding to the various ways in which first order deformations can be realized:

deforming local multiplications, deforming restriction maps, or deforming both. We make our
computations precise in the case of quartic hypersurfaces, and compute explicit dimensions in

many examples.

1. Introduction

Hochschild cohomology originated as a cohomology theory for associative algebras, which is

known to be closely related to deformation theory since the work of Gerstenhaber. Meanwhile,

both the cohomology and the deformation side of the picture have been developed for a variety of

mathematical objects, ranging from schemes [22] [15] to abelian [18], [17] and differential graded

[14], [16] categories. One of the first generalizations considered after the algebra case was the

case of presheaves of algebras, as thoroughly investigated by Gerstenhaber and Schack [7], [9],

[10]. For a presheaf A, Hochschild cohomology is defined as an Ext of bimodules ExtA-A(A,A)

in analogy with the algebra case. An important tool in the study of this cohomology is the

(normalized, reduced) Gerstenhaber-Schack double complex C(A). We denote its associated total

complex by CGS(A), and the cohomology of this complex by Hn
GS(A) = HnCGS(A). We have

Hn
GS(A) ∼= ExtnA-A(A,A). Unlike what the parallel result for associative algebras may lead one

to expect, in general H2
GS(A) is not identified with the family of first order deformations of the

presheaf A. A correct interpretation of H2
GS(A) is as the family of first order deformations of A

as a twisted presheaf, and an explicit isomorphism

(1.1) H2
GS(A) −→ Deftw(A)

is given in [6, Thm. 2.21]. Moreover, in loc. cit., if A is quasi-compact semi-separated, the existence

of a bijective correspondence between the first order deformations of A as a twisted presheaf and

the abelian deformations of the category Qch(A) of quasi-coherent sheaves is proven. Hence in

this case there are isomorphisms H2
GS(A) ∼= Deftw(A) ∼= Defab(Qch(A)).

Throughout, let k be an algebraically closed field of characteristic zero. Of particular interest

is the case where A is a presheaf of commutative k-algebras over a poset or more generally a small

category. As discussed in [7], in this case the complex CGS(A) admits the Hodge decomposition

of complexes

(1.2) CGS(A) =
⊕
r∈N

CGS(A)r,
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which induces the Hodge decomposition of the cohomology groups Hn
GS(A) in terms of the coho-

mology groups Hn
GS(A)r = HnCGS(A)r:

(1.3) Hn
GS(A) =

⊕
r∈N

Hn
GS(A)r.

The zero-th Hodge complex CGS(A)0 is nothing but the simplicial cohomology complex of A,

and the first Hodge complex CGS(A)1, which is called the asimplicial Harrison complex in [7],

classifies first order deformations of A as a commutative presheaf. Hence, in this case the map

(1.1) naturally restricts to

(1.4) H2
GS(A)1 −→ Defcpre(A).

Let (X,OX) be a quasi-compact separated scheme with an affine open covering V which is

closed under intersection, and let A = OX |V be the restriction of OX to the covering V. The

cohomology H•GS(A) turns out to be isomorphic to the Hochschild cohomology

HH•(X) := Ext•X×X(∆∗OX ,∆∗OX)

of the scheme X where ∆: X → X ×X is the diagonal map [17]. If furthermore, X is smooth,

then the Hodge decomposition corresponds to the HKR decomposition and we obtain the familiar

formula

(1.5) HHn(X) ∼=
⊕
p+q=n

Hp(X,∧qTX)

where TX is the tangent sheaf of X. This formula has been proved in various different contexts

and ways [9], [15], [22], [24], [6].

The decomposition (1.5) has been generalized to the not necessarily smooth case by Buchweitz

and Flenner in [4], using the Atyiah-Chern character. In terms of the relative cotangent complex

LX/k, the generalization is given by

(1.6) HHn(X) ∼=
⊕
p+q=n

ExtpX(∧qLX/k,OX)

where ∧q should be understood as derived exterior product. Their arguments are mostly estab-

lished in the derived category D(X), and an interpretation of cohomology classes in terms of

GS-representatives is not immediate.

Since we need GS-representatives in order to use the deformation interpretation from (1.1), our

starting point in this paper is the Gerstenhaber-Schack complex CGS(A). In case A = OX |V for

a projective hypersurface X, in §4.1 we construct a smaller complex H• and we give an explicit

quasi-isomorphism H• → CGS(A). Our construction of H• builds on [2] and [19], in both of which

the Hochschild (co)homology of affine hypersurfaces is computed. Following their methods, in §3
we describe the Hodge components of the affine Hochschild cohomology groups in terms of the

cotangent complex. The other key ingredient in our approach to the projective case is the use

of a mixed complex associated to a pair of orthogonal sequences in a commutative ring, which is

developed in the self-contained section §2.

In §4.2 we present the cotangent complex LX/k in terms of twisted structure sheaves OX(l), and

we verify that the cohomology of H• agrees with (1.6), and H• can be considered to be a natural

enhancement of (1.6). It is of interest whether the Hodge and generalized HKR decompositions

are component-wise isomorphic for a general variety. Since they agree for smooth varieties and

for hypersurfaces, it is reasonable to expect the answer to be positive.

In general however, we have not yet devised an efficient method to obtain such a nice H•,
relating Gerstenhaber-Schack cohomology and Čech cohomology. For this we seem to lack smaller
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projective resolutions on affine pieces which are easily computable. In the present case, projective

hypersurfaces are tractable using [2] and [19] as well as our technical results from §2. Moreover,

H• is the total Čech complex of a complex of sheaves, making our computation feasible.

In §5, we compute the cohomology groups of H• in terms of two easier complexes C•(uuu;S) and

K•(vvv;R) of graded modules. Our main theorem is the following:

Theorem 1.1. Let X ⊂ Pn be a projective hypersurface of degree d. Denote by P i the i-th

cohomology group of C•(uuu;S) and by Qi the i-th cocycle group. Denote by Zi the i-th cocycle

group of K•(vvv;R). Then the cohomology of H• is given by

(1) when d > n+ 1,

Hi(H•) ∼=
⊕
r<i

P i−2r
r+(i−r)(d−1) ⊕Q

−i
i ⊕S (Z−i+n−1

d−i−2 );

(2) when d = n+ 1,

Hi(H•) ∼=



⊕
r<i

P i−2r
r+n(i−r) ⊕Q

−i
i , i 6= n− 1, n,⊕

r<i

P i−2r
r+n(i−r) ⊕Q

−i
i ⊕ k

n, i = n− 1,⊕
r≤i

P i−2r
r+n(i−r), i = n;

(3) when d < n+ 1,

Hi(H•) ∼=
⊕
r<i

P i−2r
r+(i−r)(d−1) ⊕Q

−i
i .

In the above formulas, S is a linear map defined in (5.2), and the subscripts of P •, Q•, Z• stand

for the degrees of homogeneous elements in P •, Q•, Z•.

In §6, we give some applications of Theorem 1.1. As a first application, we give a cohomological

characterization of smoothness for projective hypersurfaces in §6.1. Recall that an affine hyper-

surface Spec(A) is smooth if and only if the first Hodge component H2
(1)(A,A) vanishes (Remark

3.2). In deformation theoretic terms, this corresponds to the fact that A has only trivial commuta-

tive deformations. For a projective hypersurface X with restricted structure sheaf A = OX |V, the

parallel statement is that X is smooth if and only if the first Hodge component H2
GS(A)1 coincides

with its subgroup H1(X, TX) which describes locally trivial scheme deformations of X. In other

words, X is smooth if and only if the classical HKR decomposition (1.5) holds for the second

Hochschild cohomology group of X (Theorem 6.3). In the appendix A we present a more general

proof of this converse HKR theorem for complete intersections making use of global generation of

the normal sheaf, which was suggested to us by the referee.

Next we look into the fine structure of the first Hodge component H2
GS(A)1. Recall that a GS

n-cochain has n+ 1 components coming from the double complex C(A), in particular

(1.7) C2
GS(A) = C0,2(A)⊕C1,1(A)⊕C2,0(A).

Following [6], we usually write a GS 2-cochain as (m, f, c) corresponding to the decomposition

(1.7). In §6.1, we show that for A = OX |V with X a projective hypersurface of dimension ≥ 2,

there exists a complement E of H1
simp(V, T ) inside H2

GS(A)1 consisting of Hochschild classes of
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the form [(m, 0, 0)]. Intuitively, we visualize the situation with the aid of the following diagram:

Hodge components: H2
GS(A)2 H2

GS(A)1 H2
GS(A)0

HKR components: H0
simp(V,∧2T )

��

E

yy

H1
simp(V, T )

��

H2
simp(V,A)

��
representatives: (m, 0, 0) (0, f, 0) (0, 0, c)

In general, we call a Hochschild 2-class intertwined if it cannot be written as a sum of the form

[(m, 0, 0)] + [(0, f, 0)]. Intertwined classes are interesting from the point of view of deformation

theory, as the only way to realize such a class is by simultanous non-trivial deformation of local

multiplications and of restriction maps, with neither deforming only the multiplications, nor de-

forming only the restriction maps leading to a well-defined deformation. Remarkably, based upon

the results from §5, an intertwined 2-class can only exist for a non-smooth projective curve in P2

of degree ≥ 5, and we give concrete examples of such curves of degree ≥ 6 in §6.2. We leave the

existence of intertwined 2-classes for degree 5 curves as an open question.

In §6.3, we study the case when X is a quartic surface in P3 in some detail. We show that

the dimension of H2
GS(A)1 lies between 20 and 32, reaching all possible values except 30 and 31.

The minimal value H2
GS(A)1 = 20 is reached in the smooth case, in which X is a K3 surface

and H2
GS(A)1

∼= H1(X, TX), as well as in some non-smooth examples like the Kummer surfaces.

Further, we discuss the fine structure of H2
GS(A)1 in several examples. Finally, let us mention

that the zero-th Hodge component H2
GS(A)0 is invariably one dimensional, and we know that the

dimension of the second Hodge component H2
GS(A)2 is at least one. Although our results allow us

to compute the dimension of H2
GS(A)2 in concrete examples, so far we have not determined the

precise range of this dimension.

Acknowledgement : The authors are very grateful to the anonymous referee for their valuable

comments that helped improve the paper, and in particular for pointing out an alternative proof

for Theorem 6.3 that actually works for complete intersections (see Appendix A). We also thank

Pieter Belmans for his interesting comments and questions concerning an earlier version of the

paper, which led to the discovery of an error in §6.2 that has been corrected.

2. Mixed complexes associated to orthogonal sequences

This section is self-contained. In order to make preparations for future computations, we

construct several complexes which are related to Koszul complexes, as well as quasi-isomorphisms

between them.

Let R be a commutative ring, and let uuu = (u0 . . . , un), vvv = (v0, . . . , vn) be two sequences in R.

We call (uuu,vvv) a pair of orthogonal sequences of length n (an n-POS) if

n∑
i=0

uivi = 0

holds in R. Let (K•(uuu;R), ∂uuu) be the Koszul cochain complex determined by uuu, namely, K•(uuu;R)

is the DG R-algebra ∧•(Re0 ⊕ · · · ⊕ Ren) with |ei| = −1 and ∂uuu(ei) = ui. Similarly, let
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(K•(vvv;R), ∂vvv) = ∧•(Rf0 ⊕ · · · ⊕ Rfn) be the Koszul chain complex determined by vvv. Apply-

ing HomR(−, R) to K•(vvv;R), we obtain a cochain complex Hom•R(K•(vvv;R), R) whose terms are

Hom−pR (K•(vvv;R), R) = HomR(Kp(vvv;R), R) =
⊕

0≤i1<···<ip≤n

R(fi1 ∧ · · · ∧ fip)∗

and whose differentials are

(∂vvv)∗ : Hom−pR (K•(vvv;R), R) −→ Hom−p−1
R (K•(vvv;R), R)

(fi1 ∧ · · · ∧ fip)∗ 7−→
n∑
j=0

vj(fj ∧ fi1 ∧ · · · ∧ fip)∗.

For each p, the correspondence ei1 ∧ · · · ∧ eip ←→ (fi1 ∧ · · · ∧ fip)∗ establishes an isomorphism

between K−p(uuu;R) and Hom−pR (K•(vvv;R), R) in a natural way. The differentials (∂vvv)∗ induce

another complex structure on K•(uuu;R) given by

∂vvv : K−p(uuu;R) −→ K−p−1(uuu;R)

ei1 ∧ · · · ∧ eip 7−→
n∑
j=0

vjej ∧ ei1 ∧ · · · ∧ eip .

Remark 2.1. (K•(uuu;R), ∂vvv) is isomorphic to the Koszul complex determined by the sequence

vvv? = (v0,−v1, . . . , (−1)nvn).

The following lemma is very easy to prove.

Lemma 2.1. K•(uuu,vvv;R) = (K•(uuu;R), ∂uuu, ∂vvv) is a mixed complex.

This mixed complex gives rise to a double complex K•,•(uuu,vvv;R) in the first quadrant as in

Figure 1. For r ∈ N, define τ rK•,•(uuu,vvv;R) to be the quotient double complex of K•,•(uuu,vvv;R)

consisting of all entries whose coordinates satisfy 0 ≤ q ≤ r.

...
...

...
... . .

.

K−3(uuu,vvv;R)
∂uuu //

∂vvv

OO

K−2(uuu,vvv;R)
∂uuu //

∂vvv

OO

K−1(uuu,vvv;R)
∂uuu //

∂vvv

OO

K0(uuu,vvv;R)

∂vvv

OO

K−2(uuu,vvv;R)
∂uuu //

∂vvv

OO

K−1(uuu,vvv;R)
∂uuu //

∂vvv

OO

K0(uuu,vvv;R)

∂vvv

OO

K−1(uuu,vvv;R)
∂uuu //

∂vvv

OO

K0(uuu,vvv;R)

∂vvv

OO

K0(uuu,vvv;R)

∂vvv

OO

Figure 1. Double complex K•,•(uuu,vvv;R)

Suppose that vt is invertible for some t ∈ {0, 1, . . . , n}. Let www = (u0, . . . , ût, . . . , un), and

(K•(www;R), ∂www) be the corresponding Koszul complex. Define ι : K•(www;R) → K•(uuu;R) to be the

canonical embedding morphism, and define π : K•(uuu;R)→ K•(www;R) by

π(ei1 ∧ · · · ∧ eip) =


ei1 ∧ · · · ∧ eip , if none of ij is t,

−
∑
k 6=t

vkv
−1
t ei1 ∧ · · · ∧ eij−1 ∧ ek ∧ eij+1 ∧ · · · ∧ eip , if t = ij for some j.
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for each p.

It is routine to prove that ∂wwwπ(ei1 ∧ · · · ∧ eip) = π∂uuu(ei1 ∧ · · · ∧ eip). Hence we have

Lemma 2.2. π : K•(uuu;R)→ K•(www;R) is a morphism of complexes.

Lemma 2.3. For all p, the sequence

0 −→ K−p+1(www;R)
∂vvvι−−→ K−p(uuu;R)

π−−→ K−p(www;R) −→ 0

is split exact.

Proof. First of all, this is indeed a complex since π∂vvvι = 0.

Next, we consider the map id−ιπ. By the definition of π, if none of ij is t, then (id−ιπ)(ei1 ∧
· · · ∧ eip) = 0; if t = ij , then (id−ιπ)(ei1 ∧ · · · ∧ eip) = ∂vvv((−1)j−1v−1

t ei1 ∧ · · · ∧ êij ∧ · · · ∧ eip). It

follows that there exists a map ζ : K−p(uuu;R)→ K−p+1(www;R) given by

ζ(ei1 ∧ · · · ∧ eip) =

{
0, if none of ij is t,

(−1)j−1v−1
t ei1 ∧ · · · ∧ êij ∧ · · · ∧ eip , if t = ij for some j,

which satisfies ∂vvvιζ + ιπ = id. Moreover, πι = id, ζ∂vvvι = id. These facts indicate split exactness

of the complex. �

Let τ≥r be the stupid truncation functor. Since the top row of τ rK•,•(uuu,vvv;R) is the same as

τ≥0(K•(uuu;R)[−r]), we define the morphism ιt,(r) associated to t as the composition of

τ≥r(K•(www;R)[−2r])
ι−−→ τ≥r(K•(uuu;R)[−2r]) ↪→ Tot(τ rK•,•(uuu,vvv;R)).

Sometimes we suppress the subscript t in ιt,(r) if no confusion arises.

Proposition 2.4. For any r ≥ 0, ι(r) : τ≥r(K•(www;R)[−2r]) → Tot(τ rK•,•(uuu,vvv;R)) is a quasi-

isomorphism with a quasi-inverse π(r) induced by π.

Proof. By Lemmas 2.2, 2.3, the sequence

0 −→ K•(www;R)[1− 2r]
(−1)•∂vvvι−−−−−−→ K•(uuu;R)[−2r]

π−−→ K•(www;R)[−2r] −→ 0

of cochain complexes is exact. After shifting degrees, we have another exact sequence

0 −→ K•(www;R)[2− 2r]
(−1)•−1∂vvvι−−−−−−−→ K•(uuu;R)[1− 2r]

π−−→ K•(www;R)[1− 2r] −→ 0.

Since ∂vvvιζ + ιπ = id (see the proof of Lemma 2.3), we have (−1)•∂vvvιπ = (−1)•∂vvv(id−∂vvvιζ) =

(−1)•∂vvv. So the above two exact sequences are combined into a new one

0 −→ K•(www;R)[2− 2r]
(−1)•−1∂vvvι−−−−−−−→ K•(uuu;R)[1− 2r]

(−1)•∂vvv−−−−−→ K•(uuu;R)
π−−→ K•(www;R)[−2r] −→ 0.

Continuing the procedure, we obtain a long exact sequence

· · · −→ K•(uuu;R)[2− 2r]
(−1)•−1∂vvv−−−−−−−→ K•(uuu;R)[1− 2r]

(−1)•∂vvv−−−−−→ K•(uuu;R)[−2r]
π
� K•(www;R)[−2r].

Let the functor τ≥r act on the long sequence, and then by using the sign trick, we make all the

terms except the last one (i.e. τ≥r(K•(www;R)[−2r])) into a double complex. It is obvious that the

resulting double complex is nothing but τ rK•,•(uuu,vvv;R). Therefore, π induces a quasi-isomorphism

π(r) : Tot(τ rK•,•(uuu,vvv;R)) −→ τ≥r(K•(www;R)[−2r])

which is quasi-inverse to ι(r). �

Definition 2.1. An n-POS (uuu,vvv) is said to be proportional to another one (uuu′, vvv′) if there exist

invertible λ, µ ∈ R such that (uuu′, vvv′) = (λuuu, µvvv).
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Notice that the (p, q)-entry of τ rK•,•(uuu,vvv;R) (resp. τ rK•,•(uuu′, vvv′;R)) is Kp−q(uuu,vvv;R) (resp.

Kp−q(uuu′, vvv′;R)), and that Kp−q(uuu,vvv;R) and Kp−q(uuu′, vvv′;R) share the same rank as free R-modules.

There are isomorphisms

λpµq : Kp−q(uuu,vvv;R) −→ Kp−q(uuu′, vvv′;R)

given by the multiplication by λpµq for all p, q, and they constitute an isomorphism

(2.1) ξ(r) : τ rK•,•(uuu,vvv;R) −→ τ rK•,•(uuu′, vvv′;R)

of double complexes. The induced isomorphism between their total complexes is denoted by ξTot
(r) .

3. Hochschild cohomology of affine hypersurfaces

Let A = k[y1, . . . , yn]/(G) be the quotient of the polynomial algebra k[y1, . . . , yn] by a unique

relation G. There are several papers concerning the Hochschild and cyclic (co)homology of A,

the treatment of the topic dating back to Wolffhardt’s work on Hochschild homology of (analytic)

complete intersections [23]. We base our exposition on the more recent papers [2], [19]. In [19],

Michler describes the Hochschild homology groups of A as well as their Hodge decompositions

when G is reduced, based on the cotangent complex of A. The Hochschild cohomology groups

are not treated in [19]. In [2], the authors from BACH construct a nice finitely generated free

resolution Rb•(A) of A over Ae under an additional condition on G. For the normalized bar

resolution C̄bar
• (A), the authors give comparison maps

C̄bar
• (A)

α // Rb•(A)
α′
oo

satisfying αα′ = id. By virtue of the smaller resolutionRb•(A), the authors compute the Hochschild

homology and cohomology of A.

From now on, we assume that G = G(y1, . . . , yn) has leading term yd1 with respect to the

lexicographic ordering y1 > · · · > yn. Under this assumption, we are able to use the resolu-

tion Rb•(A) from [2] and obtain the Hochschild (co)homology groups as Hp(A,A) = Hp(R•(A))

and Hp(A,A) = Hp(L•(A)) where R•(A) = A ⊗Ae Rb•(A) and L•(A) = HomAe(Rb•(A), A) ∼=
HomA(R•(A), A). We also note that R•(A) admits a decomposition ⊕r∈NR•(A)r by the proof

of [2, Thm. 3.2.5] and respectively L•(A) admits a decomposition
∏
r∈N L•(A)r by the proof

of [2, Thm. 3.2.7], and HomA(R•(A)r, A) ∼= L•(A)r. Moreover, the decomposition Lp(A) =∏
r∈N Lp(A)r is in fact a finite product for every fixed p. Hence Hp(A,A) = ⊕r∈NHp(L•(A)r).

In this section, we first make the complex L•(A) explicit according to [2], and then restate it

in terms of the cotangent complex, inspired by [19]. Next we will prove that the decomposition

Hp(A,A) = ⊕r∈NHp(Lp(A)r) coincides with the Hodge decomposition [8]. Finally, Hochschild

cohomology of localizations of A is discussed.

By the construction of [2], denote L•| (A) = ∧•(Ae1 ⊕ · · · ⊕Aen) and then L•(A) is the algebra

of divided powers over L•| (A) in one variable s. Set |ei| = 1 and |s(j)| = 2j, then L•(A) is made

into a DG A-algebra whose differential is given by ei 7→ (∂G/∂yi)s
(1) and s(1) 7→ 0. By writing

ei1...il instead of the product ei1 ∧ · · · ∧ eil , we have

Lp(A) =
⊕

0≤j≤p/2
1≤i1<···<ip−2j≤n

Aei1...ip−2js
(j),

and the differential Lp(A)→ Lp+1(A) is given by

ei1...ip−2js
(j) 7−→

p−2j∑
l=1

(−1)l−1 ∂G

∂yil
ei1...îl...ip−2j

s(j+1).
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It immediately follows that the A-module complex L•(A) admits a decomposition L•(A) =∏
r∈N L•(A)r with

(3.1) L•(A)r = τ≥r(K•((∂G/∂yi)1≤i≤n;A)[−2r]).

Let us shift our attention to the cotangent complex LA/k of A. As stated in [19] (also see [12,

Ch. III, Prop. 3.3.6]), this complex, unique up to homotopy equivalence, is given by

0 −→ Adz
δ−−→

n⊕
i=1

Adyi −→ 0

where the two nonzero terms sit in degrees −1 and 0 respectively, dz and dyi are base elements

and

δ(dz) =

n∑
i=1

∂G

∂yi
dyi.

By [13, Ch. VIII, Cor. 2.1.2.2], ∧rLA/k is isomorphic to a complex determined by δ in the derived

category Db(A), more explicitly,

∧rLA/k ∼=
⊕
i+j=r

∧i(Ady1 ⊕ · · · ⊕Adyn)⊗A Γ j(Adz)

where Γ j(−) is the degree j component of the divided power functor over A.1 Taking the dualities

on both sides, we obtain

(3.2) HomA(∧rLA/k, A) ∼=
⊕
i+j=r

∧i(A(dy1)∗ ⊕ · · · ⊕A(dyn)∗)⊗A Γ j(A(dz)∗)

where (−)∗ stands for dual basis. Notice that the j-th term of the right-hand side of (3.2) is

free of rank
(
n
r−j
)
, and the rank is the same as that of τ≥0(K•((∂G/∂yi)1≤i≤n;A)[−r]) for all

0 ≤ j ≤ r. By taking into account differentials, one has an isomorphism HomA(∧rLA/k, A) ∼=
τ≥0(K•((∂G/∂yi)1≤i≤n;A)[−r]), and further HomA(∧rLA/k, A)[−r] ∼= L•(A)r by (3.1). Conse-

quently we have

Hp(A,A) =
⊕
r∈N

Hp(L•(A)r) ∼=
⊕
r∈N

Hp(HomA(∧rLA/k, A)[−r]) =
⊕
r∈N

Extp−rA (∧rLA/k, A).

We will compare the above formula with the Hodge decomposition Hp(A,A) = ⊕r∈NHp
(r)(A,A).

To this end, let us observe that Hp(A,A) = Hp(⊕r∈NR•(A)r) ∼= ⊕r∈NHp(R•(A)r). The direct

summand Hp(R•(A)r) is isomorphic to the Hodge component H
(r)
p (A,A) by [19]. This immedi-

ately implies that both quasi-isomorphisms id⊗α, id⊗α′ in⊕
r∈N

C̄•(A,A)r
id⊗α //⊕

r∈N
R•(A)r

id⊗α′
oo

can be replaced by another pair of quasi-isomorphisms α̃, α̃′ which preserve the above direct sums.

In fact, if p ≥ 1 then id⊗αp : ⊕r∈N C̄p(A,A)r → ⊕r∈NRp(A)r can be represented by a matrix

(aij)p×p since C̄p(A,A)r and Rp(A)r are zero unless 1 ≤ r ≤ p. Let α̃p be represented by the

matrix diag(a11, a22, . . . , app). If p = 0, let α̃0 = id⊗α0. Then α̃ is a quasi-isomorphism, as

desired. Similar matrix construction holds for α̃′.

By applying HomA(−, A), we get quasi-isomorphisms∏
r∈N

C̄•(A,A)r
β′:=Hom(α̃′,A) //∏

r∈N
L•(A)r

β:=Hom(α̃,A)
oo

which preserve direct products. Taking cohomology, we then obtain

Hp
(r)(A,A) = Hp(L•(A)r) ∼= Extp−rA (∧rLA/k, A).

1Upright Γ(X,−) will denote the global section functor on a scheme X in §4.
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From it, we know the decomposition of Hp(L•(A)) deduced from [2] actually corresponds to the

Hodge decomposition.

Observe that the quasi-isomorphism β : L•(A)→ C̄•(A,A) induces isomorphisms Hp
(r)(A,A) ∼=

Hp(L•(A)r) for all p, r. The explicit expression of β can be concluded from α, and we will give

it later on. For our purpose, we first introduce some cochains. Note that the algebra A has the

basis

BA = {yp11 yp22 · · · ypnn | 0 ≤ p1 ≤ d− 1, p2, . . . , pn ∈ N}.

We define for 1 ≤ l ≤ n a normalized 1-cochain ◦∂/∂yl by

(3.3) BA 3 yp11 yp22 · · · ypnn = f 7−→
◦∂f

∂yl
= ply

p1
1 · · · y

pl−1

l−1 y
pl−1
l y

pl+1

l+1 · · · y
pn
n

and a normalized 2-cochain ◦µ by

(3.4) ◦µ(f, g) =

{
0, p1 + q1 < d,

yp1+q1−d
1 yp2+q2

2 · · · ypn+qn
n , p1 + q1 ≥ d.

for an additional g = yq11 y
q2
2 · · · yqnn ∈ BA. One can easily check that ◦µ is a 2-cocycle.

Now we give the expression of β =
∑
r β(r) : L•(A)→ C̄•(A,A):

(3.5) β(p−j)(ei1...ip−2js
(j)) = (−1)(

p−2j
2 )

◦∂

∂yi1
∪ · · · ∪

◦∂

∂yip−2j

∪ ◦µ∪j .

The notation ∪, not to be confused with the well-known cup product, is defined as

P1 ∪ P2 ∪ · · · ∪ Pm =
1

m!

∑
σ∈Sm

(−1)cµ ◦
(
Pσ−1(1) ⊗ Pσ−1(2) ⊗ · · · ⊗ Pσ−1(m)

)
where Pi ∈ C̄•(A,A), µ is the multiplication map (or rather its unique extension by associativity

to an m-ary multiplication map) and

c = #{(i, j) | i < j, σ−1(i) > σ−1(j), Pi, Pj have odd degrees}.

Thus, the operation ∪ becomes supercommutative. For example,

◦∂

∂yi
∪ ◦µ =

1

2
µ ◦
( ◦∂
∂yi
⊗ ◦µ+ ◦µ⊗

◦∂

∂yi

)
= ◦µ ∪

◦∂

∂yi
,

◦∂

∂yi
∪
◦∂

∂yj
= −

◦∂

∂yj
∪
◦∂

∂yi
.

Remark 3.1. Since β(r)(L•(A)r) ⊆ C̄•(A,A)r, we also call L•(A) = ⊕r∈NL•(A)r the Hodge de-

composition.

Remark 3.2. Recall that the vanishing of the groups H2
(1)(A,M) for all A-modules M charac-

terizes smoothness of A. Since A is an affine hypersurface, A is smooth if and only if the ideal

(∂G/∂y1, . . . , ∂G/∂yn) is equal to A itself.

Let Ā be the localization of A at a multiplicatively closed set generated by yt1 , . . . , yth where

2 ≤ t1 < · · · < th ≤ n. Let σ : Ā → B be a morphism of commutative algebras such that B is a

flat Ā-module via σ. Then Ā has a basis

BĀ = {yp11 yp22 · · · ypnn | 0 ≤ p1 ≤ d− 1, pt1 , . . . , pth ∈ Z, other pi ∈ N}.

As above, cochains ◦∂/∂yl ∈ C̄1(Ā, Ā) and ◦µ ∈ C̄2(Ā, Ā) can be defined similarly. After compos-

ing them with σ, we obtain cochains in C̄1(Ā, B), C̄2(Ā, B). Furthermore, one can easily check

that there is a quasi-isomorphism β : B ⊗A L•(A)→ C̄•(Ā, B) whose expression is similar to the

one shown in (3.5).
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4. Hochschild cohomology of projective hypersurfaces

For any morphism X → Y of schemes or analytic spaces, Buchweitz and Flenner introduce the

Hochschild complex HX/Y of X over Y [5], and they deduce an isomorphism HX/Y ∼= S(LX/Y [1])

in the derived category D(X) where LX/Y denotes the cotangent complex of X over Y and

S(LX/Y [1]) is the derived symmetric algebra [4]. As a consequence, there is a decomposition of

Hochschild cohomology in terms of the derived exterior powers of the cotangent complex

(4.1) HHi(X) ∼=
⊕
p+q=i

ExtpX(∧qLX/k,OX)

in the special case Y = Spec k, which generalizes the HKR decomposition in the smooth case.

Around the same time, Schuhmacher also deduced the decomposition (4.1) using a different method

[21].

This decomposition is more computable than using Gerstenhaber-Schack complex directly.

However, we do not use it for our computation since its deformation behavior is implicit. As

a sequel to [6], [17], we compute HHi(X) starting from the Gerstenhaber-Schack complex, since

a deformation interpretation of Gerstenhaber-Schack 2-cocycles is at hand [6]. In §4.1 we con-

struct a series of complexes of OX -modules, whose associated simplicial complexes E•r are much

smaller than the Hodge components C̄′GS(OX |V)r of the normalized reduced Gerstenhaber-Schack

complex (for a chosen covering V). Using the technique from §2, we construct explicit quasi-

isomorphisms E•r → C̄′GS(OX |V)r for all r. Hence the Hodge decomposition (1.3) of HH•(X) is

obtained.

Due to the theoretical significance of the cotangent complex, we give expressions of ∧rLX/k in

terms of twisted structure sheaves OX(l) for all r in §4.2 when X is a projective hypersurface. This

allows us to explain directly how our results agree with Buchweitz and Flenner’s. In particular,

the decompositions (4.1) and (1.3) agree for any projective hypersurface.

4.1. Double complexes and quasi-isomorphisms. Let n ≥ 2, R = k[x0, . . . , xn] and F ∈ R
be a homogeneous polynomial of degree d ≥ 2. Let S = R/(F ) and X = ProjS ⊂ Pn. Choose a

point in Pn where F does not vanish, and change variables so that this point is (1 : 0 : · · · : 0);

then the coefficient of xd0 does not vanish. There is no harm to assume that the coefficient is equal

to one. In this way, X can be covered by the standard covering

U = {Ui = X ∩ {xi 6= 0} | 1 ≤ i ≤ n}.

Let V = {Vi1...is = Ui1 ∩ · · · ∩Uis | 1 ≤ i1 < · · · < is ≤ n} be the associated covering closed under

intersections. For any a p-simplex σ ∈ Np(V), say

σ = (V0 ⊆ V1 ⊆ · · · ⊆ Vp),

denote its domain V0 and codomain Vp by �σ and σ� respectively. Let C•,•(A) be the Gerstenhaber-

Schack double complex where A = OX |V, namely,

Cp,q(A) =
∏

σ∈Np(V)

Homk(A(σ�)
⊗q,A(�σ))

endowed with the (vertical) product Hochschild differential dHoch and the (horizontal) simplicial

differential dsimp. Recall that a cochain f = (fσ) ∈ Cp,q(A) is called normalized if for any

p-simplex σ, fσ is normalized, and it is called reduced if fσ = 0 whenever σ is degenerate. Let

C̄′•,•(A) be the normalized reduced sub-double complex of C•,•(A) and C̄′•GS(A) be the associated

total complex.
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Observe that for 1 ≤ i ≤ n, Ai = A(Ui) = k[y0, . . . , ŷi, . . . , yn]/(Gi) where

Gi = F (y0, . . . , yi−1, 1, yi+1, . . . , yn) = yd0 + · · ·

is monic. Here we assign an ordering y0 > · · · > yi−1 > yi+1 > · · · > yn. So we have complexes

L•(Ai) as given in §3. Denote by wwwi the sequence(
∂Gi
∂y0

, . . . ,
∂Gi
∂yi−1

,
∂Gi
∂yi+1

, . . . ,
∂Gi
∂yn

)
.

Then L•(Ai)r = τ≥r(K•(wwwi;Ai)[−2r]).

For any V ∈ V, say V = Vi1...is , let Φ(V ) = {i1, . . . , is}. If t ∈ Φ(V ), we may express A(V ) in

term of generators and relations as

A(V, t) = k[y0, . . . , ŷt, . . . , yn, y
−1
t1 , . . . , ŷ

−1
t , . . . , y−1

ts ]/(Gt, yt1y
−1
t1 − 1, . . . , ytsy

−1
ts − 1).

Since A(V, t) is a localization of At, there is a quasi-isomorphism

β : B ⊗At
L•(At) −→ C̄•(A(V, t), B)

for any flat morphism A(V, t) → B by the last paragraph of §3. If s also belongs to Φ(V ), the

canonical isomorphism A(V, t)→ A(V, s) is denoted by ζt,s. Unfortunately, ζt,s is not compatible

with the differentials of L•(At) and L•(As), namely, the square

B ⊗At
L•(At)

β //

ζt,s

��

C̄•(A(V, t), B)

B ⊗As L•(As)
β // C̄•(A(V, s), B)

ζ∗t,s

OO

fails to be commutative. So one does not expect that the complexes L•(A(V )) for all affine pieces

V can be made into a complex L• of sheaves on X equipped with nice restriction maps. The

reason is that the L•(A(V ))’s are too small. In order to study A globally, we have to put on their

weight so that our computation will be easier.

It follows from Euler’s formula
n∑
i=0

∂F

∂xi
· xi = d · F

that

uuu =

(
∂F

∂x0
,
∂F

∂x1
, . . . ,

∂F

∂xn

)
and vvv = (x0, x1, . . . , xn)

make up an n-POS in S. Also, there is an n-POS (uuui, vvvi) in Ai:

uuui =

(
∂Gi
∂y0

, . . . ,
∂Gi
∂yi−1

, Hi,
∂Gi
∂yi+1

, . . . ,
∂Gi
∂yn

)
and vvvi = (y0, . . . , yi−1, 1, yi+1, . . . , yn)

where

Hi =
∂F

∂xi
(y0, y1, . . . , yi−1, 1, yi+1, . . . , yn).

Since wwwi is the subsequence of uuui by deleting Hi, the results from §2 apply. As before we get the

mixed complex K•(uuu,vvv;S) and the double complex K•,•(uuu,vvv;S).

Let r ≥ 0 and let us consider τ rK•,•(uuu,vvv;S). We twist the degrees of its entries as in Figure

2 so that it is made into a double complex of graded S-modules. The associated total complex

gives rise to a complex of sheaves

F•r : OX −→ OX(1)n+1 −→ · · · −→ OX(rd− d+ 1)n+1 −→ OX(rd).

We in turn have double complexes E•,•r , G•,•r and H•,•r as follows:

Ep,qr = Cp
simp(V,Fqr |V) =

∏
σ∈Np(V)

Fqr (�σ),
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S(r)(
n+1
r ) ∂uuu // S(r + d− 1)(

n+1
r−1) ∂uuu // · · · ∂uuu // S(rd− d+ 1)(

n+1
1 ) ∂uuu // S(rd)

S(r − 1)(
n+1
r−1) ∂uuu //

∂vvv

OO

S(r + d− 2)(
n+1
r−2) ∂uuu //

∂vvv

OO

· · · ∂uuu // S(rd− d)

∂vvv

OO

...

∂vvv

OO

...

∂vvv

OO

. .
.

S(1)(
n+1
1 ) ∂uuu //

∂vvv

OO

S(d)

∂vvv

OO

S

∂vvv

OO

Figure 2. Double complex τ rK•,•(uuu,vvv;S)

Gp,qr = Čp(V,Fqr ) =
∏

Vi1 ...Vip

Fqr (Vi1 ∩ · · · ∩ Vip),

Hp,qr = Čp(U,Fqr ) =
∏

Ui1
...Uip

Fqr (Ui1 ∩ · · · ∩ Uip).

Their associated complexes are denoted by E•r , G•r and H•r respectively.

Lemma 4.1. There exist morphisms H•,•r → G•,•r → E•,•r which induce quasi-isomorphisms H•r →
G•r → E•r for all r.

Proof. The existence of H•,•r → G•,•r is clear since V is a refinement of U. The morphism G•,•r →
E•,•r is given in [6]. Both induce quasi-isomorphisms of their total complexes, by using the spectral

sequence argument. �

For the purpose of studying deformations in the following sections, let us make the composition

explicit. Fix a map λ : V→ U such that V ⊆ λ(V ) for all V ∈ V. The induced quasi-isomorphism

λ̄ : H•r → E•r maps f ∈ Hp,qr to

(4.2) λ̄(f)Vj0
⊆···⊆Vjp

= fλ(Vj0
)...λ(Vjp ).

Let C̄′•,•(A) = ⊕r∈NC̄′•,•r (A) be the Hodge decomposition. Our goal is to construct a family

of morphisms E•,•r → C̄′•,•r (A) of double complexes for all r that give rise to quasi-isomorphisms

E•r → C̄′•GS(A)r. Since the cohomology of C̄′•GS(A) turns out to be isomorphic to the Hochschild

cohomology of X (see [17, Thm. 7.8.1]), the cohomology HH•(X) can be computed by H• :=

⊕r∈NH•r , namely, HHi(X) ∼= Hi(H•).

Let σ ∈ Np(V) be a p-simplex and consider t, s ∈ Φ(σ�). We have quasi-isomorphisms

βt :
⊕
r∈N

τ≥r(K•(wwwt;A(�σ, t))[−2r]) ∼= A(�σ, t)⊗At
L•(At) −→ C̄•(A(σ�, t),A(�σ, t))

and βs, which is defined similarly. Let ◦∂t/∂yi,
◦µt and ◦∂s/∂yi,

◦µs be the resulting Hochschild

cochains as defined in (3.3) and (3.4). According to the generators and relations of A(σ�, t) and

A(�σ, t), we can regard ◦∂t/∂yi,
◦µt to be cochains in C̄•(A(σ�, t),A(�σ, t)) by abuse of notation,

and similarly for ◦∂s/∂yi,
◦µs.

Lemma 4.2. Let ζ ′t,s : C̄•(A(σ�, t),A(�σ, t))→ C̄•(A(σ�, s),A(�σ, s)) be the isomorphism induced

by ζt,s. Then



HOCHSCHILD COHOMOLOGY OF PROJECTIVE HYPERSURFACES 13

(1) ζ ′t,s(
◦∂t/∂yi) = yt · ◦∂s/∂yi if i 6= t, s.

(2) ζ ′t,s(
◦∂t/∂ys) = −

∑
i6=s ytyi · ◦∂s/∂yi.

(3) ζ ′t,s(
◦µt) = ydt · ◦µs.

Proof. (1) (2) Choose any f = yp00 · · · y
ps−1

s−1 y
ps+1

s+1 · · · ypnn ∈ BA(σ�,s) and let |f | =
∑
i6=t,s pi. We

have

ζ ′t,s

( ◦∂t
∂yi

)
(f) = ζt,s ◦

◦∂t
∂yi
◦ ζs,t(f)

= ζt,s ◦
◦∂t
∂yi

(yp00 · · · y
pt−1

t−1 y
pt+1

t+1 · · · y−|f |s · · · ypnn )

= ζt,s(piy
p0
0 · · · y

pi−1
i · · · ypt−1

t−1 y
pt+1

t+1 · · · y−|f |s · · · ypnn )

= piy
p0
0 · · · y

pi−1
i · · · ypt+1

t · · · yps−1

s−1 y
ps+1

s+1 · · · ypnn

= yt
◦∂s
∂yi

(f)

for all i 6= t, s, and

ζ ′t,s

( ◦∂t
∂ys

)
(f) = ζt,s ◦

◦∂t
∂ys

(yp00 · · · y
pt−1

t−1 y
pt+1

t+1 · · · y−|f |s · · · ypnn )

= ζt,s(−|f |yp00 · · · y
pt−1

t−1 y
pt+1

t+1 · · · y−|f |−1
s · · · ypnn )

= −|f |yp00 · · · y
pt+1
t · · · yps−1

s−1 y
ps+1

s+1 · · · ypnn
= −yt|f |f

= −
∑
i 6=s

ytyi
◦∂s
∂yi

(f).

(3) Let g = yq00 · · · y
qs−1

s−1 y
qs+1

s+1 · · · yqnn ∈ BA(σ�,s) and |g| =
∑
i6=t,s qi. Assume p0 + q0 ≥ d. Then

ζ ′t,s(
◦µt)(f, g) = ζt,s ◦ ◦µt(yp00 · · · y

pt−1

t−1 y
pt+1

t+1 · · · y−|f |s · · · ypnn , yq00 · · · y
qt−1

t−1 y
qt+1

t+1 · · · y−|g|s · · · yqnn )

= ζt,s(y
p0+q0−d
0 · · · ypt−1+qt−1

t−1 y
pt+1+qt+1

t+1 · · · y−|f |−|g|s · · · ypn+qn
n )

= yp0+q0−d
0 · · · ypt+qt+dt · · · yps−1+qs−1

s−1 y
ps+1+qs+1

s+1 · · · ypn+qn
n

= ydt · ◦µs(f, g).

On the other hand, ζ ′t,s(
◦µt)(f, g) = 0 = ydt · ◦µs(f, g) trivially holds if p0 + q0 < d. �

There are proportional n-POS (ζt,s(uuut), ζt,s(vvvt)), (uuus, vvvs) in A(�σ, s) with uuus = yd−1
t ζt,s(uuut) and

vvvs = ytζt,s(vvvt). There is an isomorphism

ξTot
t,s,(r) : Tot(τ rK•,•(ζt,s(uuut), ζt,s(vvvt);A(�σ, s))) −→ Tot(τ rK•,•(uuus, vvvs;A(�σ, s)))

as given in (2.1). Since the t-th, s-th components of ζt,s(vvvt) and vvvs are invertible, we have the

diagram

(4.3) Tot(τ rK•,•(ζt,s(uuut), ζt,s(vvvt);A(�σ, s)))

ξTot
t,s,(r)

��

πt,(r) // τ≥r(K•(ζt,s(wwwt);A(�σ, s))[−2r])

β′t,(r)
��

C̄•(A(σ�, s),A(�σ, s))

Tot(τ rK•,•(uuus, vvvs;A(�σ, s)))
πs,(r) // τ≥r(K•(wwws;A(�σ, s))[−2r])

βs,(r)

OO

where β′t,(r) is induced by βt,(r) and ζt,s.

Lemma 4.3. The diagram (4.3) is commutative.
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Proof. Choose any base element E = ei1 ∧ · · · ∧ eip ∈ Kp(ζt,s(uuut), ζt,s(vvvt);A(�σ, s)). When viewed

as a cochain in τ rK•,•(ζt,s(uuut), ζt,s(vvvt);A(�σ, s)), E locates in position (r − p, r). So ξTot
t,s,(r)(E) =

(yd−1
t )r−pyrtE = y

r+(d−1)(r−p)
t E. Let us prove the lemma by a case-by-case argument.

If t, s /∈ {i1, . . . , ip}, then

β′t,(r) ◦ πt,(r)(E) = β′t,(r)(ei1...ips
(r−p))

= ζt,s ◦ (−1)(
p
2)
( ◦∂t
∂yi1

∪ · · · ∪
◦∂t
∂yip

∪ ◦µ∪(r−p)
t

)
◦ (ζs,t)

⊗(2r−p)

= (−1)(
p
2)ζ ′t,s

( ◦∂t
∂yi1

)
∪ · · · ∪ ζ ′t,s

( ◦∂t
∂yip

)
∪
(
ζ ′t,s(

◦µt)
)∪(r−p)

= (−1)(
p
2)yt

◦∂s
∂yi1

∪ · · · ∪ yt
◦∂s
∂yip

∪ (ydt · ◦µs)∪(r−p)

= y
r+(d−1)(r−p)
t (−1)(

p
2)
◦∂s
∂yi1

∪ · · · ∪
◦∂s
∂yip

∪ ◦µ∪(r−p)
s

= y
r+(d−1)(r−p)
t βs,(r)(ei1...ips

(r−p))

= βs,(r) ◦ πs,(r) ◦ ξTot
t,s,(r)(E).

If s /∈ {i1, . . . , ip} and t = ij for some j, then

β′t,(r) ◦ πt,(r)(E) = −
∑
m 6=t

ymy
−1
t ζt,s ◦ (−1)(

p
2)
( ◦∂t
∂yi1

∪ · · · ∪
◦∂t

∂yij−1

∪
◦∂t
∂ym

∪
◦∂t
∂yij+1

∪ · · · ∪
◦∂t
∂yip

∪ ◦µ∪(r−p)
t

)
◦ (ζs,t)

⊗(2r−p)

= −
∑
m6=t

ymy
−1
t (−1)(

p
2)ζ ′t,s

( ◦∂t
∂yi1

)
∪ · · · ∪ ζ ′t,s

( ◦∂t
∂ym

)
∪ · · ·

∪ ζ ′t,s
( ◦∂t
∂yip

)
∪
(
ζ ′t,s(

◦µt)
)∪(r−p)

= −
∑
m 6=t,s

ymy
r+(d−1)(r−p)−1
t (−1)(

p
2)
◦∂s
∂yi1

∪ · · · ∪
◦∂s
∂ym

∪ · · · ∪
◦∂s
∂yip

∪ (◦µs)
∪(r−p) − yr+(d−1)(r−p)−2

t (−1)(
p
2)
◦∂s
∂yi1

∪ · · ·

∪
(
−
∑
i 6=s

ytyi
◦∂s
∂yi

)
∪ · · · ∪

◦∂s
∂yip

∪ (◦µs)
∪(r−p)

= y
r+(d−1)(r−p)
t (−1)(

p
2)
◦∂s
∂yi1

∪ · · · ∪
◦∂s
∂yt
∪ · · · ∪

◦∂s
∂yip

∪ (◦µs)
∧(r−p)

= y
r+(d−1)(r−p)
t βs,(r)(ei1...ips

(r−p))

= βs,(r) ◦ πs,(r) ◦ ξTot
t,s,(r)(E).

If t /∈ {i1, . . . , ip} and s = il for some l, then

β′t,(r) ◦ πt,(r)(E) = (−1)(
p
2)ζ ′t,s

( ◦∂t
∂yi1

)
∪ · · · ∪ ζ ′t,s

( ◦∂t
∂yip

)
∪
(
ζ ′t,s(

◦µt)
)∪(r−p)

= y
r+(d−1)(r−p)−1
t (−1)(

p
2)
◦∂s
∂yi1

∪ · · · ∪
(
−
∑
m 6=s

ytym
◦∂s
∂ym

)
∪ · · ·

∪
◦∂s
∂yip

∪ ◦µ∧(r−p)
s

= −yr+(d−1)(r−p)
t

∑
m 6=s

ym(−1)(
p
2)
◦∂s
∂yi1

∪ · · · ∪
◦∂s
∂ym

∪ · · · ∪
◦∂s
∂yip

∪ ◦µ∪(r−p)
s
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= −yr+(d−1)(r−p)
t

∑
m 6=s

ymβs,(r)(ei1...m...ips
(r−p))

= βs,(r) ◦ πs,(r) ◦ ξTot
t,s,(r)(E).

If t = ij and s = il for some j, l then

β′t,(r) ◦ πt,(r)(E) = −
∑
m 6=t

ymy
−1
t ζt,s ◦ (−1)(

p
2)
( ◦∂t
∂yi1

∪ · · · ∪
◦∂t

∂yij−1

∪
◦∂t
∂ym

∪
◦∂t
∂yij+1

∪ · · · ∪
◦∂t
∂ys
∪ · · · ∪

◦∂t
∂yip

∪ ◦µ∪(r−p)
t

)
◦ (ζs,t)

⊗(2r−p)

= −
∑
m 6=t,s

ymy
−1
t (−1)(

p
2)ζ ′t,s

( ◦∂t
∂yi1

)
∪ · · · ∪ ζ ′t,s

( ◦∂t
∂ym

)
∪ · · ·

∪ ζ ′t,s
( ◦∂t
∂ys

)
∪ · · · ∪ ζ ′t,s

( ◦∂t
∂yip

)
∪
(
ζ ′t,s(

◦µt)
)∪(r−p)

= −
∑
m 6=t,s

ymy
r+(d−1)(r−p)−2
t (−1)(

p
2)
◦∂s
∂yi1

∪ · · · ∪
◦∂s
∂ym

∪ · · ·

∪
(
−
∑
i 6=s

ytyi
◦∂s
∂yi

)
∪ · · · ∪

◦∂s
∂yip

∪ (◦µs)
∪(r−p)

= y
r+(d−1)(r−p)−1
t

∑
m6=t,s

∑
i 6=s

ymyi(−1)(
p
2)
◦∂s
∂yi1

∪ · · · ∪
◦∂s
∂ym

∪ · · ·

∪
◦∂s
∂yi
∪ · · · ∪

◦∂s
∂yip

∪ (◦µs)
∪(r−p)

= y
r+(d−1)(r−p)−1
t

∑
m6=t,s

ymyt(−1)(
p
2)
◦∂s
∂yi1

∪ · · · ∪
◦∂s
∂ym

∪ · · ·

∪
◦∂s
∂yt
∪ · · · ∪

◦∂s
∂yip

∪ (◦µs)
∪(r−p)

= −yr+(d−1)(r−p)
t

∑
m6=s

ym(−1)(
p
2)
◦∂s
∂yi1

∪ · · · ∪
◦∂s
∂yt
∪ · · · ∪

◦∂s
∂ym
∪

· · · ∪
◦∂s
∂yip

∪ (◦µs)
∪(r−p)

= −yr+(d−1)(r−p)
t

∑
m6=s

ymβs,(r)(ei1...m...ips
(r−p))

= βs,(r) ◦ πs,(r) ◦ ξTot
t,s,(r)(E). �

Therefore we obtain a commutative diagram⊕
r∈N

Tot(τ rK•,•(uuut, vvvt;A(�σ, t)))

ζt,s

��

βt◦πt // C̄•(A(σ�, t),A(�σ, t))

ζ′t,s

��⊕
r∈N

Tot(τ rK•,•(ζt,s(uuut), ζt,s(vvvt);A(�σ, s)))

ξTot
t,s

��

β′t◦πt // C̄•(A(σ�, s),A(�σ, s))

⊕
r∈N

Tot(τ rK•,•(uuus, vvvs;A(�σ, s)))
βs◦πs // C̄•(A(σ�, s),A(�σ, s))

where the vertical morphisms are isomorphisms and the horizontal ones are quasi-isomorphisms.

Let ξ′t,s = ξTot
t,s ◦ ζt,s. The twisting number r + (d − 1)(r − d) of the (r − p, r)-entry in Figure 2

coincides with the exponent of yt in the proof of Lemma 4.3. This is equivalent to say that ξ′t,s
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is the canonical automorphism of F•(�σ) if we write A(�σ) in terms of different generators and

relations. Moreover, it is easy to check the coherence conditions

ξ′s,u ◦ ξ′t,s = ξ′t,u, ζ ′s,u ◦ ζ ′t,s = ζ ′t,u

hold true for any additional u ∈ Φ(σ�). This gives rise to well-defined morphisms

γσ = β ◦ π : F•(�σ)→ C̄•(A(σ�),A(�σ))

for all simplices σ ∈ N•(V) which commute with simplicial differentials. Remember that β and π

preserve the Hodge decomposition. These facts are summarized as

Theorem 4.4. Let E•,• = ⊕r∈NE•,•r . The morphisms γσ : F•(�σ) → C̄•(A(σ�),A(�σ)) for all

simplices σ on V constitute a morphism γ : E•,• → C̄′•,•(A) of double complexes that gives rise to

a quasi-isomorphism E• → C̄′•GS(A). Moreover, γ preserves the Hodge decomposition.

4.2. The cotangent complex of a hypersurface. In [1, Expose VIII] Berthelot defines LX/Y
as a complex concentrated in two degrees when X → Y factors as a closed immersion X → X ′

followed by a smooth morphism X ′ → Y . Obviously, when Y = Spec k and X = ProjS, X ′ can

be chosen to be ProjR = Pn and so the factorization X
ı−→ Pn → Spec k satisfies the condition.

Let O = OPn , and let I ⊂ O be the sheaf of ideals determined by the closed immersion X → Pn.

By definition, L0
X/k = ı∗ΩPn , L−1

X/k = I/I2, and other LjX/k are all zero, the differential I/I2 =

ı∗I → ı∗ΩPn is induced by I ↪→ O d−→ ΩPn .

Note that the complex

0 −→ OX(−d)
∂uuu−−→ OX(−1)n+1 ∂vvv−−→ OX −→ 0

concentrated in degrees −1, 0 and 1 is the same as F•∨1 [−1] where (−)∨ = Hom(−,OX). We

claim that the complex presents LX/k. In fact, the isomorphism I/I2 ∼= OX(−d) is obvious. Let

ı∗ act on the exact sequence

(4.4) 0 −→ ΩPn −→ O(−1)n+1 ∂vvv−−→ O −→ 0.

Since vector bundles are acyclic for any pullback, we have another exact sequence

0 −→ ı∗ΩPn −→ OX(−1)n+1 ∂vvv−−→ OX −→ 0.

This immediately gives the quasi-isomorphism

· · · // 0 // OX(−d)
∂uuu // OX(−1)n+1 ∂vvv // OX // 0 // · · ·

· · · // 0 //

OO

I/I2 d //

∼=

OO

ı∗ΩPn //

OO

0 //

OO

0 //

OO

· · ·

Proposition 4.5. In the derived category D(X), ∧rLX/k ∼= F•∨r [−r] for any r ∈ N.

Proof. Because LX/k is the two-term complex of vector bundles OX(d) → ı∗ΩPn , the exterior

power ∧rLX/k is given by

OX(−dr) −→ ı∗ΩPn(−d(r − 1)) −→ · · · −→ ∧r−sı∗ΩPn(−ds) −→ · · · −→ ∧rı∗ΩPn ,

for example by [20, §4].

Recall that the exact sequence (4.4) can be generalized to the long exact sequence

0 −→ ΩlPn −→ O(−l)(
n+1

l ) ∂vvv−−→ O(−l + 1)(
n+1
l−1) ∂vvv−−→ · · · ∂vvv−−→ O(−1)n+1 ∂vvv−−→ O −→ 0
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for any l ∈ N.2 Just as before, the pullback

0 −→ ı∗ΩlPn −→ OX(−l)(
n+1

l ) ∂vvv−−→ OX(−l + 1)(
n+1
l−1) ∂vvv−−→ · · · ∂vvv−−→ OX(−1)n+1 ∂vvv−−→ OX −→ 0

is also exact.

These complexes constitute the diagram as follows,

OX

OX(−d)
∂uuu // OX(−1)n+1

∂vvv

OO

. .
. ...

∂vvv

OO

...

∂vvv

OO

OX(d− rd)
∂uuu // · · · ∂uuu // OX(2− r − d)(

n+1
r−2) ∂uuu //

∂vvv

OO

OX(−r + 1)(
n+1
r−1)

∂vvv

OO

OX(−rd)
∂uuu // OX(d− rd− 1)n+1 ∂uuu //

∂vvv

OO

· · · ∂uuu // OX(1− r − d)(
n+1
r−1) ∂uuu //

∂vvv

OO

OX(−r)(
n+1
r )

∂vvv

OO

OX(−rd) //

OO

ı∗ΩPn(d− rd) //

OO

· · · // ı∗Ωr−1
Pn (−d) //

OO

ı∗ΩrPn

OO

where each column is exact, and each square is anti-commutative (we adapt the Koszul sign rule

here). Note that the associated total complex of the double complex by deleting the bottom row is

exactly F•∨r [−r]. Hence the diagram gives rise to a quasi-isomorphisms ∧rLX/k → F•∨r [−r]. �

Before closing this section, let us compare Buchweitz and Flenner’s formula (4.1)and ours (i.e.

HHi(X) ∼= Hi(H•)) via the isomorphisms ∧rLX/k → F•∨r [−r]. Since F•q is a complex of locally

free sheaves, one easily deduces that ExtpX(F•∨q [−q],OX) ∼= Hp+q(F•q ) where the hypercohomol-

ogy Hp+q(F•q ) can also be computed by the (total) Čech complex (see e.g. [3, Ch. 1]), namely,

Hp+q(F•q ) ∼= Hp+q(H•q). So⊕
p+q=i

ExtpX(∧qLX/k,OX) ∼=
⊕
p+q=i

Hp+q(H•q) = Hi(H•).

Thus the Hodge decomposition and the HKR decomposition (in the sense of Buchweitz and Flen-

ner) of HH•(X) are component-wise isomorphic for any hypersurface X ⊂ Pn.

5. Cohomology computation

In this section we prove our main theorem (Theorem 1.1), providing a computation of the

Hochschild cohomology groups of a projective hypersurface of degree d in Pn in terms of the easier

complexes H•r . The result makes a basic distinction between the case d > n + 1, the harder case

d = n+ 1 and the easier case d ≤ n.

Let us associate some graded modules to X = ProjS. Note that the ∂vvv constitute a morphism

· · · // K−3(uuu;S)
∂uuu // K−2(uuu;S)

∂uuu // K−1(uuu;S)
∂uuu // K0(uuu;S)

· · · // K−2(uuu;S)
∂uuu //

∂vvv

OO

K−1(uuu;S)
∂uuu //

∂vvv

OO

K0(uuu;S) //

∂vvv

OO

0

OO

2The proof is similar to the one of [11, Thm. 8.13].
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from which we obtain the cokernel complex C•(uuu;S):

(5.1) · · · −→ K−3(uuu;S)/ im ∂vvv
∂uuu−−→ K−2(uuu;S)/ im ∂vvv

∂uuu−−→ K−1(uuu;S)/ im ∂vvv
∂uuu−−→ K0(uuu;S).

The i-th cohomology group of C•(uuu;S) is denoted by P i and the i-th cocycle group by Qi. Clearly,

the S-modules P i, Qi are graded modules. Denote by Zi the i-th cocycle group of K•(vvv;R), which

is a graded R-module.

Observe that we have defined quasi-isomorphisms H• → G• → E• → C̄′•GS(A). From now on,

let us compute H•GS(A) := H•C̄′•GS(A) by using H•,•. We need some lemmas.

Lemma 5.1. The cohomology groups of K•(vvv?;S) are H0 = H0
0 = k, H−1 = H−1

d−1 = kuuu? where

uuu? = (∂F/∂x0,−∂F/∂x1, . . . , (−1)n∂F/∂xn), and Hi = 0 for all i 6= 0, −1.

Proof. Recall Remark 2.1 and note that vvv?0 = (−x1, x2, . . . , (−1)nxn) is a regular sequence in S.

So K•(vvv?;S), which is the mapping cone of K•(vvv?0;S)
x0−→ K•(vvv?0;S), is quasi-isomorphic to

· · · −→ 0 −→ S/(vvv?0)
x0−−→ S/(vvv?0) −→ 0.

Since S/(vvv?0) ∼= k[x0]/(xd0), we have H0 = k and H−1 ∼= k(1 − d) as graded modules. To show

uuu? is a base element in H−1, we will check that uuu? never belongs to im ∂vvv? . This is clear since

∂F/∂x0 contains dxd−1
0 as a summand. �

The following is well known:

Lemma 5.2. The cohomology groups of K•(vvv;R) are H0 = H0
0 = k, and Hi = 0 for all i 6= 0.

Lemma 5.3. Let τ r0 be the zeroth graded component of τ rK•,•(uuu,vvv;S).

(1) If 0 ≤ r ≤ n, then

Hi(Tot τ r0 ) ∼=


0, 0 ≤ i < r,

Q−rr , i = r,

P i−2r
r+(i−r)(d−1), r < i ≤ 2r.

(2) If r ≥ n+ 1 and d = n+ 1, then

Hi(Tot τ r0 ) ∼=


0, 0 ≤ i ≤ r, i 6= n,

k, i = n,

P i−2r
r+(i−r)(d−1), r < i ≤ 2r.

(3) If r ≥ n+ 1 and d 6= n+ 1, then

Hi(Tot τ r0 ) ∼=

{
0, 0 ≤ i ≤ r,
P i−2r
r+(i−r)(d−1), r < i ≤ 2r.

Proof. We prove the statements by computing the spectral sequence IEp,qa determined by τ r0 .

(1) Let 0 ≤ r ≤ n. The p-th column of τ rK•,•(uuu,vvv;S) is the truncation τ≤−(n+1−r+p)K•(vvv?;S)

up to twist. Notice that −(n+ 1− r + p) ≤ −1. By Lemma 5.1, Hi(τ≤−(n+1−r+p)K•(vvv?;S)) = 0

if i 6= −(n+ 1− r + p). It follows that the p-th column of τ rK•,•(uuu,vvv;S) is exact except in spot

(p, r). By considering the zeroth graded component, we have IEp,q1 = 0 if q 6= r, and

IEp,r1 =
(
S(r + p(d− 1))(

n+1
r−p)/ im ∂vvv

)
0

=
(
K−(r−p)(uuu;S)/ im ∂vvv

)
r+p(d−1)

.

To compute IEp,r2 , it suffices to consider the complex(
K−r(uuu;S)/ im ∂vvv

)
r
−→ · · · −→

(
K−1(uuu;S)/ im ∂vvv

)
r+(r−1)(d−1)

∂uuu−−→
(
K0(uuu;S)

)
rd
.
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Comparing this complex with (5.1), we have IE0,r
2 = Q−rr , IEp,r2 = P

−(r−p)
r+p(d−1) if p ≥ 1. Hence

Hi(Tot τ r0 ) ∼= IEi−r,r∞ = IEi−r,r2 = P i−2r
r+(i−r)(d−1) when r < i ≤ 2r, and Hr(Tot τ r0 ) ∼= IE0,r

∞ =
IE0,r

2 = Q−rr .

(2) Let r ≥ n+ 1 and d = n+ 1. Just like in the situation in (1), we have

IEp,r1 =
(
K−(r−p)(uuu;S)/ im ∂vvv

)
r+p(d−1)

.

By Lemma 5.1 and taking into consideration the degrees, we find one more nonzero IEp,q1 , namely,
IE0,n

1
∼= k. For IEp,q2 , as shown in (1), IE0,r

2 = Q−rr and IEp,r2 = P
−(r−p)
r+p(d−1) for all 1 ≤ p ≤ 2r.

Note that Q
−(n+1)
n+1 is a k-submodule of (S/ im ∂vvv)n+1 = kn+1 = 0 and Q−s = 0 if s ≥ n+2. Hence

IE0,r
2 = Q−rr = 0 since r ≥ n + 1. We also have IE0,n

2 = IE0,n
1
∼= k and the rest IEp,q2 being all

zero. Assertion (2) follows.

(3) The proof is completely similar to (2). The only difference is that IE0,n
1 is zero since

d 6= n+ 1. �

The double complex H•,•r leads to a spectral sequence IIEp,qr,a by filtration by rows. We begin

to calculate it.

5.1. Case 1: d > n+ 1. Suppose m ≥ 0 and O = OPn . By the exact sequence

0 −→ O(m− d)
F−−→ O(m) −→ OX(m) −→ 0,

we immediately conclude that Hi(X,OX(m)) = 0 if i 6= 0, n − 1, and Hn−1(X,OX(m)) ∼=
Hn(Pn,O(m−d)) ∼= H0(Pn,O(d−n− 1−m))∗. Obviously, H0(Pn,O(d−n− 1−m)) has a basis

{xi00 x
i1
1 · · ·xinn ∈ R | i0 + i1 + · · ·+ in = d− n− 1−m, i0, i1, . . . , in ≥ 0}.

On the other hand, the Čech cohomology group Ȟn−1(U,OX(m)) has a basis

{xj00 x
j1
1 · · ·xjnn ∈ Sx1···xn

| j0 + j1 + · · ·+ jn = m, 0 ≤ j0 ≤ d− 1, j1, . . . , jn ≤ −1}

where Sx1···xn
is the localization of S at x1 · · ·xn. Since both groups have finite dimension over

k, the duality gives rise to the bijection

S : H0(Pn,O(d− n− 1−m)) −→ Ȟn−1(U,OX(m)),(5.2)

xi00 x
i1
1 · · ·xinn 7−→ xd−1−i0

0 x−1−i1
1 · · ·x−1−in

n .

The map S induces H0(Pn,O(d − n − 1 −m)r) −→ Ȟn−1(U,OX(m)r) for any r ∈ N which is

also denoted by S .

Since Ȟn−1(U,OX(m)) = 0 if m ≥ d, by the definition of H•,•r , we have

IIEp,qr,1 = Ȟq(U,Fpr ) =


Ȟn−1

(
U,OX(p)(

n+1
p )), 0 ≤ p ≤ r, q = n− 1,

(Tot τ r0 )p, 0 ≤ p ≤ 2r, q = 0,

0, otherwise.

Since Ȟn−1
(
U,OX(p)(

n+1
p )) =

(
R

(n+1
p )

d−n−1−p
)∗

= K−p(vvv;R)∗d−n−1−p, the complex

IIE0,n−1
r,1 −→ IIE1,n−1

r,1 −→ · · · −→ IIEr−1,n−1
r,1 −→ IIEr,n−1

r,1

is dual to

(5.3)

K0(vvv;R)d−n−1 ←− K−1(vvv;R)d−n−2 ←− · · · ←− K−r+1(vvv;R)d−n−r ←− K−r(vvv;R)d−n−1−r.

By Lemma 5.2, the only non trivial cohomology of the complex K•(vvv;R) is H0(K•(vvv;R)) = k.

The zero-th cohomology group of (5.3) is zero since the (d − n − 1)-st graded component in k is
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zero. The unique possible nonzero cohomology of (5.3) is H−r = Z−rd−n−1−r, yielding IIEr,n−1
r,2 =

S (Z−rd−n−1−r). Combining this with Lemma 5.3, we obtain that IIEp,qr,2 is given by

IIEp,qr,2 =


S (Z−rd−n−1−r), p = r, q = n− 1,

P p−2r
r+(p−r)(d−1), r < p ≤ 2r, q = 0,

Q−rr , p = r, q = 0,

0, otherwise.

Immediately, IIEp,qr,n = · · · = IIEp,qr,2 . On one hand, IIEr+n,0r,n = 0 when r ≤ n− 1, since r+ n > 2r;

on the other hand, in case r ≥ n, we have d−n−1− r ≤ −1 and so IIEr,n−1
r,n = 0 since R has only

non-negative grading. So in order to show IIEp,qr,n+1 = IIEp,qr,n for any pair (r, n), it is sufficient to

prove the differential IIEn,n−1
n,n → IIE2n,0

n,n (i.e. the case r = n) is zero.

Since IIEn,n−1
n,n is a sub-quotient of Č′n−1(U,Fnn ), we choose a cocycle cn−1,n ∈ Č′n−1(U,Fnn )

for any class in IIEn,n−1
n,n . Performing a diagram chase, a cochain (c0,2n−1, c1,2n−2, . . . , cn−1,n) in

H• can be given. Notice that c0,2n−1 ∈ H0,2n−1 = Č′0(U,F2n−1
n ) = K−1(uuu;S)nd−d+1, and so

dv,H(c0,2n−1) = ∂uuu(c0,2n−1) is a coboudary in K0(uuu;S)nd, i.e. dv,H(c0,2n−1) represents the zero

class in P 0
nd = IIE2n,0

n,n . It follows that the differential IIEn,n−1
n,n → IIE2n,0

n,n is a zero map. Therefore,
IIEp,qr,∞ = IIEp,qr,2 , and

Hi(H•) ∼=
⊕
r∈N

⊕
p+q=i

IIEp,qr,∞ =
⊕
r<i

P i−2r
r+(i−r)(d−1) ⊕Q

−i
i ⊕S (Z−i+n−1

d−i−2 ).

5.2. Case 2: d = n+ 1. The formula

IIEp,qr,1 =


Ȟn−1

(
U,OX(p)(

n+1
p )), 0 ≤ p ≤ r, q = n− 1,

(Tot τ r0 )p, 0 ≤ p ≤ 2r, q = 0,

0, otherwise.

remains valid in this case. Note that the complex (5.3) has only one nonzero term K0(vvv;R)d−n−1 =

R0 = k. By applying Lemma 5.3 again, we conclude that for 0 ≤ r ≤ n,

IIEp,qr,2 =


k, p = 0, q = n− 1,

P p−2r
r+n(p−r), r < p ≤ 2r, q = 0,

Q−rr , p = r, q = 0,

0, otherwise,

and for r ≥ n+ 1,

IIEp,qr,2 =


k, p = 0, q = n− 1,

k, p = n, q = 0,

P p−2r
r+n(p−r), r < p ≤ 2r, q = 0,

0. otherwise.

It follows that IIEp,qr,n = · · · = IIEp,qr,2 .

Since for any Vi1...is ∈ V, the algebra Ai1...is = OX(Vi1...is) is identified with the zero-th graded

component of Sxi1 ···xis
, the localization of S with respect to the element xi1 · · ·xis , we conclude

that the Čech complex Č′•(U,F0
r ) for any r is the sub-complex of∏

i1

Sxi1
−→

∏
i1<i2

Sxi1xi2
−→ · · · −→

∏
i1<···<in−1

Sxi1 ···xin−1
−→ Sx1···xn

consisting of all cochains of degree zero. Since IIE0,n−1
r,n is a sub-quotient of Č′n−1(U,F0

r ), it seems

apt to choose xn0x
−1
1 · · ·x−1

n ∈ Č′n−1(U,F0
r ) as a base element of IIE0,n−1

r,n . However, for the sake

of easy computation, we use x−1
1 · · ·x−1

n · ∂F/∂x0 flexibly rather than xn0x
−1
1 · · ·x−1

n . Similar to

the argument in the case d > n + 1, one finds a cochain (c0,n−1, c1,n−2, . . . , cn−1,0) in H• with

cn−1,0 = x−1
1 · · ·x−1

n · ∂F/∂x0. The differential IIE0,n
r,n−1 → IIEn,0r,n sends the class represented by

cn−1,0 to the one represented by dv,H(c0,n−1).
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(1) If 0 ≤ r ≤ n − 1, dv,H(c0,n−1) belongs to Pn−2r
r+n(n−r). Recall the shape and size of the

triangle τ rK•,•(uuu,vvv;S). The element dv,H(c0,n−1) is zero itself if r is very small, or is a

sum ∂uuu(?) + ∂vvv(?
′) if r is larger. According to the construction of (5.3), ∂uuu(?) + ∂vvv(?

′)

necessarily represents the zero class. In both cases, cn−1,0 is killed by the differential
IIE0,n

r,n−1 → IIEn,0r,n .

(2) If r = n, the diagram chase shows dv,H(c0,n−1) = uuu? + im ∂vvv ∈ Q−nn = ker{Sn+1
n / im ∂vvv →

S
n(n+1)/2
2n im ∂vvv}. By the definition of C•(uuu;S), uuu? + im ∂vvv happens to be a base element

of im{S0/ im ∂vvv → Sn+1
n / im ∂vvv}. So IIE0,n

r,n−1 = k → IIEn,0r,n = Q−nn is injective and its

cokernel is given by Q−nn /(kuuu? + im ∂vvv) = P−nn .

(3) If r ≥ n+ 1, we claim that the differential IIE0,n
r,n−1 = k → IIEn,0r,n = k is an isomorphism.

The assertion follows from Lemma 5.4 which will be proven later on.

Summarizing, the spectral sequence

IIEp,qr,∞ = IIEp,qr,n+1 =


k, p = 0, q = n− 1,

P p−2r
r+n(p−r), r < p ≤ 2r, q = 0,

Q−rr , p = r, q = 0,

0, otherwise,

if 0 ≤ r ≤ n− 1,

IIEp,qr,∞ = IIEp,qr,n+1 =

{
P p−2r
r+n(p−r), r ≤ p ≤ 2r, q = 0,

0, otherwise,
if r = n,

IIEp,qr,∞ = IIEp,qr,n+1 =

{
P p−2r
r+n(p−r), r < p ≤ 2r, q = 0,

0, otherwise,
if r ≥ n+ 1.

Therefore,

Hi(H•) ∼=



⊕
r<i

P i−2r
r+n(i−r) ⊕Q

−i
i , i 6= n− 1, n,⊕

r<i

P i−2r
r+n(i−r) ⊕Q

−i
i ⊕ k

n, i = n− 1,⊕
r≤i

P i−2r
r+n(i−r), i = n.

Note that Fqr is a direct sum of some terms as given in Figure 2, and hence Hp,qr admits a

decomposition

Čp(U,OX(q)(
n+1
q ))⊕ Čp(U,OX(q + d− 2)(

n+1
q−2))⊕ Čp(U,OX(q + 2d− 4)(

n+1
q−4))⊕ · · ·

when q ≤ r. Intuitively, OX(q)(
n+1
q ) appearing in the first component corresponds to a graded

module located at the leftmost edge in Figure 2. We hence call a cochain in Hp,qr left preferred if

it has possible nonzero component only in Čp(U,OX(q)(
n+1
q )).

Lemma 5.4. Suppose d = n+ 1 and r ≥ n. There exists a cochain (c0,n−1, c1,n−2, . . . , cn−1,0) in

Hn−1
r such that each cn−1−q,q is left preferred in Hn−1−q,q

r and

cn−1,0 = x−1
1 · · ·x−1

n

∂F

∂x0
, dF (c0,n−1, c1,n−2, . . . , cn−1,0) = ((−1)n−1uuu?, 0, . . . , 0).

Proof. During the proof, we will frequently meet elements in Sxi1
···xim

. To avoid confusion, we

underline denominators to distinguish between similar looking elements. For example, x−1
1 ∈ Sx1

,

x−1
1 x0

2 ∈ Sx1x2
, x−1

1 x0
2x

0
3 ∈ Sx1x2x3

. The notations fj1...js stand for formal bases elements.

When the Čech indices (i1, . . . , is) appear, the complements are denote by (j1, . . . , jn−s),

namely, the latter are obtained by deleting i1, . . . , is from (1, 2, . . . , n). The permutation(
1 . . . s s+ 1 . . . n
i1 . . . is j1 . . . jn−s

)
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is a shuffle, whose parity (n2− s2 +n− s)/2− (j1 + · · ·+ jn−s) is denoted by ℘(i1, . . . , is) or even

by ℘(ı) if no confusion arises.

Starting with cn−1,0 = x−1
1 · · ·x−1

n ∂F/∂x0, we have

dF (cn−1,0) = (−1)n−1x−1
1 · · ·x−1

n x0
∂F

∂x0
f0 + (−1)n−1

n∑
j=1

x−1
1 · · ·x0

j · · ·x−1
n

∂F

∂x0
fj

= (−1)n−1
n∑
j=1

x−1
1 · · ·x0

j · · ·x−1
n

(
∂F

∂x0
fj −

∂F

∂xj
f0

)
.

Choose cn−2,1 = (cn−2,1
i1,...,in−1

) as

cn−2,1
i1,...,in−1

= (−1)℘(ı)+1x−1
i1
· · ·x−1

in−1

(
∂F

∂x0
fj1 −

∂F

∂xj1
f0

)
.

One can easily show that ∂uuu(cn−2,1) = 0. Thus dF (cn−2,1) = (−1)n−2∂vvv(c
n−2,1) whose compo-

nents are

dF (cn−2,1
i1,...,in−1

) = (−1)j1+1x−1
i1
· · ·x−1

in−1
x0
∂F

∂x0
f0j1 + (−1)j1+1

n−1∑
l=1

x−1
i1
· · ·x0

il
· · ·x−1

in−1

∂F

∂x0
filj1

+ (−1)j1+1
n−1∑
l=1

x−1
i1
· · ·x0

il
· · ·x−1

in−1

∂F

∂xj1
f0il + (−1)j1+1x−1

i1
· · ·x−1

in−1
xj1

∂F

∂xj1
f0j1

= (−1)j1+1
n−1∑
l=1

x−1
i1
· · ·x0

il
· · ·x−1

in−1

(
∂F

∂x0
filj1 +

∂F

∂xj1
f0il −

∂F

∂xil
f0j1

)
.

Choose cn−3,2 = (cn−3,2
i1,...,in−2

) as

cn−3,2
i1,...,in−2

= (−1)℘(ı)x−1
i1
· · ·x−1

in−2

(
∂F

∂x0
fj1j2 −

∂F

∂xj1
f0j2 +

∂F

∂xj2
f0j1

)
which is again in ker ∂uuu. Thus dF (cn−3,2) = (−1)n−3∂vvv(c

n−3,2) whose components are

dF (cn−3,2
i1,...,in−2

) = (−1)n−j1−j2
(
x−1
i1
· · ·x−1

in−2
x0
∂F

∂x0
f0j1j2 +

n−2∑
l=1

x−1
i1
· · ·x0

il
· · ·x−1

in−2

∂F

∂x0
filj1j2

+

n−2∑
l=1

x−1
i1
· · ·x0

il
· · ·x−1

in−2

∂F

∂xj1
f0ilj2 + x−1

i1
· · ·x−1

in−2
xj1

∂F

∂xj1
f0j1j2

+

n−2∑
l=1

x−1
i1
· · ·x0

il
· · ·x−1

in−2

∂F

∂xj2
f0j1il + x−1

i1
· · ·x−1

in−2
xj2

∂F

∂xj2
f0j1j2

)

= (−1)n−j1−j2
n−2∑
l=1

x−1
i1
· · ·x0

il
· · ·x−1

in−2

(
∂F

∂x0
filj1j2 +

∂F

∂xj1
f0ilj2

+
∂F

∂xj2
f0j1il −

∂F

∂xil
f0j1j2

)
.

Choose cn−4,3 = (cn−4,3
i1,...,in−3

) as

cn−4,3
i1,...,in−3

= (−1)℘(ı)+1x−1
i1
· · ·x−1

in−3

(
∂F

∂x0
fj1j2j3 −

∂F

∂xj1
f0j2j3 +

∂F

∂xj2
f0j1j3 −

∂F

∂xj3
f0j1j2

)
.

Set j0 = 0 by convention and continue the above procedure. We obtain

(5.4) cs−1,n−s
i1,...,is

= (−1)℘(ı)+n−sx−1
i1
· · ·x−1

is

n−s∑
m=0

(−1)m
∂F

∂xjm
fj0...ĵm...jn−s

successively, which is obviously left preferred. In particular, when s = 1,

c0,n−1
i1

= (−1)n−i1x−1
i1

n−1∑
m=0

(−1)m
∂F

∂xjm
fj0...ĵm...jn−1
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and hence

dF (c0,n−1
i1

) = (−1)n−i1
(
x0
i1

n−1∑
m=0

(−1)m
∂F

∂xjm
fi1j0...ĵm...jn−1

+ x−1
i1

n−1∑
m=0

xjm
∂F

∂xjm
fj0...jn−1

)

= (−1)n−i1
(
x0
i1

n−1∑
m=0

(−1)m
∂F

∂xjm
fi1j0...ĵm...jn−1

− x0
i1

∂F

∂xi1
fj0...jn−1

)
= (−1)n−1x0

i1

( ∑
jm<i1

(−1)m
∂F

∂xjm
fj0...ĵm...i1...jn−1

+
∑
jm>i1

(−1)m+1 ∂F

∂xjm
fj0...i1...ĵm...jn−1

+ (−1)i1x0
i1

∂F

∂xi1
fj0...î1...jn−1

)
= (−1)n−1x0

i1

n∑
m=0

(−1)m
∂F

∂xjm
fj0...ĵm...jn .

So dF (c0,n−1
i1

) is actually the restriction of the global section (−1)n−1uuu? to affine Vi1 . Hence the

result follows. �

With minor modification, the proof of Lemma 5.4 is valid if the hypothesis r ≥ n is changed to

r < n. Thus we obtain one more lemma as follows.

Lemma 5.5. Suppose d = n+ 1 and 0 ≤ r ≤ n− 1. There exists a cocycle

(0, . . . , 0, cn−1−r,r, cn−r,r−1, . . . , cn−1,0)

in Hn−1
r where the components cn−1−q,q are given in (5.4). Each cn−1−q,q is left preferred in

Hn−1−q,q
r .

Note that there are n copies of k in the expression of Hn−1(H•). They respectively come

from Čn−1(U,F0
r ) for 0 ≤ r ≤ n − 1. The class represented by the cocycle given in Lemma 5.5

is nontrivial since cn−1,0 represents a nontrivial class. Consider the quasi-isomorphisms λ̄ given

in (4.2) and γ given in Theorem 4.4. The quasi-isomorphic image by γλ̄ : H•r → C̄′•GS(A)r is a

collection of local sections of the sheaf ∧rTX . More precisely, we summarize the fact as

Proposition 5.6. Suppose d = n + 1. For every 0 ≤ r ≤ n − 1, there is a one-dimensional

k-submodule of Hn−1−r(X,∧rTX), and consequently Hn−1−r(X,∧rTX) 6= 0.

5.3. Case 3: d < n+ 1. This is an easy case, since the complex (5.3) is zero. The results are

IIEp,qr,∞ = IIEp,qr,2 =


P p−2r
r+(p−r)(d−1), r < p ≤ 2r, q = 0,

Q−rr , p = r, q = 0,

0, otherwise,

and

Hi(H•) ∼=
⊕
r<i

P i−2r
r+(i−r)(d−1) ⊕Q

−i
i .

6. Applications

Based upon our computations in §5, we prove in §6.1 that a projective hypersurface is smooth

if and only if the HKR decomposition of the second Hochschild cohomology group (1.5) holds

(Theorem 6.3). This can be seen as an analogue of the characterization of smoothness of affine

hypersurfaces (Remark 3.2). In the appendix A we give a less computational proof which works

for complete intersections, which was suggested to us by the referee.
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Recall that by definition of the GS complex, we have

C2
GS(A) = C0,2(A)⊕C1,1(A)⊕C2,0(A).

We call a 2-cocycle (m, f, c) ∈ C2
GS(A) untwined (decomposable in [6]) if (m, 0, 0), (0, f, 0) and

(0, 0, c) are all 2-cocycles. A GS 2-class is called intertwined if it has no untwined representative

(m, f, c). Intertwined classes are interesting from the point of view of deformation theory, as the

only way to realize such a class is by simultanous non-trivial deformation of local multiplications

and of restriction maps, with neither deforming only the multiplications, nor deforming only the

restriction maps leading to a well-defined deformation. In §6.2, based upon the results from §5 we

show that for a projective hypersurface as above if either n 6= 2 or n = 2 and d ≤ 4, no intertwined

2-class exists. We give a family of concrete examples of intertwined 2-classes for n = 2 and d ≥ 6.

Finally, in §6.3 we pay special attention to the case of quartic surfaces. We show that the

dimension of H2
GS(A)1 lies between 20 and 32, reaching all possible values except 30 and 31. The

minimal value H2
GS(A)1 = 20 is reached in the smooth K3 case. We also present an analysis of

how H2
GS(A)1 is built up from 2-classes of type [(m, 0, 0)] and 2-classes of type [(0, f, 0)], giving

explicit computations in concrete examples.

6.1. Characterization of smoothness. In this section, we give a necessary and sufficient con-

dition for a hypersurface to be smooth.

In the proof (not in the statement) of Theorem 6.3, we make use of the following subgroups of

H2
GS(A)1:

• the subgroup Eres of 2-classes of the form [(0, f, 0)];

• the subgroup Emult of 2-classes of the form [(m, 0, 0)].

First of all, based upon the expression of H2(H•1) from §5, we obtain that H2
GS(A)1 contains

P 0
d as a summand for any n and d. Every element t ∈ P 0

d corresponds to a class in Emult. Let us

consider when t also belongs to Eres.

Since t ∈ P 0
d = (S/(im ∂uuu))d, t lifts to an element t̄ in Sd. We then identify t̄ to a global

section of OX(d). For any V ∈ V, t̄|V ∈ A(V ) determines the left multiplication by t̄|V on A(V ),

and so t̄|V ◦ ◦µ represents a class in H2
(1)(A(V ),A(V )) which is independent of the choice of t̄.

Hence t ∈ H2
GS(A)1 is represented by the GS 2-cocycle (t̄◦ ◦µ, 0, 0) := ((t̄|V ◦ ◦µ)V , 0, 0) which only

deforms the local multiplications of A. If t̄|V ◦ ◦µ happens to be a coboundary for all V , we have

cochains sV ∈ C1(A(V ),A(V )) such that dHoch(sV ) = t̄|V ◦ ◦µ. Let s = (sV )V ∈ C̄′0,1(A) and so

(t̄ ◦ ◦µ, 0, 0)− (0,−dsimp(s), 0) = dGS(s, 0). Thus t = [(t̄ ◦ ◦µ, 0, 0)] = [(0,−dsimp(s), 0)] belongs to

Emult ∩Eres. In the other direction, if t ∈ Emult is also in Eres, then we assume its representation

is (0, f, 0). The difference (t̄ ◦ ◦µ, 0, 0) − (0, f, 0) has to be a GS coboundary, say dGS(s, 0). It

follows that t̄|V ◦ ◦µ = dHoch(sV ) for all V ∈ V.

Summarizing, t ∈ Emult ∩ Eres if and only if t̄|V ◦ ◦µ is a Hochschild 2-coboundary for every

V ∈ V. Note that A(V ) is a localization of A(U) if V ⊆ U . It follows that t̄|V ◦◦µ is a coboundary

of A(V ) provided that t̄|U ◦ ◦µ is a coboundary of A(U). So this condition is again equivalent to

the fact that t̄|Ui
◦ ◦µ is a coboundary of Ai for all 1 ≤ i ≤ n. By §3,

H2
(1)(Ai, Ai) = Ai

/(
∂Gi
∂y0

, . . . ,
∂Gi
∂yi−1

,
∂Gi
∂yi+1

, . . . ,
∂Gi
∂y3

)
and t̄|Ui

◦ ◦µ is a coboundary if and only if t̄|Ui
is sent to zero by the projection Ai → H2

(1)(Ai, Ai).

Since Ai = k[y0 . . . , yi−1, yi+1, . . . , yn]/(Gi) and∑
j 6=i

yj
∂Gi
∂yj

+Hi = d ·Gi,
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we have

H2
(1)(Ai, Ai) = k[y0, . . . , yi−1, yi+1, . . . , yn]

/(
∂Gi
∂y0

, . . . ,
∂Gi
∂yi−1

, Hi,
∂Gi
∂yi+1

, . . . ,
∂Gi
∂yn

)
.

Recall the definition of Hi given in §4.1. There is an algebra map P 0 → H2
(1)(Ai, Ai) defined

by xj 7→ yj if j 6= i and xi 7→ 1, whose kernel is (xi − 1)P 0. Thus t ∈ Eres if and only if

t ∈ ∩ni=1(xi − 1)P 0. Notice that t is homogeneous. If t = (1 − xi)Ti for some Ti ∈ P 0, by

comparing the homogeneous components, we conclude that t is annihilated by a power of xi and

so Ti =
∑∞
m=0 tx

m
i is actually a finite sum. In the opposite direction, if t is annihilated by a power

of xi, then t = (1− xi)
∑∞
m=0 tx

m
i ∈ (xi − 1)P 0. Consequently, we have proven

Lemma 6.1. Let t ∈ P 0
d . Then t ∈ Eres if and only if xi ∈

√
annP 0(t) for all 1 ≤ i ≤ n.

Next let us recall the work [9] by Gerstenhaber and Schack. Starting from their Hodge decom-

position for presheaves of commutative algebras

(6.1) Hi
GS(A) =

⊕
r∈N

Hi
GS(A)r,

they prove the existence of the HKR type decomposition

Hi
GS(A) ∼=

⊕
p+q=i

Hp
simp(V,∧qT )

for any smooth complex projective variety X, where A = OX |V (resp. T = TX |V) is the restriction

of the structure sheaf (resp. tangent sheaf) to an affine open covering V closed under intersection.

In particular,

H2
GS(A) ∼= H0

simp(V,∧2T )⊕H1
simp(V, T )⊕H2

simp(V,A).

The roles played by the three summands in the deformation of A (viewed as a twisted presheaf)

are explained in [6]. More concretely, elements in the three summands respectively deform the

(local) multiplications, the restriction maps, and the twisting elements of A. If X is not necessarily

smooth, Gerstenhaber and Schack’s result remains partially correct: Hi
GS(A)r ∼= Hi−r

simp(V,∧rT )

if r = 0 or r = i, and in general Hi
GS(A)i−1 contains H1

simp(V,∧i−1T ) as a k-submodule. For

i = 2, we more precisely have

(6.2) H1
simp(V, T ) ∼= Eres ⊆ H2

GS(A)1.

In particular, (6.1) now yields

(6.3) H2
GS(A) ∼= H0

simp(V,∧2T )⊕H1
simp(V, T )⊕H2

simp(V,A)⊕ E.

where E is a complement of Eres in H2
GS(A)1.

When X is a projective hypersurface, the isomorphism Hp(X,∧qTX) ∼= Hp
simp(V,∧qT ) holds

for all p, q. The decomposition (6.3) is equivalent to

HH2(X) ∼= H0(X,∧2TX)⊕H1(X, TX)⊕H2(X,OX)⊕ E.

We have thus proven:

Proposition 6.2. Let X be a projective hypersurface. The following are equivalent:

(1) The HKR decomposition holds for the second cohomology, i.e.

HH2(X) ∼= H0(X,∧2TX)⊕H1(X, TX)⊕H2(X,OX).

(2) We have H1(X, TX) ∼= Eres = H2
GS(A)1.
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Remark 6.1. In deformation theoretic terms, Proposition 6.2 states that for a projective hyper-

surface X, the HKR decomposition holds for HH2(X) if and only if every (commutative) scheme

deformation of X can be realized by only deforming restriction maps while trivially deforming in-

dividual algebras on an affine cover. This is the classical deformation picture for smooth schemes.

We have the following converse of the HKR theorem for projective hypersurfaces:

Theorem 6.3. Let X be a projective hypersurface. The following are equivalent:

(1) X is smooth.

(2) The HKR decomposition holds for all cohomology groups, i.e.

HHi(X) ∼=
⊕
p+q=i

Hp(X,∧qTX), ∀ i ∈ N.

(3) The HKR decomposition holds for the second cohomology, i.e.

HH2(X) ∼= H0(X,∧2TX)⊕H1(X, TX)⊕H2(X,OX).

Proof. It remains to prove (3)⇒ (1). Assume X is a hypersurface of degree d in Pn which is not

smooth. According to Proposition 6.2, it suffices to produce a class in H2
GS(A)1 \ Eres. At least

one of the algebras Ai is not smooth, say An. It follows from Remark 3.2 that H2
(1)(An, An) 6= 0.

As before, we know

H2
(1)(An, An) = k[y0, . . . , yn−1]

/(
∂Gn
∂y0

, · · · , ∂Gn
∂yn−1

, Hn

)
∼= R

/(
xn − 1,

∂F

∂x0
, · · · , ∂F

∂xn−1
,
∂F

∂xn

)
= P 0/(xn − 1).

Since P 0/(xn − 1) 6= 0 this implies that 0 6= xmn ∈ P 0 for any m ∈ N. In particular, 0 6= xdn ∈ P 0
d

presents a non-trivial class in H2
GS(A)1, and xn /∈

√
annP 0(xdn). By Lemma 6.1, xdn /∈ Eres, which

finishes the proof. �

Remark 6.2. The inverse HKR result formulated in Theorem 6.3 actually holds true in greater

generality, and a proof for complete intersections based upon global generation of the normal

sheaf, which was suggested to us by the referee, is presented in the appendix A.

However, our original computational proof based upon Lemma 6.1, in which the idea is to catch

a deformation in an affine piece that can be lifted to a global one, may be of independent value.

In particular, later on we apply this idea in order to determine efficiently whether a class in Emult

belongs to Eres (See Table 1).

6.2. Examples of intertwined classes. We are particularly interested in HH2(X) since it

parameterizes the equivalence classes of first order deformations of X. We retain the notations

used before. On one hand, we have the decomposition (6.3). On the other hand, any GS 2-cocycle

(m, f, c) ∈ C̄′0,2(A)⊕ C̄′1,1(A)⊕ C̄′2,0(A)

factors as (m−mab, 0, 0)+(mab, f, 0)+(0, 0, c) under the Hodge decomposition where mab depends

only on m. Since E ⊆ H2
GS(A)1, the elements in E admit representatives of the form (m, f, 0).

Normally, neither (m, 0, 0) nor (0, f, 0) is a cocycle. The cocycle is called untwined if (m, 0, 0) or,

equivalently (0, f, 0) is a cocycle. A 2-class is called intertwined if it has no untwined representative.

In this section, we will given examples of such intertwined 2-classes. By the decomposition of

H• and by Theorem 4.4, classes in H2(H•0) and H2(H•2) have untwined representatives of the form

(0, 0, c) and (m, 0, 0) respectively. It is sufficient to consider H2(H•1).
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First of all, by the discussion in §5, H2(H•1) is the direct sum of P 0
d and Q−2

2 if d < n+ 1. Via

the quasi-isomorphisms H• → G• → E• → C̄′•GS(A), any element in P 0
d or Q−2

2 gives rise to a GS

2-class of the form [(m, 0, 0)] ∈ H2
GS(A). So intertwined 2-class never exists if d < n+ 1.

Next, besides P 0
d and Q−2

2 , H2(H•1) contains k as a direct summand if d = n+1. By Proposition

5.6, any nonzero element in k corresponds to a nonzero class in H1(X, TX) which clearly admits

a representative of the form (0, f, 0).

Thus an intertwined class exists only possibly in S (Zn−3
d−4 ) in the case d > n+ 1. Necessarily,

n ≤ 3 since Zn−3 = 0 for all n > 3. Since n = 3 implies S (Z0
d−4) ⊆ H2(H•0), n = 2 is the unique

choice, and so d > 3. Moreover, by the definition of Z−1
d−4, the short sequence

(6.4) 0 −→ Z−1
d−4 −→ R3

d−4
∂vvv−−→ Rd−3 −→ 0

is exact. It follows that Z−1
d−4 6= 0 only if d > 4.

We have proven:

Proposition 6.4. Suppose either n 6= 2 or n = 2 and d ≤ 4. Then H2
GS(A) does not contain an

intertwined cohomology class.

Now let d ≥ 6 and F = xd0 +xd−1
1 x2. The map ∂vvv : R3

1 → R2 in (6.4) sends (r0, r1, r2) to r0x0 +

r1x1 + r2x2, whose kernel is 3-dimensional with a basis {(−x1, x0, 0), (−x2, 0, x0), (0,−x2, x1)}.
Since S (Z−1

1 ) arises from H•1, we consider the double complex

Sx1
⊕ Sx2

// Sx1x2

S3
x1
⊕ S3

x2
//

∂uuu

OO

S3
x1x2

∂uuu

OO

Sx1 ⊕ Sx2
//

∂vvv

OO

Sx1x2

∂vvv

OO

// 0

with three entries corresponding to H2
1 underlined. We choose the basis element (0,−x2, x1), and

so

S (0,−x2, x1) = (0,−x4
0x
−1
1 x−2

2 , x4
0x
−2
1 x−1

2 ) ∈ S3
x1x2

.

Since uuu = (dxd−1
0 , (d− 1)xd−2

1 x2, x
d−1
1 ), ∂uuu(S (0,−x2, x1)) is equal to

(d− 1)xd−2
1 x2 · (−x4

0x
−1
1 x−2

2 ) + xd−1
1 · x4

0x
−2
1 x−1

2 = −(d− 2)x4
0x
d−3
1 x−1

2 .

Choose (0, (d− 2)x4
0x
d−3
1 x−1

2 ) ∈ Sx1
⊕ Sx2

, and thus ((0, (d− 2)x4
0x
d−3
1 x−1

2 ),S (0,−x2, x1), 0) is a

2-cocycle in H•1.

Let us prove that the class c := [((0, (d − 2)x4
0x
d−3
1 x−1

2 ),S (0,−x2, x1), 0)] is intertwined. As-

sume it can be written as [(m′, 0, 0)] + [(0, f ′, 0)], then m′ := (m′1,m
′
2) ∈ ker{Sx1

⊕ Sx2
→ Sx1x2

}.
Note that S, Sx1

and Sx2
can be regarded as k-submodules of Sx1x1

since S is a domain, and that

Sx1
∩ Sx2

= S. We then have m′1 = m′2 and so m′2 ∈ S. It follows that m′2 + (d− 2)x4
0x
d−3
1 x−1

2 ∈
im{∂uuu : S3

x2
→ Sx2

}, say

(6.5) m′2 + (d− 2)x4
0x
d−3
1 x−1

2 = dxd−1
0 a1 + (d− 1)xd−2

1 x2a2 + xd−1
1 a3

for some a1, a2, a3 ∈ Sx2
. By considering their degrees, we have

a1 =
∑

0≤i0<d
i1≥0

λi0i11 xi00 x
i1
1 x

1−i0−i1
2
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and similarly for a2, a3. The right-hand side of (6.5) is∑
i1≥0

dλ0i1
1 xd−1

0 xi11 x
1−i1
2 −

∑
1≤i0<d
i1≥0

dλi0i11 xi0−1
0 xd+i1−1

1 x2−i0−i1
2

+
∑

0≤i0<d
i1≥0

(d− 1)λi0i12 xi00 x
d+i1−2
1 x2−i0−i1

2 +
∑

0≤i0<d
i1≥0

λi0i13 xi00 x
d+i1−1
1 x1−i0−i1

2 .

Observe that the basis element x4
0x
d−3
1 x−1

2 never appears in any term of the right-hand side, since

d ≥ 6 and i1 ≥ 0. Together with the fact m′2 ∈ S, we get a contradiction. Thus c is indeed an

intertwined class.

We remind the reader that the projective curve xd0 +xd−1
1 x2 has a unique singularity (0 : 0 : 1).

Next let us describe how the class deforms A in the case d = 6. We have U = {U1, U2} and

V = {V1, V2, V12}, and define λ : V→ U by

V1 7→ U1, V2 7→ U2, V12 7→ U2.

The algebras A1, A2, A12 are expressed as k[y0, y2]/(y6
0+y2), k[y0, y1]/(y6

0+y5
1), k[y0, y1, y

−1
1 ]/(y6

0+

y5
1) respectively. By the formula (4.2), we obtain a 2-cocycle (e0, e1, 0) in E•1 given by

e0
V1

= 0,

e0
V2

= −4x5
0x

3
1x
−1
2 |V2

= −4y5
0y

3
1 ∈ A2,

e0
V12

= −4y5
0y

3
1 ∈ A12,

e1
V12⊂V1

= −(0,−x4
0x
−1
1 x−2

2 , x4
0x
−2
1 x−1

2 )|V12
= (0, y4

0y
−1
1 , y4

0y
−2
1 ) ∈ A3

12,

e1
V12⊂V2

= 0.

So by Theorem 4.4, the intertwined cocycle (m, f, 0) is given by

mV2
= −4y5

0y
3
1
◦µA2

,

mV12
= −4y5

0y
3
1
◦µA12

,

fV12⊂V1
=

(
−y4

0y
−2
1

◦∂
◦∂y0

+ (y4
0y
−1
1 − y4

0y
−2
1 )

◦∂
◦∂y1

)
◦ ρV1

V12

and other components equal to zero, where ρV1

V12
: A1 → A12 is the restriction map.

Unfortunately, the authors have not found any intertwined class in the case d = 5. So we pose

the following open question:

Question: Does an intertwined 2-class exist for a degree 5 curve in P2?

6.3. The second cohomology groups of quartic surfaces. As we exhibited in §6.2, inter-

twined 2-classes exist for some non-smooth curves. In contrast, by Proposition 6.4 such classes

do not exist for higher dimensional hypersurfaces, whence for these it suffices to study 2-cocycles

of the form (m, 0, 0), (0, f, 0) and (0, 0, c) separately. Among projective hypersurfaces, we are

particularly interested in quartic surfaces in P3.

From now on, let X be a projective quartic surface in P3, i.e. n = 3 and d = 4. By the discussion

in §5,

H2
GS(A)0

∼= k;

H2
GS(A)1

∼= k ⊕ P 0
4 ;

H2
GS(A)2

∼= k ⊕Q−2
2 .
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Now let us make the three deformations arising from the three components “k” above explicit,

following Lemma 5.5 and formula (5.4). A direct computation shows that

c2,0123 = x−1
1 x−1

2 x−1
3

∂F

∂x0
,

c1,112 = x−1
1 x−1

2

(
∂F

∂x3
f0 −

∂F

∂x0
f3

)
,

c1,113 = x−1
1 x−1

3

(
− ∂F
∂x2

f0 +
∂F

∂x0
f2

)
,

c1,123 = x−1
2 x−1

3

(
∂F

∂x1
f0 −

∂F

∂x1
f3

)
,

c0,21 = x−1
1

(
∂F

∂x3
f02 −

∂F

∂x2
f03 +

∂F

∂x0
f23

)
,

c0,22 = x−1
2

(
− ∂F
∂x3

f01 +
∂F

∂x2
f03 −

∂F

∂x0
f23

)
,

c0,23 = x−1
3

(
∂F

∂x2
f01 −

∂F

∂x1
f02 +

∂F

∂x0
f12

)
.

We choose a map λ : V → U by λ(Vj1...jr ) = Ujr if j1 < · · · < jr, and the algebra A(Vj1...jr )

is expressed as k[y0, . . . , yjr−1, yjr+1, . . . , y3, y
−1
j1
, . . . , y−1

jr−1
]/(Gjr ). By (4.2), c2,0 gives rise to a

2-cocycle (0, 0, e2) in E0 by

e2
V123⊂V12⊂V1

= −x−1
1 x−1

2 x−1
3

∂F

∂x0

∣∣∣∣
V123

= −y−1
1 y−1

2

∂G3

∂y0
.

This in turn gives rise to the GS cocycle (0, 0, c) by

cV123⊂V12⊂V1
= −y−1

1 y−1
2

∂G3

∂y0
.

Using (4.2) again, we obtain a 2-cocycle (0, e1, e2) in E1 from (0, c1,1, c2,0) with e2 as above and

e1 given by

e1
V12⊂V1

= y−1
1

(
−∂G2

∂y3
f0 +

∂G2

∂y0
f3

)
, e1

V123⊂V1
= y−1

1

(
−∂G3

∂y2
f0 +

∂G3

∂y0
f2

)
,

e1
V13⊂V1

= y−1
1

(
∂G3

∂y2
f0 −

∂G3

∂y0
f2

)
, e1

V123⊂V2
= y−1

2

(
−∂G3

∂y1
f0 +

∂G3

∂y1
f3

)
,

e1
V23⊂V2

= y−1
2

(
−∂G3

∂y1
f0 +

∂G3

∂y1
f3

)
, e1

V123⊂V12
= y−1

2

(
−∂G3

∂y1
f0 +

∂G3

∂y1
f3

)
.

Then we can deduce a GS cocycle (0, f, 0) from (0, e1, e2). Notice that the expression of m

is independent of e2. To have the expression explicitly, by the discussion in §2, we only have

to replace the formal base element fi by ◦∂/◦∂yi, then compose with the restriction map. For

example,

mV12⊂V1
= y−1

1

(
−∂G2

∂y3

◦∂
◦∂y0

+
∂G2

∂y0

◦∂
◦∂y3

)
◦ ρV1

V12
,

and so on. Likewise, we conclude that the cocycle (e0, e1, e2) in E2 induced by (c0,2, c1,1, c2,0) has

the form

e0
V1

=
∂G1

∂y3
f02 −

∂G1

∂y2
f03 +

∂G1

∂y0
f23,

e0
V2

= −∂G2

∂y3
f01 +

∂G2

∂y2
f03 −

∂G2

∂y0
f13,

e0
V3

=
∂G3

∂y2
f01 −

∂G3

∂y1
f02 +

∂G3

∂y0
f12.

Thus (e0, e1, e2) induces the GS cocycle (m, 0, 0) given by

mV1
=
∂G1

∂y3
·
◦∂

∂y0
∪
◦∂

∂y2
− ∂G1

∂y2
·
◦∂

∂y0
∪
◦∂

∂y3
+
∂G1

∂y0
·
◦∂

∂y2
∪
◦∂

∂y3
,
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mV2
= −∂G2

∂y3
·
◦∂

∂y0
∪
◦∂

∂y1
+
∂G2

∂y2
·
◦∂

∂y0
∪
◦∂

∂y3
+
∂G2

∂y2
·
◦∂

∂y1
∪
◦∂

∂y3
,(6.6)

mV3
=
∂G3

∂y2
·
◦∂

∂y0
∪
◦∂

∂y1
− ∂G3

∂y1
·
◦∂

∂y0
∪
◦∂

∂y2
+
∂G3

∂y0
·
◦∂

∂y1
∪
◦∂

∂y2
.

Let us look into the dimensions of H2
GS(A)r for r = 0, 1, 2. Obviously, dimH2

GS(A)0 = 1. Since

P 0
4 = (S/(im ∂uuu))4 = (R/(im ∂uuu))4 = R4/

∑3
i,j=0 kxi · ∂F/∂xj , we have the following inequality

dimP 0
4 = dimR4 − dim

3∑
i,j=0

xi
∂F

∂xj
= 35− dim

3∑
i,j=0

kxi
∂F

∂xj
≥ 35− 16 = 19.

Next we investigate the upper bound of dimP 0
4 . Obviously, {xi · ∂F/∂xj}0≤i≤3 is k-linearly

independent provided that ∂F/∂xj 6= 0. In particular, dim
∑3
i=0 kxi · ∂F/∂x0 = 4 and hence

dimP 0
4 ≤ 31. Interestingly, there is a gap between 31 and other possible dimensions. Let us prove

Lemma 6.5. If dimP 0
4 6= 31, then 19 ≤ dimP 0

4 ≤ 28.

Proof. Suppose F = x4
0 + f1x

3
0 + f2x

2
0 + f3x0 + f4 where ft ∈ k[x1, x2, x3] are homogeneous of

degree t.

First of all, let us reduce the lemma to the case f1 = 0. In fact, dimP 0
4 = dimH2

GS(A)1 − 1

is invariant under isomorphism of surfaces. By an argument similar to the argument presented in

the paragraph after Theorem 4.4, f1 can be annihilated via the isomorphism

x0 7→ x0 −
1

4
f1, xj 7→ xj ( j = 1, 2, 3 ).

Now we safely assume f1 = 0. Since dimP 0
4 6= 31, one of ∂F/∂x1, ∂F/∂x2, ∂F/∂x3 is nonzero,

say ∂F/∂x1 6= 0. By comparing the degrees of ∂F/∂x0 and ∂F/∂x1 with respect to x0, we obtain

(λ1x1 + λ2x2 + λ3x3)
∂F

∂x1
∈

3∑
l=0

kxl
∂F

∂x0

for some λ1, λ2, λ3 ∈ k only when λ1 = λ2 = λ3 = 0. Hence

3∑
i,j=0

kxi
∂F

∂xj
⊇

3∑
i=0

kxi
∂F

∂x0
+

3∑
i=1

kxi
∂F

∂x1
=

3⊕
i=0

kxi
∂F

∂x0
⊕

3⊕
i=1

kxi
∂F

∂x1

∼= k7.

It follows that dimP 0
4 ≤ 35− 7 = 28. �

Therefore, dimH2
GS(A)1 ∈ {20, . . . , 29} ∪ {32}. The dimension indeed reaches every number in

the set. We list some examples in Table 1 showing this fact. By Lemma 6.1, we are able to check

if t ∈ P 0
4 also corresponds to a class in H1(X, TX). Accordingly, the dimensions of H1(X, TX) for

these examples can be computed, as listed in the third column.

For r = 2, the group Q−2
2 comes from the complex

S6
2/ im ∂vvv

∂uuu−−→ S4
5/ im ∂vvv

∂uuu−−→ S8

by (5.1). It fits into a projection

R6
2

∂uuu //

����

R4
5

∂uuu //

����

R8

����
S6

2/ im ∂vvv
∂uuu // S4

5/ im ∂vvv
∂uuu // S8

of complexes. By Euler’s formula, the projection turns out to be a quasi-isomorphism. Hence

Q−2
2
∼= ker{∂uuu : R6

2 → R4
5}. The dimension of the latter is easier to compute than that of Q−2

2 .

Let elements in R6
2 be expressed by

(a01, a02, a03, a12, a13, a13).
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F dimH2
GS(A)1 dimH1(X, TX) dimH2

GS(A)2

x4
0 + x4

1 + x4
2 + x4

3 20 20 1

(x2
0 + x2

1)2 + x4
2 + x4

3 21 4 1

(x2
0 + x2

1)2 + (x2
2 + x2

3)2 22 2 2

(x2
0 + x2

1 + x2
2)2 + x4

3 23 2 5

x4
0 + x4

1 + x4
2 24 1 1

(x2
0 + x2

1)2 + x4
2 25 1 5

(x2
0 + x2

1 + x2
2 + x2

3)2 26 1 17

(x2
0 + x2

1 + x2
2)2 27 1 17

x4
0 + x4

1 28 1 11

(x2
0 + x2

1)2 29 1 11

x4
0 32 1 31

Table 1. dimensions of several groups

If F = x4
0 + (x2

1 + x2
2)2, then

ker{∂uuu : R6
2 → R4

5} = {(0, 0, 0, 0, x2u,−x1u) | u ∈ R1}

and hence Q−2
2 is equal to

{(0, 0, 0, 0, x2u,−x1u) + im ∂vvv | u ∈ S1}

whose dimension is 4; if F = (x2
0 + x2

1 + x2
2 + x2

3)2, then Q−2
2 is equal to the (direct) sum of

{(0, x3u,−x2u, 0, 0, x0u) + im ∂vvv | u ∈ S1},

{(x3v, 0,−x1v, 0, x0v, 0) + im ∂vvv | v ∈ S1},

{(x2p,−x1p, 0, x0p, 0, 0) + im ∂vvv | p ∈ S1},

{(0, 0, 0, x3q,−x2q, x0q) + im ∂vvv | q ∈ S1},

and so dimQ−2
2 = 16. We omit the computational details and list the dimensions of H2

GS(A)2 of

these examples in the right column of Table 1. It is obvious that the lower bound of dimH2
GS(A)2 is

1. However, in the general case, the authors do not know either the upper bound of dimH2
GS(A)2,

or any gaps between the bound and 1.

Recall that whenX is smooth, the Hodge numbers ofX are defined to be hp,q = dimHq(X,ΩpX).

Let ωX = Ω2
X be the canonical sheaf of X. Then ωX ∼= OX and by [4, Cor. 3.1.4],

H2
GS(A) ∼= HH2(ωX) ∼= H2(X,Ω2

X)⊕H1(X,ΩX)⊕H0(X,OX).

The dimensions of the three summands are h2,2 = 1, h1,1 = 20, h0,0 = 1 respectively. So

dimH2
GS(A)r reaches its smallest possible values for r = 0, 1, 2 if X is smooth.

The converse is not true, as there indeed exist non-smooth surfaces with dimH2
GS(A)1 = 20

and dimH2
GS(A)0 = dimH2

GS(A)2 = 1. Let us give two examples here.

Example 6.1. Let F = x4
0+x4

1+x4
2−4x2x

3
3+3x4

3. We know uuu = (4x3
0, 4x

3
1, 4(x3

2−x3
3),−12x2

3(x2−
x3)). A direct computation shows that dimP 0

4 = 19 and dimQ−2
2 = 0. Note that the surface has

three isolated singularities (0 : 0 : 1 : ζr) for r = 0, 1, 2 where ζ is a primitive third root of 1.

Furthermore, we have dimH1(X, TX) = 11, in accordance with Theorem 6.3.

Example 6.2. The Kummer surfaces Kµ are a family of quartic surfaces given by

F = (x2
0 + x2

1 + x2
2 − µ2x2

3)2 − λpqrs
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where

λ =
3µ2 − 1

3− µ2

and p, q, r, s are the tetrahedral coordinates

p = x3 − x2 −
√

2x0, q = x3 − x2 +
√

2x0,

r = x3 + x2 +
√

2x1, s = x3 + x2 −
√

2x1.

When µ2 6= 1/3, 1, or 3, Kµ has 16 isolated singularities which are ordinary double points. In

this case, one can check that uuu is a regular sequence in R. Thus dimP 0
4 = 19 and dimQ−2

2 = 0.

We also have dimH1(X, TX) = 1, in accordance with Theorem 6.3.

The examples given above with dimH0(X,∧2TX) = dimH2
GS(A)2 = 1 are all integral, and

vice versa. We will give two examples to show this condition is neither necessary nor sufficient for

integrality of X.

Example 6.3. Let F = (x2
0 + x2

1 + 2x2
2)(x2

0 + x2
1 + 2x2

3). We can easily prove Q−2
2 = 0 and hence

dimH0(X,∧2TX) = 1. However, this is not integral.

Example 6.4. Let F = x4
0 + x3

1x2. This gives rise to an integral scheme. But Q−2
2 is spanned by

(0, 0, 0, 0, x1u,−x2u) + im ∂vvv, u ∈ {x0, x1, x2, x3}

which is 4-dimensional.

According to our general results, for a smooth K3 surface, we have P 0
4 = Emult ⊆ H2

GS(A)1 =

Eres and dimP 0
4 = 19. To end this section, let us present the resulting two different deformation

interpretations of Hochschild 2-classes in P 0
4 for the Fermat quartic surface, i.e. the first example

in Table 1. Since uuu = (4x3
0, 4x

3
1, 4x

3
2, 4x

3
3), P 0

4 has a basis{
xi00 x

i1
1 x

i2
2 x

i3
3 | i0 + i1 + i2 + i3 = 4, 0 ≤ i0, i1, i2, i3 ≤ 2

}
.

We fix the generators and relations of A(V ) for all V ∈ V as follows:

A1 = k[y0, y2, y3]/(y4
0 + y4

2 + y4
3 + 1), A2 = k[y0, y1, y3]/(y4

0 + y4
1 + y4

3 + 1),

A3 = k[y0, y1, y2]/(y4
0 + y4

1 + y4
2 + 1), A12 = k[y0, y1, y3, y

−1
1 ]/(y4

0 + y4
1 + y4

3 + 1),

A13 = k[y0, y1, y2, y
−1
1 ]/(y4

0 + y4
1 + y4

2 + 1), A23 = k[y0, y1, y2, y
−1
2 ]/(y4

0 + y4
1 + y4

2 + 1),

A123 = k[y0, y1, y2, y
−1
1 , y−1

2 ]/(y4
0 + y4

1 + y4
2 + 1).

For any basis element xi00 x
i1
1 x

i2
2 x

i3
3 ∈ P 0

4 , there is a deformation (m, 0, 0) of A given by

mV1
= yi00 y

i2
2 y

i3
3
◦µ, mV2

= yi00 y
i1
1 y

i3
3
◦µ, mV3

= yi00 y
i1
1 y

i2
2
◦µ,

mV12
= yi00 y

i1
1 y

i3
3
◦µ, mV13

= yi00 y
i1
1 y

i2
2
◦µ, mV23

= yi00 y
i1
1 y

i2
2
◦µ,

mV123
= yi00 y

i1
1 y

i2
2
◦µ.

We remark that although the same notation ◦µ is used, it stands for Hochschild 2-cocycles of

individual algebras.

Since in A1 one has

1 = 4y3
0

(
−1

4
y0

)
+ 4y3

2

(
−1

4
y2

)
+ 4y3

3

(
−1

4
y3

)
,

it follows that
◦µ = dHoch

(
−1

4
y0

◦∂
◦∂y0

− 1

4
y2

◦∂
◦∂y2

− 1

4
y3

◦∂
◦∂y3

)
.

Similarly, for A2 and A3, we respectively have

◦µ = dHoch

(
−1

4
y0

◦∂
◦∂y0

− 1

4
y1

◦∂
◦∂y1

− 1

4
y3

◦∂
◦∂y3

)
,
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◦µ = dHoch

(
−1

4
y0

◦∂
◦∂y0

− 1

4
y1

◦∂
◦∂y1

− 1

4
y2

◦∂
◦∂y2

)
.

The three preimages are denoted by s1, s2, s3. By abuse of notation, they also denote 1-cochains

of the algebras A12, A13 and so on. Then we have

mV1
= dHoch(yi00 y

i2
2 y

i3
3 s1), mV2

= dHoch(yi00 y
i1
1 y

i3
3 s2),

mV3
= dHoch(yi00 y

i1
1 y

i2
2 s3), mV12

= dHoch(yi00 y
i1
1 y

i3
3 s2),

mV13
= dHoch(yi00 y

i1
1 y

i2
2 s3), mV23

= dHoch(yi00 y
i1
1 y

i2
2 s3),

mV123
= dHoch(yi00 y

i1
1 y

i2
2 s3).

We choose a map λ : V → U by λ(Vj1...jr ) = Ujr if j1 < · · · < jr. We thus obtain an equivalent

deformation (0, f, 0) whose nonzero components of f are

fV12⊆V1
= yi00 y

i1
1 y

i3
3 s2 ◦ ρV1

V12
− ρV1

V12
◦ yi00 y

i2
2 y

i3
3 s1,

fV13⊆V1
= yi00 y

i1
1 y

i2
2 s3 ◦ ρV1

V13
− ρV1

V13
◦ yi00 y

i2
2 y

i3
3 s1,

fV23⊆V2
= yi00 y

i1
1 y

i2
2 s3 ◦ ρV2

V23
− ρV2

V23
◦ yi00 y

i1
1 y

i3
3 s2,

fV123⊆V1
= yi00 y

i1
1 y

i2
2 s3 ◦ ρV1

V123
− ρV1

V123
◦ yi00 y

i2
2 y

i3
3 s1,

fV123⊆V2
= yi00 y

i1
1 y

i2
2 s3 ◦ ρV2

V123
− ρV2

V123
◦ yi00 y

i1
1 y

i3
3 s2,

fV123⊆V12
= yi00 y

i1
1 y

i2
2 s3 ◦ ρV12

V123
− ρV12

V123
◦ yi00 y

i1
1 y

i3
3 s2.

Appendix A. Converse of Hochschild-Kostant-Rosenberg theorem

In this appendix, we give a proof of Theorem 6.3 for complete intersections X instead of

hypersurfaces. This proof is adapted from the referee’s report.

Let X be a closed subscheme of a nonsingular variety Y over k. Recall that X is a local complete

intersection in Y if the ideal sheaf I of X in Y can be generated by codim(X,Y ) elements at every

point. As we discussed in §4.2, the cotangent complex LX/k is concentrated in degrees 0 and −1

with

L0
X/k = ı∗ΩY , L−1

X/k = I/I2,

where ı is the closed immersion X ↪→ Y . By definition, LX/k is a complex of locally free sheaves

of finite rank. As the same argument at the end of §4, we have

ExtpX(∧qLX/k,OX) ∼= Hp+q(∧qL∨X/k).

So Buchweitz-Flenner’s formula for HH2(X) becomes

HH2(X) = H2(OX)⊕H1(L∨X/k)⊕H0(∧2L∨X/k).

Since (I/I2)∨ = NX/Y is the normal sheaf, L∨X is the two-term complex

TY |X
∂>−−→ NX/Y

with cohomology sheaves H0(L∨X) = TX and H1(L∨X) =: C.

Theorem A.1. Let X be a local complete intersection, and let all notations be as above. Assume

the normal sheaf NX/Y is globally generated. The following are equivalent:

(1) X is smooth.

(2) The HKR decomposition holds for all cohomology groups, i.e.

HHi(X) ∼=
⊕
p+q=i

Hp(X,∧qTX), ∀ i ∈ N.
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(3) The HKR decomposition holds for the second cohomology, i.e.

HH2(X) ∼= H0(X,∧2TX)⊕H1(X, TX)⊕H2(X,OX).

Proof. We only prove (3)⇒ (1). Since X is smooth if and only if C = 0, it suffices to prove C = 0

from (3).

We have H2(OX) ∼= H2(X,OX) and H0(∧2L∨X/k) ∼= H0(X,∧2TX). Hence the middle direct

summand H1(L∨X/k) is isomorphic to H1(X, TX). Apply RΓ to the exact triangle

(A.1) TX −→ L∨X −→ C[−1]

and then we get a long exact sequence

0 −→ H0(X, TX) −→ H0(L∨X) −→ 0

−→ H1(X, TX)
∼=−→ H1(L∨X)

ω−→ H0(X, C)

−→ H2(X, TX) −→ H2(L∨X) −→ H1(X, C) −→ · · · .

By (3), we have ω = 0.

Next, we claim that the natural map

ω′ : H0(X,NX/Y ) −→ H0(X, C)

is zero. In fact, observe the commutative squares

0 //

��

NX/Y

id

��
TY |X

∂> //

��

NX/Y

��
0 // C

where the lower square is nothing but the map of complexes L∨X → C[−1] in the triangle (A.1).

Taking H1 we see that the composition

H0(X,NX/Y ) −→ H1(L∨X)
ω−→ H0(X, C)

is ω′. Thus if ω is zero then so is ω′.

Finally, let us prove C = 0. Consider the commutative square of evaluation maps

H0(X,NX/Y )⊗OX
τ1 //

ω′⊗id

��

NX/Y

τ2

��
H0(X, C)⊗OX // C

The map τ1 is surjective because NX/Y is globally generated, and τ2 is surjective by definition of

C. Thus C = 0 follows from ω′ = 0, and the proof is finished. �
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