
Ammerman Center for Arts & Technology 16th Biennial Symposium

INTERSECTIONS

Action Coding: Coding as a Calisthenic Practice

Nancy Nowacek

Stevens Institute of Technology
Hoboken, New Jersey, United States

nnowacek@stevens.edu

Abstract
Action Coding is an exploration of computer coding as
an embodied performance. This paper presents details
of the custom gesture recognition system created, the
development process of the project, and the findings af-
ter three phases of development.

Keywords
Gesture recognition, performance, motion capture,

Kinect, machine learning

Introduction

“Coding is often done in a solitary setting. We sit and
think alone, write, revise, possibly submit for code review,
revise again, and then merge.”[1]

—Emil Ong, a computer coder writing for Hacker-
noon, on Medium.com

“‘Coding’ is not a musical art, a piano or a violin that
a child might need to develop muscle-memory for. It’s
engineering.”[2]

—Attila Vágó, a computer coder writing for Hacker-
noon on Medium.com

These two passages express the underlying reality and
culture of computer programming, also known as cod-
ing. There is a heroism, a machismo, and an exclusivity
implied in these conceptions of coding. The coder, cast
in mental battle with his machine, spends hours formulat-
ing and typing the perfect chain of commands to build a
script that executes without error.

Likewise this image of the coder brings to mind a typ-
ical setting: a(n often) male and predominantly white fig-
ure hunched over a computer at a table or desk, perfectly
still while his fingertips fly across the keyboard, hours
passing without notice.

This was not always the case. Women were the first
computers and computer operators because of their
attention to detail and high threshold for the drudgery
of calculations. In performing calculations for rocket tra-
jectories during World War II, women were also the first
programmers of the first general purpose electronic com-
puters, because at the time computation and software
was not considered ‘men’s work’: circuitry and hardware
were. Women also performed the highly physical labor
of unplugging and replugging cables of Colussus ma-
chines during World War II. However, as digital technol-
ogies have become more centralized and prevalent in
daily life, so has its culture become more mainstreamed,
co-opted and controlled by majority culture: educated
white men. Though this reality is slowly changing thanks
to Girls Who Code and multiple girls-and-STEM initia-
tives, the dominant culture of coding is still described in
media headlines as ‘Bro Culture’ shaped and controlled
by white upperclass men.

Coding culture holds as a central tenet that coding
is hard—it is an exclusive club for the strong-willed. De-
fined by the tech industry’s central focus on efficiencies
of speed and process (and thus profit), historic develop-
ments in hardware and software have attended to the in-
creasing speed. Successful coders pride themselves on
speed, accuracy, and endurance, and text entry via key-
board is the standard for code because of it’s speed and
reliability. Vágó continues, “What programming requires
is analytical thinking, problem-solving attitude, stamina
for failed attempts at coming up with the right solution,

passion for technology, pride in your own code, but ma-
turely accepting someone else’s improvements and ob-
servations, and a sense of responsibility for any code you
write or contribute to. Correct me if I am wrong, but none
of these traits are easy to cultivate and develop.”[3]

To arrive at that point of cultivation, a first coding lan-
guage requires multiple forms of literacies, knowledge,
and access: the ability to read, a basic understanding
of how computers work, consistent access to computer
hardware and software, access to a learning environment
(a physical classroom, an online course). Coding is tradi-
tionally taught in classrooms with a 1:1 student-to-com-
puter ratio. Students are introduced to syntax through in-
troductory scripts. Pedagogy, arising from coding’s roots
in mathematics relies singularly on interior cognition
skills—a silent process of problem-solving in the mind.
Learning processes privilege and empower the machine:
students, from their earliest moments with code, are
fighting against error messages, un-executable scripts
and all their attendant failures. Reports of beginning cod-
ing classes have described the experience as ‘punish-
ing’, ‘painful’, and ‘awful’. Reaffirming the image of the
lone hero, students must suffer alone, battling against the
machine.

Likewise, the environment and conditions within which
coding is performed reproduces itself within the prod-
ucts of code. Coding is a seated affair that only employs

the fingertips. Software, apps and other digital products
are also intended to be used most often while seated,
still, and employing only the fingers. This feedback loop
reinforces the figure of the lone hero (more often than not
male), engaged in solitary activity with his digital device.
This condition parallels gender differences in the way
men and women work. Men prefer to work alone, women
in groups.[4]

Lastly, the ever-expanding reach of digital technolo-
gies—under the guise of ease and efficiency—continues
the ever decreasing use of the body. Since the indus-
trial revolution, industrial processes, automation, home
appliances, and now digital applications and services,
have outsourced the work of the body. When compared
to these automated and digital options, the body is cir-
cumvented because of its comparable lack of speed and
efficiency. Outsourcing so much work from the body to
other machines and services has an impact. The cultures
served by these systems resultantly are in physical crisis.
The rise of obesity, depression, and the series of other
physical effects of inactivity have been correlated to the
increase of prevalence of digital technologies. [5]

These realities construct a space that is highly gen-
dered, exclusive, and alienating, whose long-term ef-
fects can also cause physical damage to the body. In
response, Action Coding is an attempt to create a space
for learning code that is physical, cooperative and visi-

Kinect2Gesture tutorial window shows the application interface that includes the coder’s tracked skeleton and red time-keeping
circle on the left, while Morgan Hille-Refakis performs the gesture on the right.

ble. What if code were approached as an externalized,
performed activity such as dance or sport? Could code
therefore be learned cooperatively, by watching and re-
peating through the body? If coding is a visible and co-
operatively learned, physical experience, what access is
afforded? Who gravitates towards this physical process?
How does the physical and mental experience differ from
the traditional experience of coding? How does the ex-
perience and understanding of code change? And more
abstractly, what might the products of coding become if
performed in this way?

Action Coding: re-connecting the physi-
cal

and cognitive labor of coding
Action Coding, a series of investigations, is an initial

inquiry into alternate methods of performing code with
the body—one that, in opposition to Vágó’s introductory
quote—approaches coding through muscle memory, and
asserts a potential relationship between engineering and
the body. Over the course of eighteen months, I had the
honor of collaborating with talented creative technolo-
gists Gene Kogan, David Sheinkopf, and Ramsey Nasser,
technologist and dancer Caitlin Sikora, and dancer/cho-
reographer Morgan Hille-Refakis. Together we explored
the connections between body and machine, making
coding more performative—more visible, tangible, phys-
ically strenuous and embodied. The goals of the project
are to activate multiple learning senses simultaneously,
increase use of the body, and to shift coding to a visible
performance that may be learned by watching. [6]

If learning to code is an individual, interiorized pro-
cess, learning a dance, a sport, or even sign language is
cooperative and collective. The cultures of dance, sport,
and exercise are based on physical demonstration, rep-
etition, and cooperative dialogue around technique and
skill. Learning physical movement activates sight, pro-
prioception, balance, and the full neuromuscular system
to see and translate movements through the body. The
mind and the body work together to process and express
movement patterns.

In Action Coding, a coder stands in front of a Kinect.
On a large display next to the Kinect, she can see a skel-
eton version of herself, a big red circle that turns on and
off like a metronome, and on another, the window of a
coding environment (such as Arduino). Every time the red
dot appears (along with a clicking metronome sound),
she performs the gesture corresponding to the piece of
code she is writing. This could be a command or variable
or other necessary syntax. She must complete the entire
gesture before the red circle disappears. When it does,
the computer has interpreted her gesture and assigned it
a class of its library. Simultaneously, the class appears in

the coding environment in the adjacent window. Gesture
by gesture she builds a script. Depending on the envi-
ronment, she may have finish her script by performing a
final ‘Play’ or ‘Execute’ gesture.

Building a system where none exists
Substituting the body for keyboard necessitated creat-
ing a new kind of gesture recognition system. Because
no pre-made system existed to achieve the goals of the
project, one was bricolaged from available technologies
and augmented by custom applications. Built with the
goal of at-home/consumer access, the Kinect was cho-
sen to capture gestural data, and the rest of the system
was built around it. More expensive and advanced motion
capture hardware systems were rejected for their lack of
access and availability beyond professional or academic
settings. To employ the Kinect in this way, Gene Kogan
conceived and wrote Kinect2Gesture, a custom machine
learning application. In addition to the Kinect (and PC
laptop through which to run it) and Kinect2Gesture, the
system required a second laptop and ethernet cable (or
strong wifi connection) through which to transmit data,
and a large monitor on which the coder can see the Ki-
nect2Gesture and her coding environment. The Kinect/
PC configuration transmits data via OSC to another
laptop (we used a Mac) running Kinect2Gesture, which
translates the data into a gesture prediction, and then
inputs that data into the chosen coding environment (in
the case of this project, Arduino, p5.js, and BodyLang).

Kinect2Gesture is a free and open source application
which uses a neural network to automatically classify, in
real-time, the physical motions of the full-body coder who
is being tracked by the Kinect’s infrared camera. When

Action Coding system diagram

the coder performs a gesture that has been associated
with a particular class or follow-up action the application
sends the classification prediction over a network to oth-
er computers or applications which act upon the data, for
example an Arduino or audiovisual software like MaxM-
SP, simultaneous to the performance. This has the effect
of augmenting the dancer’s movements across multiple
modes and media.

Kinect2Gesture differs from other full-body gestural
systems in that it uses machine learning algorithms in the
creation of gesture libraries. Users may devise a series of
gestures and train the computer to recognize any single
gesture performed within a pre-set time-frame set by the
user in Kinect2Gesture to define the start and end pa-
rameters of the movement.

To train the system in a new gesture, the gesture must
be performed repeatedly (20-60 times). Each repeated
performance generates data. In running the ‘Train’ func-
tion in Kinect2Gesture, the machine parses all 20-60
data sets for each gesture ‘learning’ the physical defini-
tion of each class entered into its library. The wider the
variation in subtleties of the movement in style and speed
during the training process, the greater the prediction
accuracy. Not only can users define their own gesture
libraries, they can also apply those libraries to a variety of
coding environments. As an application, Kinect2Gesture
is not constrained to any particular development environ-
ment, nor is anyone who might want to engage with Ki-
nect2Gesture in this manner be constrained to a limited
library of pre-made gestures.

Once the system has been trained on the series of

gestures corresponding to the necessary commands
and inputs of a coding syntax, ‘Prediction’ mode is se-
lected. In Prediction mode, Kinect2Gesture compares
Kinect data to the spectrum of data sets it has learned
for each gesture and predicts the gesture that has been
performed. In order to capture a usable data set, the ap-
plication uses a visual metronome in the form of a large
red dot that signals to the coder when the system is
‘watching’ and thus the window within which she needs
to perform the gesture in full. The prediction is output on
screen immediately, and that data is input into the select-
ed coding environment.

Learning by doing: an iterative process
in three phases

Action Coding consisted of three distinct research
phases. The first phase—in collaboration with Gene Ko-
gan, David Sheinkopf and Morgan Hille-Refakis—tested
the initial intention of the project by building a small ges-
ture library that could be used to write Arduino scripts
to turn LED lights on and off. Additional considerations
of this phase focused on the body. To shift the labor of
writing of code from the fingertips and keyboard to the
full body, a series of parameters focused on the health
and wellness of the body guided gesture creation and
performance. To avoid fatigue and/or repetitive stress
of a particular joint or limb, gestures should engage
the full body, from head to toe; and gestures should be
balanced across the body in lateral, frontal and sagittal
planes. Secondarily, was a goal to create gestures that
were meaningful, memorable and pleasurable guided
this phase. ‘Meaningful’ gestures concerned connect-

Morgan Hille-Refakis performs components of the first
Arduino gesture ‘dictionary’.

Segment of p5.js dictionary, performed by Nancy Nowacek.

ing the semiotics of the movement with code semantics.
‘Memorable’ gestures combined meaning with variety
and unique body positions. ‘Pleasurable’ gestures were
those identified as fun to perform and repeat.

We began by working with a series of three scripts: to
turn a light on, to make a light blink rapidly, and to slow
the blinking down and turn the light off, and worked with
two other dancers, Carlo Antonio Villaneuva, and Morgan
Preston, neither of whom had prior coding experience.
Each script was deconstructed into necessary functions
and inputs, for which a gestural ‘dictionary’ was created.
This dictionary included gestures for the full set of com-
mands and syntax necessary to write each script such
as ‘VoidSetup’ and syntax such as the semicolon. We
realized that in this first test phase, the code performer
was simply ‘performing typing’ with the whole body, so
the goal of the second phase was to create gestures for
full functions.

This first phase of the project was realized in three
public presentations, two in dance performance con-
texts—the Your Move festival, and Movement Research
Spring program at Judson Church in New York City.

Motivated by the observed potential of the gestural in-
put system to correlate with graphic focus of p5.js, tech-
nologist and dancer Caitlin Sikora and I, with Morgan
Hille-Refakis, developed a second library of gestures.
Building on experiences from the Arduino ‘dictionary’,

our goal was to seek a more direct relationship between
gesture, meaning, and function. Two sample scripts—
one to draw a circle and the other to draw a series of
vertical lines to create a square—were our basis for dic-
tionary creation. Based on learning from the first phase,
this phase increased the envelope of movement and
number of entries in the dictionary. Single gestures in this
library were created to communicate functions such as
‘stroke weight’ and ‘end of function’ in addition to ‘ellipse’
‘rectangle’ ‘line’ and numbers 0-9 and involved different
forms of jumps, squats, and directional arm movements,
amongst others. This phase moved further away from
performing typing, though still directly related to the syn-
tax of p5.

For example, the command to draw a circle was per-
formed by moving the right arm in a large circle. The
command to draw a rectangle was represented by a low-
er body shape, with knees out to each side at 90˚ angles
over ankles, that resembled a rectangle. We built a larger
library of gestures with the goal of clustering p5 syntax
in meaningful way, such that a single gesture could cor-
respond to strings of syntax. This phase was presented
publicly at The School for Poetic Computation’s spring
exhibition as a video work.

In the third phase, Ramsey Nasser wrote a custom
language, BodyLang, to create the most direct connec-
tion between gesture and code. Based on Logo, BodyL-
ang is stack language for drawing. Of all three iterations
of the project, Nasser’s stack language allows the most
direct connection between gesture and code. As new
lines are added to the stack, the code executes in real
time without need to compile, upload, or play. This sup-
plies instant feedback to the coder, and supports im-
provisation and play with the system more so than the
other environments. The goal of this phase was to ‘per-
form code’ in its most elegant sense, moving as far from

Segment of BodyLang dictionary, performed by Nancy
Nowacek.

Monitor display for BodyLang: minimized Kinect2Gesture
window on the left, BodyLang code in progress on the right.

the ‘performing typing’ paradigm as possible. Addition-
ally, the goal of the gestural language of it’s dictionary
was an experiment shifted the sense ‘meaningful’ in the
previous sense, to ‘being recognizable’ and intensifying
‘memorable’ and ‘pleasurable’ by using vernacular ges-
tures from sports and hip hop cultures. Gestures were
inspired by basketball, football, and music videos. The
“free-throw”, the “end-zone slam,” and the “stank leg”
represented commands such as pen-up, end of number,
and repeated cycles. This phase of project development
was presented publicly alongside the first two phases
in a solo art exhibition at Eyebeam (“Easy Is Not A Con-
cept”), a public workshop, and a college class workshop
at Scripps College—a women’s college.

Limits and potentials
Findings can be separated into four categories: the lim-
itations of the Kinect, the limitations of the system, the
limitations of the coder, and the potentials of the system.

Much time was spent exploring the spectrum of move-
ment within the Kinect’s capabilities. Crossing limbs,
spins, or shifts in head and hip position were not readily
detectable by the Kinect. Therefore, gestures were con-
strained to the frontal plane and focused on the shapes
produced by the body, with focus on the arms and legs.
Often gestures needed revising because they were too
subtle to be detected. The resulting learning is a correla-
tion between Kinect vision and cheerleading: the bigger
the shape created by the body, and the more crisp its
execution, the more clearly it could be consistently per-
ceived.

The Kinect’s data capture impacted the rest of the
system. Though all gestures were devised to be as vi-
sually unique as possible to enable successful predic-
tion—especially with regard to gestures that may be
used consecutively such as numbers—the data captured
by the Kinect and used by Kinect2Gesture often resulted
in prediction errors. Each code library contained no more
than 30 entries, which was considered to be a very small
and symbolic amount by the team. However, it became
clear that the maximum number of discreet detectable
gestures, within this system, could be no more than 5-10.

Furthermore, the system’s complexity also limited its
success. Each component of the system—Kinect, PC,
Mac, wireless communication and other peripherals—in-
troduced potential failure points and factors that could
be accounted for but not easily addressed.

When the system was performing at it’s best and fully
functioning, the results satisfied the original intent of the
project. Participants reported that they felt like they were
playing a game: trying to perform the correct gesture in
the correct sequence was fun, exciting, and engaging.
Participating dancers commented that performing cod-
ing gestures in collaboration with the system also felt like
‘performing good technique’, and that seeking the best

expression of each gesture was a stimulating challenge
much like performing a proper grand plié.

Participating dancers who had no prior experience
with computer coding, reported that they were able to
connect to the code through movement. Memorizing the
choreography of a particular script, in effect taught each
dancer the basics of the code. Embodied experience of
a script built muscle memory but also by repeating move-
ment patterns, dancers gained a sense of what should
‘naturally’ come next. Once dancers learned scripts, they
were able to manipulate and iterate the code because
they also had built an operational sense of the code
through their bodies.

Project participants given the choice of which dic-
tionary to learn most often gravitated to the BodyLang
dictionary. Participants seem to gravitate towards these
movements because they seem more ‘familiar’ and ‘fun’
and ‘dance-y’ than those used in P5 and Arduino which
seem more ‘basic’ and ‘like exercise’.

No matter the physical training or coordination in par-
ticipant, limitations of the body were observed. Partici-
pants shared feelings of panic and confusion when first
attempting to perform gestures in time with the Kinect-
2Gesture’s rate of capture. Though that rate can be set
by the user to any beats per minute, the factor of time
for new participants create a pressure that short-cir-
cuited the mind-body connection. Because the body
and mind are so rarely employed in simultaneous labor
such as this, a new coder can be easily overwhelmed by
the dual process of recalling a gesture and performing
it to a set beat per minute. However, when scripts are
learned and memorized ‘offline’, they can more easily—
and pleasurably—be performed in collaboration with the
system. From this we learned the need to introduce par-
ticipants to the gestural languages offline, followed by
memorizing a beginning sample script completely before
engaging the system online. Secondly, we learned that
once a basic script has been memorized, it can be more
easily expanded upon or manipulated by the coder. The
‘processing load’ when working simultaneously in the
mind and body impacted advanced users as well. For
more advanced users capable of improvising and coding
on the fly, there was a repeated and consistent need to
pause the system in order to compile the next string of
inputs in the brain before performing them in time to the
system’s beat. Gestures for ‘pause’ and ‘resume’ were
added to the BodyLang library.

Lastly, a consistent observation throughout the project
was general body fatigue after a couple hours’ work with
the system. Likewise, a brain fatigue was also observed
in conjunction with the tired body, where the ability to
recall or correctly perform a specific gesture began to
decrease over long stretches of time. This fatigue was
not perceived as negative, however. Often the phrase ‘a

good tired’ was employed to describe the fatigue, ac-
companying reports of an overall sense of satisfaction
from have the feeling of [bodily] accomplishment.

Conclusions and future work
In the context of Action Coding, a visible series of full-
body actions aids in the formation of the building blocks
of coding: the mind learns through the body. Syntax be-
comes a swing of an arm, a jump, or a squat; and logic
becomes repeated movement patterns and pairs, much
like dance.

If coding becomes visible, tangible, embodied, and
cooperative, who feels invited to code? The participants
most drawn to the project in public presentations were
female. Many interested participants approached the
project because they studied dance at one point, or were
still practicing dance. Others gravitated towards the proj-
ect because of the unique quality of the movements and
interest in the visible interaction with the Kinect.

One of Action Coding’s most important achievements
is a system in which anyone can create a series of full-
body gestures and train the system on them. This capa-
bility offers a wide variety of users with a spectrum of
mobility capacities to participate in motion capture and
gesture recognition technologies. For example, a user
who sits in a wheelchair or who cannot stand for long
periods of time can create a library using only the upper
body.

If coding is a physical process, how is learning code
impacted? The introduction to coding through an em-
bodied process was shown to be very powerful for those
new to coding. Working offline with beginning coders
through physical movements, and then applying those
movements to a gesture recognition system such as Ac-
tion Coding could be an exciting and effective method
for teaching beginning code. The procedural memory
required by the physical process amplifies the procedur-
al memory required by computer coding; and the motor
programs acquired by this process underscore the com-
putational programs of code. In this way, the project re-
imagines coding as a function, in part, of motor learning;
a new coder may learn and internalize syntax and log-
ic patterns more quickly and because they are taken in
through the full neuromuscular system, retain them lon-
ger [7,8,9]. As artistic research it suggests a pedagogy
of experimentation, fun and one driven by iteration and
play, not failure.

And more abstractly, what might the products of cod-
ing become if performed in this way? No conclusions
towards specific products have surfaced, however, the
positive effects of working with code in a physical, co-
operative, embodied manner challenge dominant cap-
ital-driven definitions of efficiency. Coding through this

system is admittedly not efficient, it is inefficient. Howev-
er, the affective outcomes of the project are robust: par-
ticipants who normally spend the bulk of their work and
recreational time on computers reported feeling tired but
good. To reiterate, they felt a feeling of accomplishment
and achievement. These outcomes suggest an economic
ecology that includes wellness in its profit motivations
and organizational goals.

Future work in this domain will continue, and seek
larger groups of participants from multiple ages, racial
and ethnic backgrounds, and abilities. Future iterations
will start by seeking to revisit the gesture recognition sys-
tem components in hopes of refining the motion capture
capabilities and reducing the complexity and opportunity
for error. Investigation will continue around gesture, se-
miotics, and syntax.

The objective of Action Coding—as a research-based
art project—was not to revolutionize digital industries,
but it suggests modes of cooperation and human-ma-
chine interaction that could sought to address it’s historic
culture and diversity problems by inviting new groups of
coders to learn and use code in untold of new ways, and
to create new digital products that engage full use of the
full body.

References
1. Emil Ong, “Practicing coding as a performance,” Hacker
Noon (a Medium publication), May 24, 2017, https://hack-
ernoon.com/practicing-coding-as-a-performance-c0ca0e-
c7261c.
2 Attila Vágó, “Coding Has Become Pop Culture,” Hacker
Noon (a Medium publication), Jan 18, 2017,
https://hackernoon.com/coding-has-become-a-pop-culture-
939100f84b0c.
3. Ibid.
4. Derek Thompson, “Why Women Prefer Working Together
(and Why Men Prefer Working Alone),” The Atlantic, August 21,
2013, https://www.theatlantic.com/business/archive/2013/08/
why-women-prefer-working-together-and-why-men-prefer-
working-alone/278888/.
5. Anusuya Chatterjee and Ross C. DeVol. Waistlines of the
World: The Effect of Information and Communications Tech-
nology on Obesity. Santa Monica: Milken Institute. August
2012. http://www.milkeninstitute.org/publications/view/531
6. Diane Solway, “How the body (and mind) learns a dance.”
New York Times, May 28, 2007, http://www.nytimes.
com/2007/05/28/arts/28iht-dance.html.
7. Danielle S Bassett, Muzhi Yang, Nicholas F Wymbs & Scott
T Grafton. “Learning-induced autonomy of sensorimotor sys-
tems,” 	 Nature Neuroscience, 18, pages 744–751 (2015),
http://www.nature.com/neuro/journal/v18/n5/full/nn.3993.
html
8. Colin Barras, “What to learn quicker? Use your body,”
BBC.com, March 21, 2014. http://www.bbc.com/future/sto-
ry/20140321-how-to-learn-fast-use-your-body

9. Lee, D.T., & Schmidt, A.R.. “Motor Control and Learning: A
Behavioural Emphasis.” (4th ed). Windsor, ON: Human Kinet-
ics, 2005.

Author Biography
Nancy Nowacek is a Brooklyn-based artist, designer, and ed-
ucator. Her interests are based in urban design, technology,
body literacy, and communication.

Nowacek is currently a research resident with Cape Cod
National Seashore and Freshkills Park (Freshkills R&D). She
was previously a fellow at Eyebeam, and has previously been
supported by residencies through the Lower Manhattan Cul-
tural Council, Recess, Signal Fire and the Sharpe Walentas
Studio Program. She teaches art and design at the Stevens
Institute of Technology, and organizes exhibitions, panels and
events devoted to waterways and climate change as well as
bodies and technology. She has presented works in New York,
Los Angeles and the Bay Area, Canada, South America and
Europe.

