
Facial Recognition on
Mobile Platforms

Student: ! ! Terry Worona (100 603 984)

Organization: ! ! Carleton University

Course: ! ! Comp 4905 Honors Project

! ! ! December 2009

Supervised by: !! Dr. Gerhard Roth, Adjunct Faculty Advisor

! ! ! Carleton University

! ! ! Computer Science

Abstract

! The introduction of smart phones configured with cameras, GPS systems and internet browsers

have ushered in a new era of information technology. The report details the creation of Look, an iPhone

application which addresses the lack of integration between computer vision and mobile platforms. Look

is designed to locate a face within an image captured by the iPhoneʼs camera and to retrieve a match

from stored images in a remote database. The closest match is returned and displayed together with the

original source image. The model database is created in an off-line process using an eigenspace

algorithm which compresses images by storing them as eigenvector representations, while the actual

face images are stored on a Flickr web server. The model database is compiled as an XML file and

downloaded by Look at startup. As a match is located, the specific face image is returned to the iPhone

via a Flickr JSON request.

! The report determines that it is possible to cross-compile OpenCV libraries for mobile ARM

architectures. Contributions are noted in the conclusion, providing specific instructions for porting

OpenCV to the iPhone, representing an image database as an eigenspace XML and querying REST

services such as Flickr.

2

Acknowledgements

! A sincere thank you is extended to Dr. Gerhard Roth for his supervision and continual support in

the evolution of this project. I trust that that this report will shed light on the future of mobile applications in

conjunction with computer vision topics. I would also like to thank the iPhone development community, in

particular the users of the iphonebook.com forums; their support and encouragement allowed for the

creation of the envisioned application.

3

Table of Contents

Introduction! 7

Related Work! 9

Background! 10

Mobile Device History! 10

iPhone SDK! 11

Computer Vision! 11

Object Recognition! 11

OpenCV! 12

JSON! 12

Objectives and Goals! 13

Motivation! 13

Project Requirements! 14

Personal Objectives! 14

Server Design! 14

Face Space! 15

Client Design! 16

Recognition! 16

Singleton Pattern! 18

iPhone Application Design! 19

MVC! 19

Navigation Hierarchy! 21

JSON Flickr Request! 23

Contributions! 25

Cross-compiling OpenCV 2.0! 25

Configuring X-Code! 25

4

Exporting Eigenspace as XML! 25

Evaluation! 26

Performance! 26

Accuracy! 26

Proposal Deviations! 27

Conclusion! 28

Results! 28

Future Work! 28

Bibliography! 30

Appendix-A! ! ! ! ! ! ! ! ! ! ! A-1

Appendix-B ! ! ! ! ! ! ! ! ! ! ! B-1

5

List of Figures

FIGURE 1-Face Space Deployment ! ! ! ! ! ! 15

FIGURE 2-Lookʼs Image Capture Screen! ! ! ! ! ! ! 16

FIGURE 3-Lookʼs State Diagram ! ! ! ! ! ! ! ! 17

FIGURE 4-Singleton Structure ! ! ! ! ! ! ! ! ! 18

FIGURE 5-Lookʼs Object Model !! ! ! ! ! ! ! ! 20

FIGURE 6-Navigation Hierarchy"! ! ! ! ! ! ! 21

FIGURE 7-Lookʼs Main View! ! ! ! ! ! ! ! ! 22

FIGURE 8-Lookʼs Detail View ! ! ! ! ! ! ! ! ! 23

FIGURE 9-Flickr JSON Request ! ! ! ! ! ! ! ! 24

FIGURE A1-Images Representing a Single Model Instance ! ! ! ! ! A-6

FIGURE A2-Flickr metadata! ! ! ! ! ! ! ! ! A-6

FIGURE B1-iPhone Simulator Runtime Configuration! ! ! ! ! ! B-2

FIGURE B2-iPhone Simulator Running Look! ! ! ! ! ! ! B-3

List of Tables

TABLE 1-Look Face Class" ! ! ! ! ! ! ! 20

TABLE A1-FaceSpace Directory ! ! ! ! ! ! ! A-4

TABLE A2-loadDataFromServer Flag! ! ! ! ! ! ! A-5

TABLE B1-Deliverable CD Contents! ! ! ! ! ! ! B-1

6

Introduction

! Many computer vision topics, particularly facial recognition, are restricted to experimenting on

webcams or other wired image capturing devices. With the introduction of mobile devices that are

packaged with straightforward development environments, programmers now have the capability to apply

vision algorithms wirelessly. This report and itʼs associated application Look, intend to create such a

service within a mobile platform, at the same time addressing issues such as hardware restrictions and

scalability.

! OpenCV libraries are the backbone of computer vision, offering well-documented functions that

allow developers to avoid extraneous and complicated mathematics. Without these essential libraries,

vision-related topics on mobile devices would not be possible. The OpenCV framework has been

deployed and seamlessly integrated into both iPhone and Windows Mobile devices with encouraging

results. As technology and hardware developments continue to advance, there is no doubt that OpenCV

libraries and mobile platforms will be used to complement each other.

! Look offers nothing revolutionary to the area of computer vision in terms of algorithms or

computational techniques. Instead, the prototype application aims to demonstrate the possibilities that will

become apparent once users begin to take advantage of OpenCV libraries on mobile platforms. This

study will discuss the pitfalls associated with executing memory intensive operations on a restricted

hardware set such as the iPhone. Since Objective-C does not contain a garbage collector, processes

such as converting images to and from OpenCV C++ libraries are prone to memory leaks. The report will

illustrate techniques and design patterns used to eliminate memory leaks and ensure that the application

was operating under optimal resource allocation. Although Gordon Mooreʼs accepted law states that the

power of a chip doubles every two years, it does not pertain to mobile devices in the same sense.

Mooreʼs Law, instead, is not about doubling transistor size rather than creating super-combo chipsets

able to support common features associated with present mobile devices. Chips custom-tailored to

supporting FM radios, TV tuners and video cameras are commonplace in present-day mobiles1. It is likely

7

1 Malik: ¶2, ¶9

that a port of the framework to mobile devices and simple facial recognition application are only the

beginning of what will manifest in the future.

! The report introduces a brief history of mobile devices and provides an overview of the

technologies applied to Look. Next, personal objectives and the functional requirements of the deliverable

Look, as well as the motivation behind the project, are addressed. Pre-existing knowledge of frameworks

and design patterns used to facilitate the application are described followed by a detailed synopsis of the

applicationʼs final structure. Specific contributions, notably cross-compiling OpenCV to the iPhone

platform, are elaborated in hopes that others may utilize the information to propel their own projects within

the field of mobile vision. Lastly, conclusions are stated related to performance, accuracy and future

considerations within the computer vision and mobile application realm.

8

Related Work

! Few existing papers deal with OpenCV libraries on mobile devices. One such paper, by Hadid et

al, describes the successful port of OpenCV to a Windows Mobile phone in which a HAAR-like face

detector2 is constructed to identify facial representations within a photograph. The work addresses the

limited resource availability on mobile devices and algorithm implementations that are tailored towards

mobile performance3. Overall results are similar to that of Look; a serious tradeoff between performance

and functionality on mobile devices running vision libraries.

! A theoretical-based paper by Wittke et al, details the role mobile phones can play in conjunction

with life-logging; recording an individualʼs day to day activities in explicit detail. A personʼs physical

movements and conversations with others can be converted to data and mined for further analysis4. A

prototype application built on a Unix-based mobile utilized a constant video feed to detect hand gestures

and facial features. A Face locator, similar to HAAR was used once again with similar performance

results.

! Look aims to build upon these foundational mobile vision papers by utilizing the latest in mobile

hardware and software technology, OpenCV and the Apple iPhone5. Consequently, Look will implement

intensive image-related tasks aside from simple face detection, already proven to have acceptable results

of identifying up to two faces per second6.

9

2 Viola: p511

3 Hadid: p101

4 Wittke: p2182

5 Look was developed and released under OpenCV 1.0 because 2.0 libraries were not yet released. However,
instructions for porting OpenCV 2.0 were added to Appendix A.1 as a last minute addition.

6 Hadid: p106

Background

Mobile Device History

! In the early 1990ʼs, mobile devices were segregated in two dominate groups: cell phones and

Personal Data Assistants (PDA). The former could make and receive calls and text messages as well as

store basic contact information. The latter could be synced serially to a computer to gather calendar,

address and email related data, but did not connect to a wireless network. Towards the end of the 20th

century, the two markets consolidated as cellphone companies encouraged customers to purchase what

they coined ʻSmart Phonesʼ, devices that offered the features of both cellphones and PDAs alike.

Because cellphone manufacturers at the time offered a wide variety of models to many different

providers, a common operating system was required. The major hardware manufacturers collaborated on

the first-known, widely distributed Smartphone OS, the Symbian Operating System7. This operating

system was stable enough to be distributed on a variety of different hardware platforms, but ʻlocked-downʼ

to anyone wishing to build on it. Much like itʼs ancestor Sybian OS, the Apple iPhone was originally

released as a closed system. It was not until Apple released a free public software development kit (SDK)

in March 2008 that it began to significantly impact the mobile device market. The SDK permitted

developers to create and distribute their own 'home brew' applications on the Apple App Store. The

iPhone camera, GPS and quick internet connection were all at the fingertips of eager developers looking

to 'strike it rich' by creating the next application. In just three months, the SDK was downloaded more than

a quarter-million times8, which produced 100 000 unique applications to date9. Consequently, the

Symbian OS together with other variants including the RIM Blackberry platform lost significant market

share10.

10

7 Anderson: p65

8 Bowcock: ¶1

9 Kerris : ¶3

10 Anderson: p65

iPhone SDK

" The Software Development Toolkit (SDK) is a chain of tools used for the development, testing

and deployment of software for the iPhone. The kit comes prepackaged with several core frameworks

used for communication with iPhoneʼs virtual memory, file system, networks and threading. The user is

free to add and remove frameworks as deemed necessary. As this report will demonstrate, OpenCV

libraries can be cross-compiled for the iPhone OS and deployed as any other native framework. OpenCV

is primarily written in C++; subsequently, there is added overhead in converting and transferring objects to

and from C++ to the SDKʼs native language Objective-C.

Computer Vision

! Computer vision can be defined as the “set of computation techniques aimed at estimating or

making explicit the geometric and dynamic properties of the 3-D world from digital images”11. In other

words, computer vision is the interpretation of digital images using recognized mathematical techniques.

The most successful applications of machine vision stem from the automation of observable inspection

tasks. In these scenarios, jobs traditionally held by humans, such as the quality inspection of items

traveling down an assembly line, can be replaced by a camera system capable of detecting

abnormalities12. Automatic Target Recognition (ATR) is another area of application where weapons can

be retrofitted with cameras to increase target accuracy13. As the field continues to gain relevance, vision-

related areas of study are becoming commonplace requirements in computer science curricula.

Object Recognition

! For the purpose of this report, object recognition will be restricted to the process of finding a

source object within a set of sample images or video. Traditionally, this aspect of recognition is referred to

as “identification”. The second component of recognition, determining an objectʼs 3-dimensional location,

11

11 Trucco: p2

12 Grimson: p46

13 Ibid

is not relevant to Lookʼs overall goal. The object recognition model assumes that the sample set is

predetermined and readily available; it is only possible to recognize an object with specified information

beforehand14. Model-based recognition is a particular brand of the identification problem and focuses on

determining whether a match for a source image can be found within a database of models. In order to

solve the recognition problem, two necessary questions need to be addressed:

I. Which data within a source image corresponds to the object required to be recognized?

II. Is there an available database of models to search against and can the query be narrowed to a

specific subset?

! The answer to both of the questions, in relation to this report is ʻNoʼ; we do not know where within

a sample image a specific face resides and the database model cannot be simplified. This particular

combination of scenarios requires an efficient searching algorithm, as well as a means to locate a face

within an image. Both aspects have been addressed and explained in detail throughout the report.

OpenCV

! Originally developed by Intel, OpenCV is a library written in C and C++, intended to simplify and

extend the many mathematical procedures used in computer vision algorithms. The libraries are cross-

compiled to run on both Unix and Windows-based operating systems. OpenCV abstracts confusing and

time-consuming tasks associated with implementing vision-based applications, allowing the developer to

maintain and construct programs with greater ease and fewer ʻbugsʼ. The vision library contains a total of

500 different functions which have a variety of real world applications15. The overall goal of the OpenCV

library is to propel the area of computer vision further by allowing more programmers to become involved

and formulate relatively sophisticated applications quickly.

JSON

! Javascript Object Notion (JSON) is a lightweight data interchange format and a subset of

Javascript. JSON syntax is simple and straightforward, making parsing of information efficient and more

12

14 Trucco: p2

15 Bradski: p1

desirable on mobile applications where processor and memory management is of the highest priority16.

JSON also has the ability to directly represent basic data structures including strings and collections.

While other data interchange mechanisms, such as XML, do have instruments in place to transform the

markup into usable structures, it often comes at a significant cost in terms of execution time. JSON was

the ideal choice for communicating to and from a web server on a mobile device because of its

straightforward structure and lightweight design.

Objectives and Goals

Motivation

! Both computer vision and mobile device development are two disciplines that are expanding at

incredible rates. The open-source community in both areas is strong, offering help and support through

the use of forums, chat rooms and newsgroups. There is a clear connection between the two topics and it

is only natural to begin porting computer vision techniques to mobile platforms; this allows the

applications to be wireless and decoupled from bulky webcams and desktop computers.

! Carleton University, among other post-secondary educational institutions, focuses not only on

teaching fundamental computer science theory, but also envisions the future. As a result, Carleton

recently announced a mobile development stream within the Department of Computer Science. The

motivation behind this project is to shed light on the possibilities involved when porting OpenCV to the

iPhone. Look does not add new algorithms or techniques to the computer vision discipline; instead, it is a

demonstration of what is possible when the libraries are taken to the mobile realm. Additionally, the report

strives to demonstrate possible study areas for Carletonʼs innovative mobile development stream.

13

16 Crockford: ¶3

Project Requirements

The project requirements set out by the author are:

I. Using existing OpenCV libraries, write an efficient algorithm capable of accepting a source image

and compare it to a database for potential matches. The algorithm will address two key points of

interest in model-based recognition:

i. Determine the 2-dimensional positions of a face within a sample image, based on a pre-

specified object model;

ii. Compare the ʻfaceʼ against a database of potential matches, based on co-ordinates found

in the recognition phase. The algorithm will return the closest possible match.

II. Develop an iPhone application which will provide an interface to the algorithm created in

Objective I. The iPhone will capture an image (a face), compare it to a database representation

(an xml file pulled from a web server at startup) and return the closest matching image.

III. Add local persistence to the iPhone application in order that users can add, review and delete

past verification history. Because storing images locally on the iPhone is memory and hard disk

intensive, they will be retrieved using REST request to a Flickr account.

Personal Objectives

The personal objectives set out by the author are:

I. Port the OpenCV framework to the iPhone SDK.

II. Familiarize myself with the iPhone SDK and Objective-C.

III. Extend my knowledge of web-based services to include new technologies such as REST

requests.

Server Design

! Mobile devices carry significant performance overhead from not only their lack of processing

power, but also minimal physical memory. For this reason, the model database, which is to be

represented in XML format as an eigenspace, will remain on a server. The generation, modification and

general maintenance of the face space is to be carried out on a machine separate from the mobile

device. In this sense, Look does not have the ability to directly manipulate the model database.

14

Face Space

! Information theory, simply stated, it is the task of converting abstract information to quantified

terms that can be mathematically and statistically modeled to a variety of scenarios ranging from data

compression to electrical engineering. Information theory is applied to facial recognition through Principal

Components Analysis (PCA), a technique first addressed by Turk and Pentland17.

! The EIGENSPACE_LEARN18 algorithm resides on a desktop machine separate from the iPhone

application. It takes as itʼs input, N images, converts each to a vector representation and computes a

master covariance matrix consisting of N eigenvectors. The algorithm extracts Nʼ eigenvectors (highest

eigenvalues) and creates an eigenspace with them, commonly referred to as a “face space”19. The face

space is saved as an XML file and uploaded to a server to be downloaded at by Look at startup (Fig. 1).

FIGURE 1-Face Space Deployment

15

17 Turk: p72-86

18 EIGENSPACE_LEARN is a generic name for the eigenface.c program (Appendix A.3).

19 Trucco: p268

Client Design

! Tasks such as locating a facial image and retrieving a match within a database could easily reside

on a server, increasing execution times significantly. Rather than explore what is possible, for example

image processing on a central server with ample resources, Look aims to answer questions that have not

yet been posed. Since little work has been accomplished in the area of consumer mobile vision, there are

limited benchmark statistics to refer to. All other vision-related tasks, aside from the construction of a face

space, reside on the iPhone itself. Look is intended to test the support that mobile hardware could provide

to OpenCV and required tasks for image recognition.

Recognition

! The EIGENSPACE_IDENTIFY20 algorithm resides within the Utils class of Look. It takes as itʼs

parameter a test image captured with the iPhoneʼs two-megapixel camera as demonstrated in Fig. 2.

FIGURE 2 -Lookʼs Image Capture Screen

16

20 EIGENSPACE_IDENTIFY is a generic name for a collection of functions used with Look.

The algorithm first applies a preprocessing technique to locate and crop a face within the test image.

Then, the face-image is converted to greyscale and projected onto the eigenspace obtained from the

remote web server at startup. The projection calculates a Euclidean distance between the test image and

all model images within the eigenspace. The returned value is a unique tag representing the shortest

Euclidean distance found within the projection21 . The tag is used to retrieve the matching image file via a

REST request to a Flickr server. A state diagram representation of Look in Fig. 3 summarizes the

recognition phase as well as other application features.

Aquire Photo

No Face/Match
Found

Identification
(find match)

View History
List

(main menu)

History Item

Select camera icon

Select Look icon

View
Instructions

Select instructions icon

Select Look icon

Select
history

item

Select
Look
icon

Select
Look
icon

No
face
found

Face
found

Match
not found.Match

found

Start
Look

Quit
Look

FIGURE 3-Look State Diagram

17

21 Trucco: p268

The techniques and algorithms used within Look are not constrained to a particular hardware set such as

a specific DSLR Camera or webcam, making the application extensible platforms aside from the iPhone.

Singleton Pattern

! The singleton design pattern is used to restrict instantiation of an object to a single occurrence22.

In Look, the Utils class represents a toolbox that performs various OpenCV procedures tailored to the

application, for example locating a face within a source image and cropping it. Various procedures that

convert Objective-C UIImage types to C++ Implmage are present in the Utils class. It was chosen to be a

singleton class for two reasons:

I. It is the ideal choice for global variables and can be tailored to allow or reject access to specific

objects. In the case of Look, specific controllers should have access to the singleton.

II. The Utils class requires precise care and memory management. Its entire lifetime must be

monitored from instantiation to destruction. If multiple instantiations of the class were present, the

program would certainly bottom out due to insufficient memory.

Fig. 4 illustrates the use of the singleton pattern as it relates to the Utils class.

FIGURE 4-Singleton Structure

! The application delegate handles application-level functionality such as initializing and destroying

global objects and managing application-wide behavior23. Since the Utils singleton is a type of global

18

22 Gamma: p128

23 Mark: p44

variable that is needed by all controllers at any point in time, it resides within the delegate. The delegate

can be accessed by any controller at any point of the programʼs execution.

iPhone Application Design

! The client and server sections collectively describe the business model behind Look. They serve

to provide an overview of how the application is configured to address the overall goal of locating a face

within a photograph and retrieving a match within a remote structure. The application design is a detailed

look at the various components that support the business in achieving itʼs goal by providing a means for

the client to connect to the server and for a user to interact with the system via a user interface.

MVC

! The Model View Controller (MVC) framework, although apparent in most modern object-oriented

systems, is nevertheless important to consider in Look. The model consists of business information,

which may or may not be persisted to a local or remote database. The controller defines the way the

model and user interface interact with one another. Lastly, the View is the presentation layer and most

commonly what the user sees when using an application24. The latter two elements are provided via

Apple's navigational hierarchy structure, elaborated in the next section of this study.

! Appleʼs Core Data Framework is a robust and dynamic method of visually representing data

models, although absent from all releases of the SDK until version 3.0 25. Core Data requires a significant

amount of overhead work to setup and configure. For simple applications such as Look, it provides little

advantage over traditional persistence mechanisms that rely on XML schemas. Nonetheless, it was

chosen for two important reasons:

I. Core Data, to date, is the best model for storing and persisting images. Since Look stores the

source images of a recognition attempt, it was the primary choice.

19

24 Gamma: p2

25 Mark: p379

II. For large, complex systems, Core Data simplifies the model creation process significantly.

Although in its current state Look is fairly straightforward, at any point it can be extended to

include a more robust and detailed design. Thus, Core Data increases Lookʼs scalability for future

additions.

Lookʼs current object model is a single, persisted class (Fig. 5). Itʼs attributes are illustrated in Table 1.

FIGURE 5-Look Object Model

Attribute Type Description
createDate NSDate The date the recognition event

took place.

srcImage UIImage Once the application captures an
image with the iPhone’s camera,
the controller will employ a utility
class to locate a face and crop it.
The result is the srcImage.

userTag NSString When a face has been verified, it’s
closest match will be returned as a
unique tag. This userTag can be
utilized to retrieve a face image
from a Flickr server using a JSON
request.

userName NSString The user name of the match
image is stored on the Flickr
server and paired with the
userTag. This attribute is retrieved
using a JSON request.

TABLE 1-Look Face Class

20

! All Core Data model objects reside in a persistence store, which by default is a SQLite

database26. The most beneficial aspect of the Core Data framework is that it incorporates all the work

associated with loading, saving and updating the objects, provided through a class called a “Managed

Object Context”. Core Data will even persist data to the store in the event of an application crash or if one

simply forgets to flush it. The context resides in the applications delegate which is a central access point

for all controllers within the applicationʼs framework.

Navigation Hierarchy

! Apple provides an efficient framework for creating navigation-based applications, a perfect

compliment to the Core Data model and the MVC paradigm. A root controller is the entry point to the

application. Lookʼs root controller subclasses UINavigationController which provides functions to push

and pop new UIViewControllers onto the stack, allowing the developer to build complex hierarchical

systems iteratively. Lookʼs navigation hierarchy is demonstrated in Fig. 6. Each UIViewController acts as

both a view and a control mechanism to the applicationʼs delegate which moderates access to the

business model and persistence stores.

Main View
Controller

Details View
Controller

Instructions View
Controller

No Face Found
View Controller

<pop>

<pop>

<pop> <push>

<push>

<push>

FIGURE 6-Navigation Hierarchy

21

26 Mark: p379

! The iPhone has only 128MB of RAM and of that space approximately one-half is reserved for

screen buffering and other system processes27. In order to stay within boundaries, match images are

stored on a Flickr server and may be retrieved via the JSON API. Consequently, the hierarchical

schematic lends itself to loading and unloading matching images at the userʼs request. When the Main

View Controller is loaded, a list of face objects is acquired from the SQLite database and placed into a

table view as shown in Fig. 7.

FIGURE 7-Lookʼs Main View (Loading Recognition History)

! It is only when the user selects a particular row that the match image is retrieved from Flickr using

the user tag. The match image, coupled with the user name and original Face object, is used to

instantiate a Details View Controller and push it onto the stack as demonstrated in Fig. 8. The structure

keeps hard disk space at a minimum by separating requests into smaller, more manageable pieces

through each level of navigation

22

27 Ibid: p6

FIGURE 8-Lookʼs Detail View

! Information is passed in a single direction down the hierarchy from parent to child. The child does

not need to know anything about its parent class other than what it provided in the initialization stage. This

technique, known as ʻloose couplingʼ, increases the chances of the controller being reused later or

swapped for a new type of implementation in the future28.

JSON Flickr Request

! Flickr is a popular online community where users can upload, edit and share their photographs

amongst each other. Flickr provides the functionality to add descriptions, titles and tag annotations to any

image that is uploaded. As previously noted, a Flickr account will store a representative image of each

individual within the model database. Furthermore, all representatives are provided with a unique tag that

can be used for retrieval. The unique tag will correspond to the userTag instance variable of the Face

class. Recall that this userTag is populated when a match has been found within the modelʼs eigenspace

during Principal Components Analysis (PCA).

23

28 Gamma: p26

! Tags are a simple and direct annotation mechanism to be used in a variety of different scenarios,

most of which are beyond the scope of this project. Tags provide an expeditious means of querying a

database of images residing on a server. A tag framework has several drawbacks, the most noteworthy

being its lack of query refinement29. Although irrelevant to the current structure of Look, if a requirement

was added to group users by location, department or role, tags could not provide the functionality of

refining queries to accommodate such a task.

! Representation State Transfer (REST) is a popular web framework based on HTTP protocols. It is

a set of architectural constraints that focuses on simplifying network communications by reducing latency

and maximizing scalability. REST provides a simple mechanism for defining resource representation and

information exchange between web severs and clients.30 Flickr provides, among other REST services, a

robust JSON API that allows developers to base queries on various attributes including date, tag,

description, title and username. A user must obtain an alpha-numeric key value from Flickr that will be

passed into all REST HTTP requests. The key is free and easily obtainable with a valid Flickr account.

The basic HTTP request in Look includes the username, Flickr key and tag as depicted in Fig. 9.

// assume we have variables api_key, user_id and user_tag from a Face object

NSString *urlString = [NSString stringWithFormat:@”

 http://api.flickr.com/services/rest/?method=flickr.photos.search

 &api_key=%@

 &user_id=%@

 &tags=%@

 &format=json”, api_key, user_id, user_tag];

FIGURE 9-Flickr JSON Request

24

29 Schmitz: p1

30 Fielding: p116

http://api.flickr.com/services/rest/?method=flickr.photos.search
http://api.flickr.com/services/rest/?method=flickr.photos.search

! The urlString serves to initialize an NSURLConnection which if successful, will return the URL to

a unique photo coinciding with the userTag. The URL can then be employed to load and/or unload past

recognition matches as requested by the user.

Contributions

Cross-compiling OpenCV 2.0

! In order for Look to take advantage of OpenCV, a universal static library must be created for both

Intel and ARM processors. The Intel library will be used in conjunction with testing, debugging and

developing within the iPhone simulator provided by the SDK. ARM is a reduce instruction set processor

that is suitable for low power applications. ARM processorʼs are relatively small size and ease of use have

made them dominate in the mobile device market. In 2007, 98% of all mobile devices were utilizing ARM

chips31. To cross-compile OpenCV for the architectures mentioned, refer to Appendix A.1.

Configuring X-Code

! Once the static cross-compiled library has been created for ARM and Intel-based processors, it

may be included within any X-Code project. The libraries will be free to use just as any other library and

packaged automatically with an application build. The steps outline in Appendix A.2 demonstrate how to

configure X-Code for use with OpenCV static libraries.

Exporting Eigenspace as XML

! As previously stated, a face space is exported as an XML file on the server side. For

convenience, a sample face space was packaged within the contents of the CD deliverable together with

the code used to generate the XML file. Appendix A.3 reveals the ʻFaceSpaceʼ folder structure of the

deliverable CD along with instructions on how to generate and import face spaces into Look.

25

31 Krazit: ¶2

Evaluation

Performance

! Look was primarily developed within the SDK's simulation environment which does not replicate

the iPhone's hardware. In other words, Look was being developed and tested on an accelerated, modern

computer with 4GB of RAM and a dual core CPU. Locating a face within an image involved mere

milliseconds and retrieving a corresponding match, even within a database of 50 plus models, took no

more than a few seconds. Fortunately, when the application was deployed to the iPhone, the results did

not differ dramatically from what was expected. Albeit the unit runs on a modest 333 MHz CPU and

128MB of RAM, the entire recognition phase took no longer than 30 seconds to complete.

! Intel Performance Primitives (IPP) is a low-level signal and image processing library created by

Intel to optimize OpenCV performance32. Unfortunately such libraries are proprietary to Intel chips and

cannot be ported to ARM processors or similar variants. While executing various OpenCV procedures,

speed increases can be as high as 38% when using 64bit chipsets with IPP turned on33. As

demonstrated, if Moore's Law continues as predicted into the 21st century as a model to describe mobile

chipset features, perhaps manufacturers will take advantage of Intel based CPUs that are coupled with

IPP libraries in order to maximize computer vision techniques. Currently, ARM processors do not have the

features and qualities found in most entry level Intel chipsets.

Accuracy

! The information theory approach to facial recognition may produce principal components within a

model that do not discriminate against facial features, but from the environment in which the images were

captured. Characteristics including background, side lighting and color temperature can be

misunderstood as representing key facial features instead of spurious data representing the surrounding

26

32 Landré: p1

33 Ibid: p5

context34. A variety of pre-processing techniques may be applied to both model and test data to reduce

the risk of obtaining false acceptance or false rejection results. The pre-processing occurs prior to

determining the principal components of a model image and after a test image is projected onto the

space.

! As explained, Look will locate a face within a test image before any recognition takes place; this

itself is a form of preprocessing. Removing extraneous data which represents an objectʼs surroundings

greatly reduces the likelihood of unwanted data being represented as a principal component. After a face

is located, it is converted to greyscale in order to remove any color temperature inconsistencies. Color

normalization methods were considered to be included in Look such as the universally recognized

ʻIntensity Normalizationʼ algorithm, which attempts to average all three color channels each time the

imageʼs intensity increases by a predefined factor. Another respected technique, known as ʻGrey Worldʼ,

improves images with large color variances by having each of the RGB channels average to a common

grey value. The aforementioned algorithms are impressive on paper, but are surprisingly error prone due

to loss of information. Particular features such as image edges are lost from intensity and color reduction

techniques, making the images more difficult to segregate into principal components35.

! Algorithms that increase the intensity of edges within a sample image have yielded encouraging

results, at times reducing errors rates (the chance of returning a false match or false rejection by 11.6%36.

Although Look does not implement such techniques, it is still worthy to note them for consideration in

future releases.

Proposal Deviations

! The final deliverable has minor deviations from the original proposal which suggested that Look

return a list of matches along with the accuracy (Euclidean distance) of each. The final product returns a

single match, based on the shortest Euclidean distance within a face space. The most elegant and

27

34 Heseltine: p678

35 Ibid: p685

36 Ibid

intuitive designs are usually the simplest, so rather than inflate the application with features the author

decided to keep it straightforward.

! Secondly, the configuration of the server-client architecture differs slightly than the original

proposal. Rather than placing all of the image-related operations on a central web server, the student

writer put almost all of the content on the mobile itself. The reason behind this choice was to test the

iPhoneʼs reliability and performance when handling complex OpenCV instructions. The reportʼs direction

took into account implementing what was presently possible to what may be possible in the future.

Conclusion

Results

! The Look prototype serves as a stepping stone on the road towards mobile hardware and

computer vision sharing a more common, unified platform. The project was not intended to break ground

as far as adding new or improved content to existing OpenCV libraries; rather, its intent is to inspire

others towards thinking about mobile vision in general. At this point, facial recognition techniques on

mobiles are indeed possible and executable within a respectable time frame. As mobile chipsets move

towards 'feature-based' approaches to expansion, perhaps manufacturers will be inclined to include

elements such as IPP to improve performance for visual related tasks.

Future Work

! In its current form, Look is not a complete distributed application. That is, it does not have a

complete client-server framework. Ideally, the iPhone application would include the ability to add users to

the database via their mobile, a task that is beyond the timeline and scope of this project.

! Social media outlets such as Facebook and Myspace contain an enormous amount of public

information. Facebook alone provides a profile page for each and every user, currently estimated at 300

million plus worldwide37. Each public profile contains names, birthday and location information as well as

28

37 Facebook: ¶1

a thumbnail image of the user's face. Social websites and the enormous repository of information they

supply are attracting the interest of some big name companies. Yahoo!, for example, returns public

profile pages in search results38 and Face.comʼs application 'Photo Tagger' automatically tags images

with usernames based on the Facebook database39. The present client-server architecture of Look lends

itself to scalability. The client can essentially be 'plugged' into any eigenspace provided, assuming it has

meta-information for retrieval purposes. The real task lies in converting a potentially huge image

database into a compressed eigenspace representation.

29

38 Agarwal: ¶1

39 Perez: ¶2

Bibliography

Agarwal, Amit. “Yahoo! Integrates Images from Facebook Profiles in Search Results”. Digital
! Inspiration. April 21, 2008. <http://tinyurl.com/3k7qsc>.

Anderson, Eric and Sharon P. Hall. “Operating Systems For Mobile Computing”. Journal of Computing
! Sciences in Colleges. December 2009: 64-71.

Bowcock, Jennifer and Simon Pope. “iPhone SDK Downloads Top 250,000”. Apple Inc. June 9, 2008.
! <http://www.apple.com/pr/library/2008/06/09/iphone_sdk.html>.

Bradski, Gary and Adrian Kaehler. Learning OpenCV. California: OʼReilly Media, 2008.

Crockford, Douglas. “JSON: The fat-free alternative to XML”. XML 2006, Boston. December 6, 2006.

Facebook. “Facebook Statistics”. Facebook. November 27, 2009. <http://www.facebook.compress/
! info.php?statistics>.

Fielding, T. Roy and Richard N. Taylor. “Principled Design of the Modern Web Architecture”. ACM
! Transactions on Internet Technology (TOIT). May 2002: 115-150.

Gamma, Erich, et all. Design Patterns: Elements of Reusable Object-Oriented Software. Massachusetts:
! Addison Wesley Longman, 1995.

Grimson, W.E.L. and J.L. Mundy. “Computer Vision Applications”. Communications of the ACM. March
! 1994: 44-51.

Hadid, A, et al. “Face and Eye Detection For Person Authentication in Mobile Phones”. Distributed Smart
! Cameras (ICDSC). September 2007: 101-108.

Heseltine, Thomas and Nike Pears and Jim Austin. “Evaluation of image pre-processing techniques for
! eigenface based face recognition”. International Conference on Image and Graphics. 2002:
! 677-685.

Kerris, Natalie and Simon Pope. “Apple Announces Over 100,000 Apps Now Available on the App Store”.
! Apple Inc. November 4, 2009. <http://www.apple.compr/library/2009/11/04appstore.html>.

Krazit, Tom. “ARMed for the living room”. CNET News. April 3, 2006. <http://tinyurl.com/p8g3n5>.

Landré, Jérôme and Frédéric Truchetet. “Optimizing Signal and Image Processing Applications Using
! Intel Libraries”. QCAV 2007. May 2007.

Malik, Om. “Mooreʼs Law Reconsidered.” Business 2.0 Magazine. April 3, 2007.
! <http://tinyurl.com/yzr7l9p>.

30

http://tinyurl.com/3k7qsc
http://tinyurl.com/3k7qsc
http://www.apple.com/pr/library/2008/06/09/iphone_sdk.html
http://www.apple.com/pr/library/2008/06/09/iphone_sdk.html
http://www.facebook.com/press/info.php?statistics
http://www.facebook.com/press/info.php?statistics
http://www.facebook.com/press/info.php?statistics
http://www.facebook.com/press/info.php?statistics
http://www.apple.com/pr/library/2009/11/04appstore.html
http://www.apple.com/pr/library/2009/11/04appstore.html
http://tinyurl.com/p8g3n5
http://tinyurl.com/p8g3n5
http://tinyurl.com/yzr7l9p
http://tinyurl.com/yzr7l9p

Mark, Dave and Jeff LaMarch. Beginning iPhone 3 Development : Exploring the iPhone SDK. California:
! Apress, 2009.

Niwa, Yoshimasa. “Using OpenCV on iPhone”. Yoshimasa Niwa. March 14, 2009. <http://tinyurl.com/
! cqedlk>.

Perez, Sarah. “Photo Tagger: Facial Recognition for Auto-Tagging Facebook Photos”. Read Write Web.
! July 21, 2009. <http://tinyurl.com/l9uexf>.

Schmitz, Patrick. “Inducing Ontology from Flickr Tags”. Collaborative Web Tagging Workshop. May
! 22-26, 2006.

Trucco, Emanuele, and Alessandro Verri. Introductory Techniques for 3-D Computer Vision. New Jersey:
! Prentice Hall, 1998.

Turk, Matthew and Alex Pentland. “Eigenfaces for Recognition”. Journal of Cognitive Neuroscience.
! 1991: 72-86.

Voila, Paul and Michael Jones. “Rapid Object Detection using a Boosted Cascade of Simple Features”.
! IEEE Conference on Computer Vision and Pattern Recognition. 2001: 512-518.

Whisenhunt, Phillip. “Porting OpenCV to the iPhone”. iPhone/Cocoa/Objective C/
! Biometrics/Everything. February 7, 2009. <http://tinyurl.com/yhkoqoc>.

Whttke, Michael, et al. “Activity Recognition Using Optical Sensors on Mobile Phones”. Mobile and
! Embedded Interactive Systems (MEIS). September 2009: 2181-2194.

31

http://tinyurl.com/cqedlk
http://tinyurl.com/cqedlk
http://tinyurl.com/cqedlk
http://tinyurl.com/cqedlk
http://tinyurl.com/l9uexf
http://tinyurl.com/l9uexf
http://tinyurl.com/yhkoqoc
http://tinyurl.com/yhkoqoc

Appendix-A

A.1 ! Cross-compiling OpenCV 2.0

I. Create a staging folder called ʻ/Stagingʼ anywhere on the machine.

II. Download and unpack the OpenCV 2.0.0 source library (located on Sourceforge). Move the

unpacked OpenCV-2.0.0 source folder into /Staging. Create two new directories in the source

folder labeled build_simulator and build_device.

III. Copy the ʻconfigure_opencvʼ and ʻcvcalibration.cpp.patch_opencv-2.0.0ʼ shell scripts from the

OpenCV/Staging folder of the deliverable CD package into the directory /Staging that was created

in step II. Ensure that the system root has read and write access to these scripts.

IV. Navigate to /Staging/OpenCV-2.0.0 and type:

$ patch -p0 < ../cvcalibration.cpp.patch_opencv-2.0.0’

V. Navigate to /Staging/OpenCV-2.0.0/build_simulator and type:

$../../configure_opencv

$ make

$ make install

VI. Navigate to /Staging/OpenCV-2.0.0/build_device and type:

$ ARCH=device ../../configure_opencv

$ make

$ make install

Unfortunately, this process creates two types of static libraries: one to be used within the iPhone simulator

(/Staging/opencv_simulator), the other to be used on the iPhone device (/Staging/opencv_device). These

compilations are for i386 and ARM processors respectively. Because of the inconvenience of having to

manually swap static libraries whenever the underlying environment was changed, the ʻlipoʼ command will

be used to create a universal static library composed of both i386 and ARM compilations.

A-1

VII. Navigate to /Staging folder and type:

$mkdir universal_build

$ lipo -create opencv_simulator/lib/libcv.a opencv_device/lib/libcv.a -output
universal_build/libcv.a

$ lipo -create opencv_simulator/lib/libcxcore.a opencv_device/lib/libcxcore.a -output
universal_build/libcxcore.a

$ lipo -create opencv_simulator/lib/libcvaux.a opencv_device/lib/libcvaux.a -output
universal_build/libcvaux.a

$ lipo -create opencv_simulator/lib/libml.a opencv_device/lib/libml.a -output
universal_build/libml.a

$ lipo -create opencv_simulator/lib/libhighgui.a opencv_device/lib/libhighgui.a -output
universal_build/libhighgui.a

The /universal_build folder will contain 5 static libraries (*.a) for both Intel and ARM processors1.

If for any reason the build did not work, there is a working compiled version on the deliverable CD located

at :

/OpenCV/Staging

A-2

1 Instructions to cross compile OpenCV have been referenced from Niwa: ¶5-¶10

A.2 ! Configuring X-Code

I. Create a new folder on your desktop titled ʻOpenCV.libʼ and copy all the *.a files from the

universal_build directory into /OpenCV.lib.

II. Create another folder on your desktop titled ʻheadersʼ and copy all of the .h & .hpp files from the

original OpenCV-2.0.0 source folder into it.

III. Create a new application in X-Code.

IV. Drag the /headers directory to the /Classes group of the projectʼs “Groups & Files” explorer.

When prompted, select ʻCopy items into destination groupʼs folderʼ.

V. Include some header files such as cv.h and highgui.h in the code (for compilation purposes).

VI. Now that X-Code has created a project folder structure, navigate to itʼs root via the system finder

and copy the OpenCV.lib into it.

VII. Double click the projects ʻTargetʼ and select the ʻbuildʼ tab.

VIII.Add paths to the static compiled libraries in the ʻOther Linker Flags” section (all as one string) for

both ʻReleaseʼ and ʻDebugʼ Configurations :

-cclib -lstdc++

OpenCV.lib/libcv.a

OpenCV.lib/libcvaux.a

OpenCV.lib/libcxcore.a

OpenCV.lib/libhighgui.a

OpenCV.lib/libml.a

IX. Notice that libstdc++ was added as well. Since OpenCV.lib was copied to the root of the project

in step VI. , the paths are relative to the static library files. We can now compile and run2 .

If for any reason the configuration did not work, there is a working configured version on the deliverable

CD located at :

/Application/Look

A-3

2 The X-Code configuration process has been referenced from Whisenhunt: ¶2, ¶5,

A.3 ! Exporting Eigenspace as XML

The Application/FaceSpace directory, located on the deliverable CD, is subdivided as follows (Table A1):

Location Subdirectories/Files Description
/Database /Sx where x is a digit. Contains the model database that is used to

create a face space. To add a new entry to
the model, create a new folder /Sx where x is
the next sequential digit in the database. All
photos within the folder must be 92x112
greyscale 72dpi and in PGM format.

/Face Locator /facedetect.c

/images

Sample code that was used to test face
finding techniques. The program locates a
face within a image, crops it and saves it as
C:/tmp.jpg. The program also displays the
original photo with a red rectangle
superimposed on the face that was located.

Sample images used to test the face finder
algorithm.

/Recognition /eigenface.c Two parameters may be run the program :

-”train” - generates an face space using the
images found within the /Database directory.
The train.txt file specifies which image
directories will be used to generate the face
space. The XML file is saved as /output/
facedata.xml

-”test” - projects a test face whose path is
defined in test.txt.

TABLE A1-FaceSpace Directory

To generate a face space:

I. Ensure the model database is correct and all photos within the /Database folder are 92x112

greyscale 72dpi and in PGM format.

II. Configure /Recognition/train.txt to reflect which images within the model database will be included

in the face space.

III. Run eignface.c with the parameter ʻtrainʼ via the command line or an appropriate development

environment. The outputted face space will be located at /Recognition/output/facedata.xml

IV. For convenience, the facedata.xml resides within the root of the project directory. To update a

face space, simply drag the new facedata.xml into the Look workspace directory (Application/

Look on the deliverable CD). When asked if you wish to overwrite, click ʻYesʼ. Alternatively, the

facedata.xml can be uploaded to a web-server (see instructions below).

A-4

A flag variable located in the Utils.m class named ʻloadXmlDataFromServerʼ can be toggled to yield the

following two scenarios (Table A2).

loadXMLDataFromServer Description
0 The facedata.xml will be loaded locally from within the workspace.

1 The facedata.xml will be loaded from a web-server at startup.
Once loaded, it will saved to the local workspace and replace any
existing facedata.xml files that currently reside there.

TABLE A2-loadDataFromServer Flag

If the flag is set to true (1), then the url to the facedata.xml must be specified within the Util.m class:

NSString *const faceDataXmlUrl = @"URL TO FACEDATA.XML";

A representative face for each database model instance should be uploaded to a Flickr account.

The Flickr tag for each representative is assigned in the train.txt file during face space creation. For

example, the following lines in train.txt specify ʻ2ʼ as a tag to images corresponding to the same model

instance.

2 ../Database/s1/1.pgm

2 ../Database/s1/2.pgm

2 ../Database/s1/3.pgm

2 ../Database/s1/4.pgm

2 ../Database/s1/5.pgm

2 ../Database/s1/6.pgm

2 ../Database/s1/7.pgm

2 ../Database/s1/8.pgm

2 ../Database/s1/9.pgm

2 ../Database/s1/10.pgm

A-5

In other words, images 1.pgm through 10.pgm are all the same person (tag ʻ2ʼ), just under different

lighting conditions or facial expressions as shown in Fig. A1.

FIGURE A1-Images representing a single model instance

When an image is uploaded to Flickr representing the above person, it should be tagged ʻ2ʼ. Fig. A2

demonstrates the uploading of 6 representative images to the Flickr database-the provided tag and title

information will be pulled from Look when a match is retrieved.

FIGURE A2-Flickr metadata

A-6

To configure Look to use a specific Flickr account:

I. Launch the Look workspace by double clicking Look.xcodeproj within the Application/Look folder.

II. Navigate to MainViewController class found within the /Controllers folder of the Groups & Files

view. Change the static instance variables FlickrAPIKey and FlickrUserId to ones that are

associated with your account (obtained at www.Flickr.com).

NSString *const FlickrAPIKey = @"your Flickr API Key";

NSString *const FlickrUserId = @"Your Flickr User Id";

To simplify the configuration, the paper has provided a Flickr account which currently holds

representatives 1-6 of Figure A2. The FlickrAPIKey and FlickrUserId are already configured within the

Look workspace. Flickr credentials for database maintenance are as follows:

I. Flickr username: “Look_Application”

II. Flicker password: “Carleton12#”

A-7

http://www.Flickr.com
http://www.Flickr.com

Appendix-B

B.1 ! CD Deliverable Contents

Location Subdirectories/Files Description
/Application /Look

/FaceSpace

The iPhone application Look. Directly altering
this folder structure is not recommended. All
changes should be through X-Code. To open
up the Look X-Code project, double click
Look.xcodeproj.

Requirements : Mac OS X / XCode with
iPhone SDK

Contains all of the code that is used to create
a face space as described in the ‘Server
Design’ section.

Requirements: Windows XP/Vista/7 / MS
Visual Studio or C++ environment variant.

/OpenCV /Staging A completed cross-compiled static OpenCV
library. The folder contains the two scripts that
are needed to cross compile the OpenCV
libraries for use with the iPhone SDK.

/Media /Look_Instructional_Video.m4v An instructional videos that shows Look in
action.

Requirements: VLC / Windows Media Player

/Report Mobile_Face_Recognition.pdf

Mobile_Face_Recognition_Proposal.pdf

A copy of this report.

Requirements: Adobe Acrobat

The original proposal.

Requirements: Adobe Acrobat

TABLE B1-Deliverable CD Contents

B-1

B.2 ! Software Requirements

I. OpenCV libraries (2.0).

II. X-code & iPhone SDK.

III. MS Visual Studio or C++ development environment variant.

B.3 ! Hardware Requirements

I. Macintosh Computer (OS X 10.5 or later).
II. Windows Computer (Windows XP/Vista/7).

III. iPhone (3G or 3Gs) or iPod Touch.

B.4 ! Deploying Look to the iPhone Simulator

The following steps must be followed to run Look on the iPhone simulator:

I. Launch X-Code via double clicking Look.xcodeproj.

II. The X-Code workspace will already be configured as per the steps outlined in ʻCross Compiling

OpenCV 2.0ʼ. The static OpenCV libraries are also located within the workspace.

III. Select the dropdown menu in the top left corner and select ʻiPhone Simulatorʼ as the active SDK

and ʻReleaseʼ as the active configuration (Fig. B1).

FIGURE B1-iPhone Simulator Runtime Configuration

B-2

IV. Select Project->ʻBuild & Debugʼ and Look will launch in the simulator environment (Fig. B2).

FIGURE B2-iPhone Simulator Running Look

B.5 ! Deploying Look to the iPhone Device

As a result of Appleʼs strict policy on installing third party applications, the deployment of Look to the

iPhone device is more much more involved than the simulator. Please refer to the ʻprovisioningʼ

instructions within the iPhone developer portal at

http://developer.apple.com/iphone/manage/overview/index.action.

B.6 ! Instructional Video

Also packaged with the deliverable CD is an instructional video which takes the user through all the

actions of Look. The video is located in the /Media folder of the deliverable CD as well as on youtube via

the following URL:

http://www.youtube.com/watch?v=RaGBt4hRh_s

B-3

http://www.youtube.com/watch_private?v=RaGBt4hRh_s&sharing_token=qd7wCoffbPWvMsPfiqtU_Q==
http://www.youtube.com/watch_private?v=RaGBt4hRh_s&sharing_token=qd7wCoffbPWvMsPfiqtU_Q==
http://developer.apple.com/iphone/manage/overview/index.action
http://developer.apple.com/iphone/manage/overview/index.action

