

Loom-Based Mechanized Crochet

Norah Smith

ns8359@princeton.edu

Princeton University

Princeton, New Jersey, USA

Daniela Mitterberger

mitterberger@princeton.edu

Princeton University SoA

Princeton, New Jersey, USA

Sigrid Adriaenssens

sadriaen@princeton.edu

Princeton University

Princeton, New Jersey, USA

Abstract

Textiles are increasingly recognized in architecture and robotics for their adaptability to diverse shapes, low environmental impact, and lightweight character. While flatbed knitting has enabled the production of complex 3D composites and formwork, the low internal strength and geometric limits of knitted fabrics restrict their structural potential. Crochet, by contrast, offers higher tensile strength, greater three-dimensional extensibility, and the ability to generate arbitrary topological surfaces through its variable stitch geometry. However, the craft has yet to be mechanized due to its complexity and dense stitch structure. This project introduces a new framework for robotic crochet, which translates the handicraft into a loom-based fabrication process. A robotic arm equipped with a latch-needle end effector builds stitches from any point in a constrained fabric matrix, supported by a passive yarn tensioning system. This approach enables the reliable automation of crochet for producing intricate three-dimensional morphologies in architectural composites, soft robotics, and biomedical applications.

1 Introduction

Historically, textiles were often overlooked in architecture and engineering due to their low structural integrity, tendency to deform or act nondeterministically, and poorly understood mechanical properties. To this day, the industrial production of textiles is often limited to commercial production of clothing or consumer textiles. However, recent work in architecture, robotics, medicine, and a variety of other fields has begun to expand the usage of textiles. This work has revealed a need for more complex computational and mechanical tools to create and evaluate complex fabric forms. This is particularly evident in the adoption of flatbed knitting machines for the production of complex architectural composites [14] [13][8][21][1] and the creation of three-dimensional knit textiles as standalone structures [7], plush infill [10], and wearable electronics [3]. In each of these cases, knit fabric was utilized for its ability to take a variety of forms and adapt to user needs, as well as its low weight and environmental impact. However, limitations still exist in the extensibility and strength of knit fabrics due to their relatively low tensile strength [19], and limited ability to create complex three-dimensional shapes, particularly at small scales when stitches are limited.

Unpublished working draft. Not for distribution. This work is licensed under a Creative Commons Attribution Non-Commercial-ShareAlike 4.0 International License. It is made available under the terms of the ACM Digital Library license for personal, non-commercial use, provided that it is not altered in any way, and is not sold in any way. The full text of the license is available at <https://creativecommons.org/licenses/by-nc-sa/4.0/>.

Conference '17, Washington, DC, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM

<https://doi.org/10.1145/nnnnnnnn.nnnnnnnn>

2025-10-09 22:17. Page 1 of 1-4.

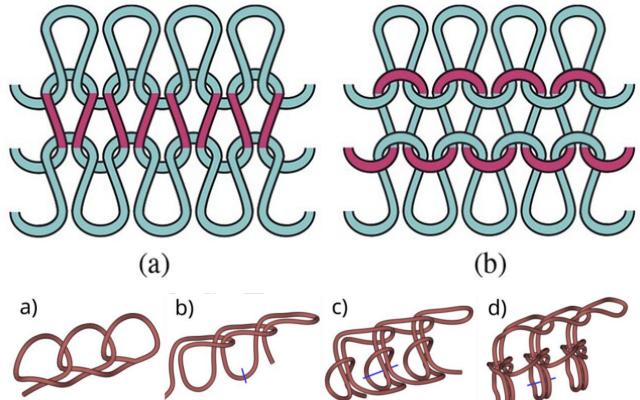
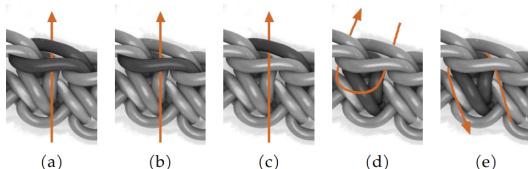


Figure 3. Structure of the basic crochet stitches. a) CH. b) SL. c) SC. d) HDC. To get a complete representation of one stitch, three stitches are modeled in a row. The blue lines indicate the region where the connection of the middle stitch with the previous row is in principle.

Figure 1: Comparison of knit and crochet stitches, via Wadekar 2020 & Storck 2024

Crochet is a stitch forming technology that departs from knitting in its mode of fabrication and its inherent complexity. In both the handicraft and its mechanized form in knitting machines, a single thread is pulled through an entire row essentially in parallel (Figure 1). This relatively simple geometry has allowed knitting to be mechanized for centuries and achieve high speed and reliability for industrial fabric production [6][2]. Crochet, in contrast, uses a single hook to build fabric out of a series of complex knots. Each stitch is interlooped with the previous stitch, a base stitch in a previous row, and the following stitch. This makes crochet much more complicated to automate, due to the multitude of possible stitches and the complicated motions required to build from variable points in a fabric. However, the craft's complexity also makes crochet fabrics far more extensible for three-dimensional forms, and increases the strength of crocheted fabric [19]. Moreover, because of crochet's variable stitch types and variability in build location, crochet can replicate any topological surface [15][18]. Due to these features, crocheted fabric has been explored as an alternative to knit fabrics or cables in artificial robotic joints[24][23], for the production of large scale furniture[9] and three-dimensional shells [11][20], as polyester composites [5][22], and as soft grippers for robotic arms[4].


Despite this promise, crochet has yet to be fully automated, and current applications of crochet for robotics rely on handcrafted pieces with high variability and low opportunity for mass production. Textile fabrication across industry still relies almost exclusively on industrial knitting machines. The challenges facing crochet's mechanization are threefold - the stitches are complex, the fabric created is dense, and traditional crochet hooks are unreliable when

117 mechanized. Such challenges make crochet difficult to translate
 118 directly from a handicraft to robotic motion, as seen in the several
 119 existing attempts to mechanize the craft.

120 The Croche-Matic and the CroMat are the two most successful
 121 physicalized crochet machines to date. The Croche-Matic, from
 122 the Harvard Graduate School of Design, was able to create chain
 123 stitches, single crochet stitches, increases, and decreases in the
 124 round, and could thus produce cylindrical fabric [12]. However, the
 125 machine's mechanism to hold the fabric, and its use of a traditional
 126 style crochet hook, made its stitch creation highly unreliable due to
 127 failures gripping the thread and inserting the hook into the correct
 128 part of the fabric. Building on Perry's advancements, the CroMat
 129 from the University of Dresden utilized a line of latch needles to hold
 130 the most recent crochet row stationary, and pulled a custom crochet
 131 needle through the latch needles to form stitches [17]. This machine
 132 is capable of robustly creating a high variety of stitches (chains,
 133 slip stitches, single crochets, half double crochets, turn stitches,
 134 increases, and decreases), though the authors continued to struggle
 135 with accurate hook insertion into the dense fabric. Moreover, the
 136 flatbed knitting style of the machine means stitches can only be
 137 built out of the most recent row, requiring manual repositioning to
 138 crochet complex shapes.

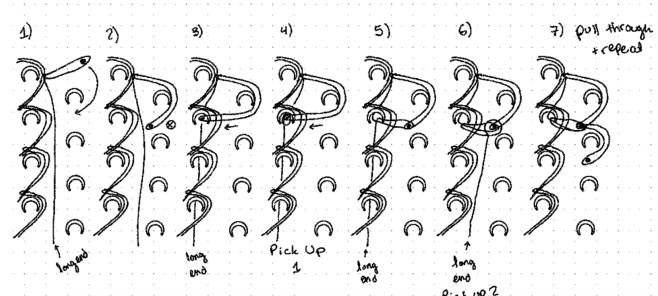
139 Our approach to automated crochet relies on translating crochet
 140 from a freeform handicraft to a constrained, loom-based process.
 141 Using a loom to hold all existing stitches in place, a custom Universal
 142 Robotics (UR) end effector will move a latch needle through existing
 143 fabric to pick up thread and create new stitches. This framework
 144 will allow for accurate hook placement by constraining previous
 145 stitches, and it will permit new stitches to be built out of any part of
 146 the existing fabric by keeping track of all previously made stitches
 147 at any given time. These advancements will allow for the robust
 148 automatic translation of diverse 3D morphologies into fabric for
 149 the first time.

150 2 System Description

160 Figure 2: The five most common stitch insertion points: (a) Under the two top
 161 loops (b) Under the front loop (c) Under the back loop (d) Around the front of
 162 the post (e) Around the back of the post

164 Figure 2: Entry points for crochet stitch creation, via Seitz
 165 2021

167 The core of our design is the translation of crochet from a free-
 168 hand craft into a loom-based craft. Though crochet stitches can be
 169 built out of many different parts of a previous stitch [16], the most
 170 common insertion point is point (a) in Figure 2, under the two top
 171 loops. In our initial prototype, we are building a loom which holds
 172 crochet fabric on pegs through this insertion point. This permits
 173 the latch needle to move through the correct point in the fabric


175 without requiring the highly precise motion encoded in the Cro-
 176 Mat, and removes the need for holding the fabric correctly in free
 177 space encountered by the Croche-Matic. At the point of writing,
 178 we completed the manual testing and geometric analysis of loom
 179 crochet. We are currently prototyping the loom assembly and the
 180 passive tensioner, with toolpath testing underway in Grasshopper.

181 2.1 Manual Testing

183 We established the preliminary toolpaths and mechanical design
 184 through a study in manual loom crocheting using a rainbow loom
 185 (a product often used for rubber band based bracelet creation) to
 186 hold stitches in place (Figure 3). The rainbow loom's open pegboard
 187 design allows the crochet hook to move through the loom to pick up
 188 thread from below the matrix before pulling it through the existing
 189 stitches. We then translated our hand motions into robotic toolpaths.
 190 Our toolpaths support stitch creation through the combination of
 191 a needle held by a robotic arm moving in three dimensions, and a
 192 yarn shuttle on a two-dimensional CNC axis below the static loom
 193 (Figure 4).

195 Figure 3: Manual loom crochet

196 Figure 4: Toolpath developed from manual study

209 2.2 Machine Components

210 The machine is composed of three core components - a UR3 end
 211 effector holding a latch hook, a custom loom which holds stitches
 212 in place and allows the hook to move through stitch openings, and
 213 a lower yarn pickup assembly with passive tension control.

214 The end effector holds a latch needle steady as the UR3 moves
 215 through its toolpath (Figure 5). Collision objects are encoded using
 216 Rhino and Grasshopper to help the hook avoid collision with the

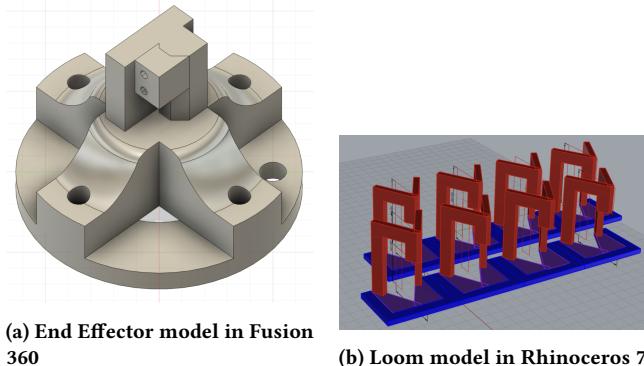


Figure 5: End effector and Loom models

loom and meet the string held below the loom. Toolpaths and trajectories are created using Grasshopper's COMPAS Fab extension and the ROS framework.

The loom consists of linearly adjacent pegs with teeth that will hold loops steady while the fabric is being built. The pegs are hollow and hooked, allowing the latch needle to move through the loom and hooking any wrapped stitches in place (Figure 5). This loom design is heavily inspired by the loom design of Hirose 2024's solid knitting machine, which permitted similar stitch creation motions through two synchronized, rounded looms.

The final component, the string pickup, holds yarn steady and uses a belt drive to position the yarn beneath the end effector, allowing the latch needle to pick up new yarn and pull it through existing stitches (Figure 6). To keep the string taut beneath the needle for easy pickup, the gantry plate will employ two spring-based passive tensioners. The use of spring-based tensioners, commonly used in mechanical knitting machines to feed yarn into the machine at a constant rate, will allow adjustments for different materials and gauges.

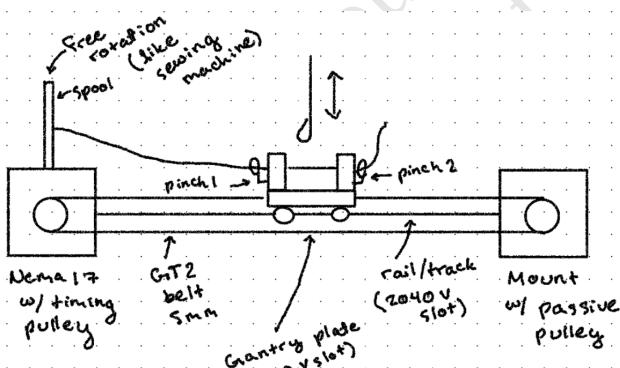


Figure 6: Yarn pickup sketch

The full assembly will enable us to translate the manual motion of loom crochet into a robotic toolpath, using synchronization of the several parts to reduce the necessary toolpath complexity and increase system robustness (Figure 7). Crucially, the loom keeps

track of every previously made stitch and holds those stitches open to the end effector, and the yarn pickup and end effectors can easily move over any point in the matrix. This makes it possible to build a stitch out of any previously made stitch in the fabric, rather than just the most recent row or stitch, by picking up thread at one point in the existing fabric, and then anchoring the newly created stitch to any other point in the existing fabric. Thus, this framework enables unique advancements in the potential fabric shapes created through mechanized crochet.

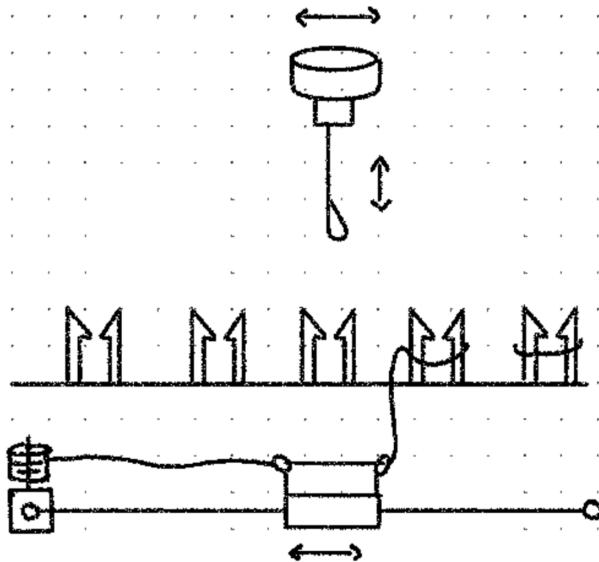


Figure 7: Full assembly sketch

3 Conclusion

This system reframes crochet as a constrained robotic process rather than a freehand one, allowing computational control of stitch creation. This will permit the mechanized creation of complex three-dimensional forms for a variety of applications across architecture, robotics, and medicine. We hope to extend the work done by researchers in the robotic crochet space by providing a framework to decrease the frequency of failed hook insertions caused by the density of stitches in crochet. Moreover, we hope to provide the first framework for truly extensible crochet by allowing stitches to be built out of any existing stitch within a fabric rather than just a previous row or round. As we move through the prototyping stage, we invite dialogue with the large community of architects and designers who are currently pushing the envelope with applications of complex three-dimensional fabrics. The SCF community includes many researchers (referenced above) who have worked with volumetric knit fabrics to create composites, end effectors, sensors, and much more. We hope to use this opportunity to develop robust methods of evaluation to help make crochet a viable option for complex fabric applications in research and industry, and to develop partnerships across the computational design space

349 that will result in novel, far-reaching applications of mechanized
 350 crochet.

352 Acknowledgments

354 Thank you so much to Professor Daniela Mitterberger, Professor
 355 Sigrid Adriaenssens, and the entirety of the ECL for all of their
 356 support during this project.

357 Thank you also to the Princeton Electrical and Computer Engi-
 358 neering Department, and the School of Engineering and the Applied
 359 Sciences for funding my undergraduate senior thesis.

361 References

- [1] Sean Ahlquist and Achim Menges. 2013. Frameworks for Computational Design of Textile Micro-Architectures and Material Behavior in Forming Complex Force-Active Structures. In *Proceedings of the 2013 ACADIA Conference*. doi:10.52842/conf.acadia.2013.281
- [2] H. Davis. 2023. Pailung high-speed knitting machines boost productivity while lowering costs. *Knitting Trade Journal*. <https://knittingtradejournal.com/features/15536-spauling-high-speed-knitting-machines-boost-productivity-while-lowering-costs>
- [3] Cosima du Pasquier et al. 2024. Haptiknit: Distributed stiffness knitting for wearable haptics. *Science Robotics* 9 (2024), eado3887. doi:10.1126/scirobotics.ado3887
- [4] Marina Gomez Fernandez. 2024. *Exploratory Research on Crochet: Assessing its Potential as a Fabrication Technique for Soft Robotic Systems and Biomedical Devices*. Master's thesis, University of Twente, Enschede. <https://purl.utwente.nl/essays/104651>
- [5] Altairley M. Freires, Alessandro de C. Corrêa, Mauricio M. Ribeiro, Silmara M. Cardoso, Jean da S. Rodrigues, Douglas S. Silva, Raí Felipe P. Junio, and Sergio N. Monteiro. 2024. Mechanical properties and statistical analysis of polyester composite reinforced with miriti fibers braided using crochet technique. *Journal of Materials Research and Technology* 28 (2024), 4392–4400. doi:10.1016/j.jmrt.2023.12.153
- [6] M. Glazzard, C. Adholla, and T. K. Dewey-Findell. 2023. Knit is a Four-Letter Word. *TEXTILE* (2023), 1–9. doi:10.1080/14759756.2023.2233177
- [7] Yuichi Hirose, Mark Gillespie, Angelica M. Bonilla Fominaya, and James McCann. 2024. Solid Knitting. *ACM Transactions on Graphics* 43, 4 (2024), Article 88. doi:10.1145/3658123
- [8] V. Lanfranco, A. Luna Navaro, and M. Popescu. 2023. Design of a hybrid adaptive sunshade with a knitted textile and shape memory alloy. In *Proceedings of Textile Intersections Conference 2023*, Tincuta Heinzel, Delia Dumitrescu, Oscar Tomico, and Sara Robertson (Eds.). London, United Kingdom, 20–23. doi:10.21606/TI-2023/103
- [9] Kwangho Lee. 2014–present. Obsession series [Artworks]. <http://www.kwangholee.com/>
- [10] S. McKinlay and S. Tibbits. 2023. Visualization of three-dimensional knit textiles. In *ACADIA 2023: Habits of the Anthropocene (Vol. I: Technical Papers)*. CUMINCAD, 460–469.
- [11] Tamar Nix and Aaron Sprecher. 2023. Crochet Digital Assemblage - Notes on additive manufacturing of textile in architecture. In *Proceedings of eCAADe 2023*. 273–282. doi:10.52842/conf.ecaade.2023.1.273
- [12] Gabriella Perry, Jose López, and Nathan Melenbrink. 2023. Croche-Matic: a robot for crocheting 3D cylindrical geometry. In *Proceedings of the 2023 IEEE International Conference on Robotics and Automation*. 7440–7446. doi:10.1109/ICRA48891.2023.10160345
- [13] Mariana Popescu, Matthias Rippmann, Andrew Liew, Lex Reiter, Robert J. Flatt, Tom Van Mele, and Philippe Block. 2021. Structural design, digital fabrication and construction of the cable-net and knitted formwork of the KnitCandela concrete shell. *Structures* 31 (2021), 1287–1299. doi:10.1016/j.istruc.2020.02.013
- [14] Mariana Popescu, Matthias Rippmann, Tom Mele, and Philippe Block. 2018. Automated Generation of Knit Patterns for Non-developable Surfaces. In *Advances in Architectural Geometry*. doi:10.1007/978-981-10-6611-5_24
- [15] F. M. Schipper. 2022. *A Mathematical Study of Crochet*. Master's thesis, University of Groningen. https://fse.studenttheses.ub.rug.nl/27795/1/bMATH_2022_SchipperFM.pdf
- [16] Klara Seitz, Jens Lincke, Patrick Rein, and Robert Hirschfeld. 2021. Language and tool support for 3D crochet patterns. doi:10.25932/publishup-49253
- [17] Jan Storck. 2024. Automation of crochet technology and development of a prototype machine for the production of complex-shaped textiles. doi:10.13140/RG.2.2.28243.18729
- [18] J. L. Storck, D. Gerber, L. Steenbock, and Y. Kyosev. 2022. Topology based modelling of crochet structures. *Journal of Industrial Textiles* 52 (2022). doi:10.1177/15280837221139250
- [19] J. L. Storck, L. Steenbock, M. Dotter, H. Funke, and A. Ehrmann. 2023. Principle capabilities of crocheted fabrics for composite materials. *Journal of Engineered Fibers and Fabrics* 18 (2023). doi:10.1177/15589250231203381
- [20] Michael Suguitan and Guy Hoffman. 2019. Blossom: A Handcrafted Open-Source Robot. *Journal of Human-Robot Interaction* 8, 1 (2019), Article 2. doi:10.1145/3310356
- [21] Mette Thomsen, Martin Tamke, Anders Deleuran, Ida Tinning, Henrik Evers, Christoph Gengnagel, and Michel Schmeck. 2015. Hybrid Tower: Designing Soft Structures. In *Advances in Architectural Geometry*. doi:10.1007/978-3-319-24208-8_8
- [22] Fei Wu, Xiaoting Xiao, Jie Yang, and Xiangdong Gao. 2018. Quasi-static axial crushing behaviour and energy absorption of novel metal rope crochet-sintered mesh tubes. *Thin-Walled Structures* 127 (2018), 120–134. doi:10.1016/j.tws.2018.02.004
- [23] Z. Xu, Y. Matsuoka, and A. D. Deshpande. 2015. Crocheted artificial tendons and ligaments for the anatomically correct testbed (ACT) hand. In *2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)*. Zhuhai, China, 2449–2453. doi:10.1109/ROBIO.2015.7419706
- [24] Zhe Xu, E. Todorov, B. Dallon, and Y. Matsuoka. 2011. Design and analysis of an artificial finger joint for anthropomorphic robotic hands. In *2011 IEEE International Conference on Robotics and Automation*. Shanghai, 5096–5102. doi:10.1109/ICRA.2011.5979860