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An Excess of Surtface




We have built a world of rectilinearity.

The rooms we inhabit, the skyscrapers we work in, the grid-like
arrangement of our streets and the freeways we cruise on our daily

commute speak to us in straight lines.

Yet outside our boxes the natural world teems with swooping, curling
and crenellated forms, from the fluted surfaces of lettuces and fungi,
- the frilled skirts of nudibranches and the animal undulations of sea

slugs and anemonies,

We have learned to play by Euclidean rules because two thousand
years of geometrical training have engraved the grid in our minds.
But in the early nineteenth century mathematicians became aware of
a space in which lines cavorted in aberrant formations, suggesting the

existence of a new geometry.
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I'o ,sll. atthe ti me hyperbolic space seemed pathological, for it contravened
the d1c1::m'~'- of Fuclid, overthrowing millenia of mathematical wisdom
and oftending common sense. “I fear the howl of the Huf‘tiﬂ]‘lli ﬂ'I
make my ideas known,” wrote the immortal Carl Friedrich ‘{}h-.uﬁa'
who pioneered the topography of this polychrome realm. i

LL]]'[I'LII'_\ later the Dutch artist M.C. Escher propelled [n'purhn]ju
space into the cultural zeitgeist with his “Circle Limit” Iat:riua of
etchings, tessellating birds and fishes or angels and

- . [ |‘:"" i

S . _ emons fto
demonstrate in graphic play the superabundant structure hidden
within this tantastical rCometrv.

Characterized by an almost organic excess, hyperbolic space resembles

nothing so much as a sea creature.

Indeed. eons before the dawning of mathematical awareness, nature
had exploited this verboten form, realizing its potential throughout

the vegetable and marine kingdoms.

The human discovery of hyperbolic space initiated the formal field
of non-Euclidean geometry and opened men’s eyes to the possibility
that the cosmos itself may have other options than the Cartesian box

of canonical scientific faith.

Thoueh it had long been thought that the space of our universe must
5 o = l

ipso facte conform to Fuclid's ideals, data coming from telescopic
«tudies of the early universe now suggests that the cosmological whole

mav embodyv a h}'purhnlic form.




At the heart of our inquiry is the concept of straightness: What ex: ctly

15 a straight line, and how do such objects relate to one another?

Though seemingly obvious, straightness turns out to be g subtle and
surprisingly plastic concept.

1o understand what is at stake here we must go back to Euclid and
the original axioms of planar geometry. Long regarded as the model

of intellectual rigor, Euclidean geometry is based on five supposedly
self-evident axioms,

lhe first three are mundane enough, defining a line segment, an
extended straight line, and a circle.

The fourth also seems uncontroversial and is usu; Uly interpreted to
mean that all right angles are equal—a proposition NECcessary to ensure
that the space we are working in is essentially the same everywhere.
The property of spatial homogeneity is the defining quality of a

geometry—for mathem; atically spe: a]».mu there are wilder and more
unruly realms.

Euclid’s fifth postulate also sounds eminently reasonable: it defines

the conditions for parallel lines.

But mathematicians have always sensed that this apparently sensible

].'!l'i_‘i.'lf_"':-lllilll'l ]'Jt"ELil:‘{{ h]rth-:r 1111'(".‘-’-1’1_!_1;11'](1!!.

There are several ways of describing this fifth, troublesome axiom, also

known as the J,‘mm..u" postulate.

Euclid’s own method seems strange to modern eyes and mathen |;1L1L'1-.1in:~
J : » 176  the Sc : 1
today prefer to use a construction popularized by the Scotsman Jo

Playfair in the late nineteenth century.

[n Playfair's description we may understand parallel lines in Fl"ic
'flslluwi‘ng wav: Imagine | draw a line, and then define a point outside

that line.
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Now imagine 1 wish to draw other lines through the point. What is
the result?

Euclid’s fifth axiom says that there is no more than one line [ can draw
through the point that will never meet the original line.

All other lines will slant with respect to this and eventually intersect
i 1is and evenrually intersect
it. We call the non-intersecting lines parallels and denote them by

ATITOWS.

As stated above, the p.tr'.lllcl [B:Hm]nm SCEmMs intuith“cl_t correct. But it
is so much more complicated than Euclid’s other axioms and from the
beginning mathematicians felt haunted by the need for a less complex
articulation. If the proposition really is true, they felt, then ought it not
be provable from the other, simpler, axioms? i

s

That there is an issue at all here is suggested by the example of a
sphere, whose surface forms a geometry different to that of the plane.

Again we may ask a question about the behavior of straight lines on

this surtace.

Suppose again that we draw a straight line and a point outside this
line, both on the spherical surface. What happens now when we try to

draw other lines through the point?




Immc-.liutulj' we are taced with a question: What does it mean to talk
about straight lines on a curved surface?

Mathematica 1}‘, a a'rml;::hr line may be genem]i?cd to the concept of a

geodesic, a term that defines the shortest path between two points.

On a flat plane like a sheet of paper, the shortest distance is a path
with no swerves or deviations, and likewise, on the surface of a sphere,
we are looking for the minimal route.
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Here we find that the shortest distance is always along a great circle,
which divides the sphere into two halves like the earths Equator. Great
circles are the largest enclosings that may be drawn on any sphere.

Airlines use such geodesics when charting the paths of international
flights, which often look curved on a flat map but are “straight” in

relation to the :_ﬂnht: itself,

/9




With respect to a sphere we notice that the geodesics are not infinite
as they are on a plane, but finite—inevitably connecting back up on
themselves.

Returning now to our initial question, we ask about the relationship
between our nr'thinnl r:rm':ghr line and others we may draw rhr:mgh an
external point.

In this case, any straight line through a point is also, by dehnition,
another great circle, and all great circles intersect.

Thus on the surface of a sphere, there are no straight lines through a
point that do not meet the original line. Whereas on the plane there
15 ::l]w-.ljr:a one non-intersecting stmi;;;h[ line, now we have a geometry
in which all lines meet.

Euclid’s postulate had stated that there can never be mare than one line
through a point that does not meet an original line. On a sphere there

ire none, so the prmrni.lrc holds.

How do we know there isn't some other surface in which there may be

two Or more P;ll’:i“tjlh}

The idea that one might not be the limit struck terror into
mathematicians hearts, offending rational sensibilities and evoking a

sense of moral outrage.

For two thousand years they sought to prove that such an option was

'unimwr:ihh:.

Through monumental effort they tried to demonstrate that if the
]‘.I;Lmlls:l pusml-.lrf was violated and more than one pumliel was allowed

then logical chaos would ensue.

What thev discovered during this process was a host ot bizarre

effects—but no outright contradictions.
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G ighteenth century, the Jesuit priest Girolamo Sacchieri devoted
s life to the problem of parallels but went to his Maker a failure in
his own eyes, unable to demonstrate after Sisyphean effort a single
logical disjunction. : |

[:a o : o B : ® £ - 101 3

Elu._ﬁ Gtm?h, the prince of mathematicians, could find no contra-
C %Ltlc}nﬁ—h‘.arng the howl of the Boetians, he refrained from making
his research public. "

= * -
Finally in the nineteenth century, the effort to prove the parallel
] . P 5 5 " . % = = , s - -

[u_nmlxm exhausted itself, as mathematicians :ux‘.ﬁprmi the mounting
W r o LF 1 b = i ] '- o o ol = = h
evidence for the existence of a geometry based upon its negation

In 1823 the Hungarian mathematician Janos Bolyai wrote ecstatically
to his father Wolfgang, also a mathematician, announcing his
explorations of this unprnbahh space. “T have created a new and
different world,” Janos declared. In Russia, Nickolai Lobachevsky

came to a similar insight.

An alternative to Euclid, however disturbing, was now undeniable.

put it into I‘Lntun terms, mathematicians were wmpz_ﬂf:d

to acknowledge th
an external point, there
intersect with the point, yet never meet the original line.

at there exists a space in which given a line and
are a multitude of other straight lines that




Instead of there being just one parallel, there are many.
Indeed, there are infinitely many.

Bizarre though it may seem, this situation gives rise to a consistent
geometry, what came to be called, in homage to its abundant excess,

the hyperbolic plane.

At this point the reader may object that the lines on the opposite page

do not look straight.

But that is merely because we are trying to see them from our limited
Fuclidean perspective. From the point of view of someone within the
hyperbolic space, all these lines would be perfectly straight and none

would meet the original line,




[t is one thing however to know that something is
is quite another to understand it.

ogically possible, it

]._akqn: the blind man and the elephant, hyperbolic space appears in
different guises depending on how we approach it

One way of visualizing this enigmatic space was discovered at the
end of the nineteenth century by the French mathematician Henri
PHIE.'IL-_II'L. In the Poincaré disc model the entire hyperbolic plane is
depicted inside a circular disc.

0

like the Fuclidean

In reality, the hyperbolic plane is infinitely large

nlane, it goes on forever.

But in order for us to represent it within our Fuclidean framework
we have to make some compromises. The Poincaré compromise 15 tO

represent angles truly while distorting scale.

Despite appearances in the diagram opposite, all the sides of all the
triangular shaped areas are equal in length. Though they appear to be
decreasing in size as we move towards the perimeter, within the space
tself the vertices of the triangles are equidistant and the boundary of

the circle is infinitely far away.

In his book Science and Hypothesis (1901), Poincaré wrote of his model
as an imaginary universe. To us, observers of this bubble world, the
.nhabitants of the disc appear to shrink as they approach the circular
boundary—they, however, see no such effect. As far as they are
concerned, they live in an infinite and non-diminishing space.

Only we, who must view them from a Euclidean framework, see their
proportions fading away to infinitessimal nothingness.




The Poincaré disc model of hyperbolic space has entered the cultural
lexicon through the work of the Dutch artist M.C. Escher, who was
introduced to the concept by the geometer Donald Coxeter.

In his Circle Limit series of drawings, Escher explored the endless
symmetries inherent in the hyperbolic plane: in Circle Limit 111, red,
green, blue and yellow fish tessellate their world in a symphony of
triangles and squares.

In Circle Limit IV angels and demons disport themselves in a
hyperbolic trinity, fluttering out from a central point to fill the space
with hexagons and octagons.

L8

In the playfulness of these images lies an elegant lesson: the excess of
parallels in hyperbolic space opens up a richer field tor the tessei111t|!1g
spirit, and the hyperbolic plane can be tiled in an almost infinite
variety o fw ays.

At the same time that Escher was propelled by the formalities of
seometry, he was also inspired in these explorations by a visit to
the Alhambra Palace in Spain, that apotheosis of the Arab world’s

unparalleled riling tradition.

If, as the Moors believed, repeated patterns connote the divine, we
might conclude that Heaven itself would be a hyperbolic space.

L




Yet for all its evident beauty and power, the Poincaré disc model is
essentially an abstract construct. It obscures at the same time that it
reveals, for we do not get a sense here of what it would feel like to be
in hyperbolic space.

By restricting ourselves to a Euclidean perspective we lose the visceral
sense of hyperbolic being.

Can we make a model of hyperbolic space that retains this physical

sense, much as we have a model of spherical space?

For a long time mathematicians did not believe that such a thing was
E g
possible.

10

Yet it turns out there is a way of representing hyperbolic space that
oives us a visceral sense of at least some ot its properties: the so-
called hyperbolic soccer ball model, discovered by a young American

mathematics teacher named Keith Henderson.

Think first of a regular soccer ball—it is made up of hexagons ;md_
pentagons, with a series of white hexagons .-mrrnuni.'img a number ot

black pentagons.
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Now think of a Euclidean plane. Here we can tile the surface with
hexagons alone in the classic beehive pattern. On the plane, every
hexagon—which has six sides—is surrounded by six others that neatly
fit together to exactly fill the space.

[o make a soccer ball, we replace some of the hexagons with

pentagons—which only have five sides—thereby causing the now
fewer number of hexagons to close up towards one another and wrap

into a '-'.I"I'IE_‘]'I.T.
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In the ln'purhulju version of this model we make the opposite move.
' : L - |'l 3 a Pl H el B '!] IU':]_ti].
Rather than replacing hexagons with pentagons, we replace the

heptagons—which have seven sides.

Now. instead of closing up, the surface opens out, for the hfi""mgnnﬁ.
«dd to. rather than subtract from the space, resulting in an excess of

surface.




The effect is similar to what we see in mushrooms and fungi, lettuce
leaves and kelps, wherein the vegetable surface expands outward from
a modest beginning generating a ruffled effect.

Mathematicians now understand that lettuces and kelps are natural
examples of hyperbolic geometry, which is also found in the anatomical
frills of sea slugs, flatworms and nudibranches.

S

[f nature can do it, then why not man<

Or pe rhaps wom ans

[n 1997 Latvian mathematician Daina Taimina finally worked out
how to make a physical model of hyperbolic space that allows us to
feel. and to tactilely explore the properties of this unique geometry.
The method she used was crochet.

fatd
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11}1‘. Taimina’s inspiration was based on a suggestion that had been put
torward in the 1970’ by the American geometer William Thurston

Thurston noted that one of the qualities of hyperbolic space is
that as you move away from any point the ﬁ[TLICE'RrﬂlIIHi it expands
exponentially. Based on this insight, he designed a paper model IT‘I'H_LI;
of thin crescent-shaped annuli taped tﬂgetht-:r. e

Bur ﬂmrﬁ?:ms model is difficult to make, hard to handle. and
inherently fragile.

‘laumna intuited that the essence of this construction could be
m}plemunted with knitting or crochet by increasing the number of
stitches in each row. As one increases, the surface naturally begins to
ruffle and crenellate. .

1]

Having spent her childhood steeped in feminine handicrafts, Taimina
first tried knitting. But the large number of stitches on the needles
quickly became unmanageable and she soon realized that crochet

offered a better approach.

The beauty of Taimina's method is that many of the intrinsic properties
of hyperbolic space now become visible to the eye and can be directly

experienced by playing with these models,

Geodesics, or straight lines, can be sewn onto the crochet texture for
casy examination. Though the stitched lines in the model below appear
curved, folding along them demonstrably produces a straight edge.

Crochet hyperbolic plane with geodesics stiched on.
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, one can see immediately

- . ‘" Th:: - I » " 1
violated. : it the parallel postulate is

In the mo
i del below there are three straight lines that pass through
ap external to the bottom line. None of these upper lines ever
intersect this original i ! s
= r:uzrhﬁ t}':uid:'.-rtgﬂml line. Handling this construction, you can
shysically fold along each Ii if 4 ;
\ \ . ine and verify materially i

loid along y materially the m: ‘

untruth of Euclid’s axiom. . v

Dr. Taimina’s models are in demand from mathematics de art

the w_urld over and are featured in the Smithsnnim'qh ‘{]I}F" 'mcms'

i.]mc;mn Mathematical Models. She and her huqhuLn:]F GEIEZm;g

Us;;ﬁ:;;n, dpéﬂy]_:,:hl? woolly pedagogy in their courses at Cornell
sity  an ave promulgated her unique contribution to

understandi -Euclide: ' '
o jdmg‘mm Euclidean space in their classic college text book
xperiencing Geometry. i)

Crochet model demonstrating the lalsity of Euclid’s parallel postulate
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Further aspects of hyperbolic space that can be explored in a tactile
way with Taimina’s models are the properties of triangles.

arn that the angles of a trianglf: always sum to 180,

In school we le
lidean plane, it is not true on the surface of

While that is true on a Euc
a sphere or on a hyperbolic plane.

a triangle sum to more than 180—

On a sphere, the interior angles of
alloon or a beach

a fact you may verify for you rself by drawing on a b

ball.

triangular angles add to less than 180"

the smaller the total angular sum.
far apart—

On a hyperbolic surface,
Moreover, the larger the triangle,
Until finally, when the triangle’s points are infinitely
making the largest possible three-pointed figure—the angles will sum
to zero degrees. The angular oddity of this “ideal triangle” can be seen

on the model below.

Crochet model showing an “ideal triangle”—whose angles sum to zero degrees.
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[aimina’'s crochet models also enable us to make more exotic
h}'perhﬂhc constructions,

Just as we can take a piece of paper and wrap it into a cone, so we can
make a hyperbolic cone from a piece of hyperbolic paper,

[he resulting form is a pseudosphere.

jﬁg;nn, the crenellated ruffles result from the process of continually
nn;r-s:a:ung the number of stitches—this time we are cmcheting n 1
spiral pattern. In the model below the rate of increase is one stitch in
every three.

+/

A< the rate of increase of the stitches itself increases, the resulting
becomes ever more crenellated. Whereas all spheres

construction | 1 ,
ly in size, representations of

appear to have the same form, varying on
hyperbolic surfaces may differ dramatically.

Here the rate of increase is one stitch in two.

Here, we are increasing in every stitch.

| +1




Mathematicians characterize such surfaces by the radius of the
hyperbolic plane, the hyperbolic analog of a spherical radius. The
flatter the surface, the greater its radius. A Euclidean plane may be
understood as a hyperbolic plane of infinite radius,

The radius of any given hyperbolic plane is the radius of a circle wi thin
the plane that would sit flatly on a tabletop.

By using
| o “ 11
few stitches and expands out to @

or even twa or three £
surface that starts from just 2
arbitrarily long perimeter.

] {ozen
record is a plane that began Wll‘h- two d 2
69 inches. The width of this
apnund.

Dr. Taimina’s personal Lo
stitches and now has a penimeter of . e
- Jodel is just 4 inches and the total weight o ;
I Jus




The math tanl di
athematical discoverv of hv .
R B 0 discovery of hyperbolic space in the early nineteentl
: d15€C . zs1bili : o
eotior the possibility that perhaps nature also, h W
o ¥ - . il _"

+4

For Isaac Newton and his contemporaries, the space of our universe
was Euclidean—an endless and formless void. Most philosophers of
the early modern period were so enamored of Euclidean form that
[mmanuel Kant argued the physical cosmos must a priori be this way.

But maybe space was some other. more interesting structure. Though
Euclidean geometry may be easier for the human mind to grasp,
‘hat does not mean nature has chosen it for her ultimate temple. As
Poincaré adroitly noted: “One geometry cannot be more true than

nother; it can only be more convenient.

[n the late nineteenth century physicists tried to see if indeed they
could detect a deviation from Euclidean norms by measuring the
angles between stars. If cosmological space was not flat then the
angles between three stars in a triangular configuration would not add
up to 180",

All measurements revealed the standard sum and for most of the past
century the evidence has pnintn:d to a Euclidean framework.

15




In the past two decades however new discoveries have raised the
possibility that our universe may be hyperbolic.

If that is so then it will not be the infinite void of classical physics, but
a decidedly finite structure,

The idea of a finite hyperbolic space may sound improbable, for like
the Euclidean plane the hyperbolic plane is endless. But just as we can
construct finite Euclidean forms, so we can construct finite hyperbolic
spaces,

Take a piece of paper and wrap it into a cylinder. Though the object you
are holding is now curved, technically speaking it remains Euclidean
because mathematically every tiny section is still formally flat.

Now imagine that you bend the cylinder itself, wrapping its ends
around to connect with one another so the resulting form is a donut.
If you actually try to do this, the paper will crease and the surface
will buckle, but if we allow ourselves to make this move in a fourth
dimension the resulting donut would have a perfectly flat surface,

Such a torus is an example of a two dimensional space that is both
finite and Euclidean.

; 1 3 srbolic paper?
Let us now consider a similar construction using hyperbolic pap
AL .
imina’ i in visualization.
\gain, we can turn to Taimina’s models for help in visualizat

: e —C :rhaps be
We start with a piece of hyperbolic “paper”™—cloth would perhaj
a better word—this time in the shape of an octagon.

' ' a cyli Fjoining
Just as we wrapped our Euclidean paper into a cylinder :'\} j ; hg,
: Ie i 1 mperbolic
two opposite sides together, we do the same thing with our hy]
—n- e ite sides ‘ ot
paper—only now we have fwo sets of opposite sides to conne

47




lhe resulting form is a two-pronged cylinder, resembling a pair of
trousers—the technical term is hyperbolic pants.

Just as our original cylinder was still Euclidean at every point, so we
can prove that these pantaloons retain their hyperbolic geometry at
cach point. : | |

I?’«-uw we want to make the next move and wrap this construction
into the hyperbolic equivalent of a torus. Again, if we try this -in
regular space the pant-legs would buckle and wed lose the Eimmt;tric
5nfnuthnt:ﬁ:-‘.. But as betore, we can make the move by tr-mf.i:' ing

a fourth dimension. g v

This 1'[1]1‘16 wed create a double torus—or two-holed donut—that
remains hyperbolic at every point,

a.frh’l

If we now consider three-dimensional forms, rather than the two-
dimensional surfaces we've been looking at so far, it turns out that the
shape of our universe may be a kin to this hjq‘v-:rh-:}li::. structure.

Dr. Jeffrey Weeks,a maverick geometer and expert on hyperbolic space,
has calculated that our universe may indeed have a finite geometry
with a hyperbolic radius of 18 billion light years. In the next few years,
the WMAP satellite currently taking pictures of the early universe
may provide evidence one way or other, so that humanity may know

at last the geometry of existence itself.
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