
Available online at www.sciencedirect.com

Advances in Mathematics 244 (2013) 441–464
www.elsevier.com/locate/aim

On compact generation of deformed schemes

Wendy Lowena,∗, Michel Van den Berghb

a Departement Wiskunde-Informatica, Universiteit Antwerpen, Middelheimcampus, Middelheimlaan 1, 2020 Antwerp,
Belgium

b Departement WNI, Universiteit Hasselt, 3590 Diepenbeek, Belgium

Received 10 February 2012; accepted 25 April 2013
Available online 12 June 2013

Communicated by Tony Pantev

Abstract

We obtain a theorem which allows to prove compact generation of derived categories of Grothendieck
categories, based upon certain coverings by localizations. This theorem follows from an application
of Rouquier’s cocovering theorem in the triangulated context, and it implies Neeman’s result on
compact generation of quasi-compact separated schemes. We prove an application of our theorem
to non-commutative deformations of such schemes, based upon a change from Koszul complexes to
Chevalley–Eilenberg complexes.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Compact generation of triangulated categories was introduced by Neeman in [16]. One of
the motivating situations is given by derived categories of “nice” schemes (i.e. quasi-compact
separated schemes in [16], based upon the work of Thomason and Trobaugh [23], later extended
to quasi-compact quasi-separated schemes by Bondal and Van den Bergh in [2]). The ideas of
the proofs later crystallized in Rouquier’s (co)covering theorem [21] which describes a certain
covering-by-Bousfield-localizations situation in which compact generation (later extended to
α-compact generation by Murfet in [15]) of a number of “smaller pieces” entails compact
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generation of the whole triangulated category. The notions needed in the (co)covering concept
can be interpreted as categorical versions of standard scheme constructions like unions and
intersections of open subsets, and in the setup of Grothendieck categories rather than triangulated
categories they have been important in non-commutative algebraic geometry (see e.g. [25,26,
19,22]). In this paper we apply Rouquier’s theorem in order to obtain a (co)covering theorem
for Grothendieck categories based upon these notions, which can be used to prove compact
generation of derived categories of Grothendieck categories (see Theorem 2.28 in the paper).

Theorem 1.1. Let C be a Grothendieck category with a compatible covering of affine localizing
subcategories Si ⊆ C for i ∈ I = {1, . . . , n}. Suppose:

(1) D(C/Si ) is compactly generated for every i ∈ I .
(2) For every i ∈ I and ∅ ≠ J ⊆ I \ {i}, suppose the essential image E of

j∈J

S j −→ C −→ C/Si

is such that DE (C/Si ) is compactly generated in D(C/Si ).

Then D(C) is compactly generated, and an object in D(C) is compact if and only if its image in
every D(C/Si ) for i ∈ I is compact.

When applied to the category of quasi-coherent sheaves over a quasi-compact separated
scheme, the theorem implies Neeman’s original result.

Our interest in the intermediate Theorem 1.1 comes from its applicability to Grothendieck
categories that originate as “non-commutative deformations” of schemes, more precisely abelian
deformations of categories of quasi-coherent sheaves in the sense of [14], which are shown
in [13] to arise from deformations as algebroid prestacks. After formulating a general result
for deformations (Theorem 3.8), based upon lifting compact generators under deformation, we
specialize further to the scheme case in Theorem 5.2. We use the description of deformations
from [13] using non-commutative twisted presheaf deformations of the structure sheaf on an
affine open cover.

When all involved deformed rings are commutative, using liftability of Koszul complexes
under deformation, the corresponding twisted deformations are seen to be compactly generated,
a fact which also follows from [24]. In our main Theorem 1.2 (see Theorem 5.10 in the paper),
we show that actually all non-commutative deformations are compactly generated.

Theorem 1.2. Let X be a quasi-compact separated scheme over a field k. Then every flat
deformation of the abelian category Qch(X) over a finite dimensional commutative local k-
algebra has a compactly generated derived category.

The proof is based upon the following lifting result for Koszul complexes (see Theorem 4.3
in the paper):

Theorem 1.3. Let A be a commutative k-algebra and f = ( f1, . . . , fn) a sequence of elements
in A. For d ≥ 1 there exists a perfect complex Xd ∈ D(A) generating the same thick subcategory
of D(A) as the Koszul complex K ( f ) and satisfying the following property: let (R,m) be a finite
dimensional commutative local k-algebra with md

= 0 and R/m = k. Then Xd may be lifted to
any R-deformation of A.
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Concretely, let n be the Lie algebra freely generated by x1, . . . , xn subject to the relations
that all expressions involving ≥d brackets vanish. Sending xi to fi makes A into a right n-
representation. Then Xd is defined as the Chevalley–Eilenberg complex (A ⊗k ∧n, dC E ) of A.
Clearly X1 = K ( f ). It appears that in general one should think of Xd as a kind of “higher Koszul
complex”.

2. Coverings of Grothendieck categories

Localization theory of abelian categories and Grothendieck categories goes back to the work
of Gabriel [6], which actually contains some of the important seeds of non-commutative algebraic
geometry, like the fact that noetherian (this condition was later eliminated in the work of
Rosenberg [20]) schemes can be reconstructed from their abelian category of quasi-coherent
sheaves. In the general philosophy (due to Artin, Tate, Stafford, Van den Bergh and others)
that non-commutative schemes can be represented by Grothendieck categories “resembling”
quasi-coherent sheaf categories, localizations of such categories have been a key ingredient in
the development of the subject by Rosenberg, Smith, Van Oystaeyen, Verschoren, and others
(see eg. [19,22,25,26]). In particular, Van Oystaeyen and Verschoren investigated a notion of
compatibility between localizations (see [25,3]).

More recent approaches to non-commutative algebraic geometry (due to Bondal, Kontsevich,
Toën and others) take triangulated categories (and algebraic enhancements like dg or A∞

algebras and categories) as models for non-commutative spaces. The beautiful abelian
localization theory was paralleled by an equally beautiful triangulated localization theory,
based upon Verdier and Bousfield localization, see e.g. [10] and the references therein. By
considering appropriate unbounded derived categories, every Grothendieck localization gives
rise to a Bousfield localization.

Recently, the notion of properly intersecting Bousfield subcategories was introduced by
Rouquier in the context of his cocovering theorem concerning compact generation of certain
triangulated categories [21]. The condition bears a striking similarity to the notion of
compatibility in the Grothendieck context, which is even reinforced by the characterization
proved by Murfet in [15].

In this section, we introduce all the relevant notions in both contexts, and we observe that
in the special situation where the right adjoints of a collection of compatible localizations of
Grothendieck categories are exact, they give rise to properly intersecting Bousfield localizations,
and Grothendieck coverings give rise to triangulated coverings. We go on to deduce a covering
theorem for Grothendieck categories (Theorem 2.28) which allows to prove compact generation
of the derived category.

2.1. Coverings of abelian categories

We first review the situation for abelian categories. Let C be an abelian category. A localization
of C consists of an exact functor

a : C −→ C′

with a fully faithful right adjoint i : C′
−→ C. A subcategory S ⊆ C is called a Serre subcategory

if it is closed under subquotients and extensions. A Serre subcategory gives rise to an exact
Gabriel quotient

a : C −→ C/S
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with Ker(a) = S . The Serre subcategory S is called localizing if a is the left adjoint in a
localization.

Now suppose C is Grothendieck. Then S is localizing precisely when S is moreover closed
under coproducts. Conversely, for every localization a : C −→ C′, S = Ker(a) is localizing, a
factors over an equivalence C/S ∼= C′, and putting

S ⊥
= {C ∈ C | HomC(S,C) = 0 = Ext1C(S,C)∀S ∈ S},

the right adjoint i : C′
−→ C factors over an equivalence C′ ∼= S ⊥. Clearly, in the picture of a

localization, the data of S , a and i determine each other uniquely.
Let C be an abelian category. For full subcategories S1, S2 of C, the Gabriel product is given

by

S1 ∗ S2 = {C ∈ C | ∃ S1 ∈ S1, S2 ∈ S2, 0 −→ S1 −→ C −→ S2 −→ 0}.

Clearly, if S contains the zero object, then S is closed under extensions if and only if S ∗ S = S .
An easy diagram argument reveals that the Gabriel product is associative.

Definition 2.1 ([25,3]). Full subcategories S1, S2 of C are called compatible if

S1 ∗ S2 = S2 ∗ S1.

Proposition 2.2 ([25,26]). Consider localizations (S1, a1, i1) and (S2, a2, i2) of C. Put q1 =

i1a1 and q2 = i2a2. The following are equivalent:
(1) S1 and S2 are compatible.
(2) q1(S2) ⊆ S2 and q2(S1) ⊆ S1.
(3) q1q2 = q2q1.

In the situation of Proposition 2.2, we speak about compatible localizations. A collection of
Serre subcategories (or localizations) is called compatible if the corresponding localizations are
pairwise compatible. For two compatible Serre subcategories S1 and S2, S1 ∗ S2 is the smallest
Serre subcategory containing S1 and S2. If S1 and S2 are localizing, then so is S1 ∗ S2.

Definition 2.3. A collection Σ of Serre subcategories of C is called a covering of C if
Σ =


S∈Σ

S = 0.

By this definition, the collection of functors a : C −→ C/S with S ∈ Σ “generates” C in the
sense that C ∈ C is non-zero if and only if a(C) is non-zero for some S ∈ Σ .

Proposition 2.4. Consider a collection Σ of localizing Serre subcategories of C. The following
are equivalent:
(1) Σ is a covering of C.
(2) The objects i(D) for D ∈ C/S and S ∈ Σ cogenerate C, i.e. a morphism C ′

−→ C in C is
non-zero if and only if there exists a morphism C −→ i(D) with D ∈ C/S for some S ∈ Σ
such that C ′

−→ C −→ i(D) is non-zero.

Proof. This easily follows from the adjunction between a and i . �

The notion of a compatible covering is inspired by open coverings of schemes. For a covering
collection j : Ui −→ X of open subschemes of a scheme X (i.e. X = ∪Ui ), the collection of
localizations j∗ : Qch(X) −→ Qch(Ui ) constitutes a compatible covering of Qch(X).
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2.2. Descent categories

Consider a compatible collection Σ of localizations C j of C indexed by a finite set I . We then
obtain commutative (up to natural isomorphism) diagrams of localizations

C
ak //

a j

��

Ck

ak
k j

��
C j

a j
k j

// Ck j

with Ck = S ⊥

k , Ck j = (Sk ∗ S j )
⊥

= C j ∩ Ck .
Using associativity of the Gabriel product and compatibility of the localizations, we obtain

for each J = { j1, . . . , jp} ⊆ I a localizing subcategory

S J = S j1 ∗ · · · ∗ S jp

of C with corresponding localization

C J = C j1 ∩ · · · ∩ C jp

of C, and all the S J are compatible. In particular, we obtain for every inclusion K ⊆ J a further
localization aK

J : CK −→ C J left adjoint to the inclusion i K
J : C J −→ CK . It is easily seen that

for K ⊆ J1 and K ⊆ J2, the localizations aK
J1

and aK
J2

are compatible. Let ∆∅ be the category
of finite subsets of I ordered by inclusions, and let ∆ be the subcategory of non-empty subsets.
Putting C∅ = C, the categories C J for J ⊆ I can be organized into a pseudofunctor

C• : ∆∅ −→ Cat : J −→ C J

with the aK
J for K ⊆ J as restriction functors. Hence, C• is a fibered category of localizations in

the sense of [13, Definition 2.4].
We define the descent category Des(Σ ) of Σ to be the descent category Des(C•|∆), i.e. it is a

bi-limit of the restricted pseudofunctor C•|∆.
In particular, we obtain a natural comparison functor

C −→ Des(Σ ).

We conclude:

Proposition 2.5. The compatible collection Σ of localizations of C is a covering if and only if
the comparison functor C −→ Des(Σ ) is faithful.

Conversely, descent categories yield a natural way of constructing an abelian category covered
by a given collection of abelian categories. More precisely, let I be a finite index set, let ∆ be as
above, and let

C• : ∆ −→ Cat : J −→ C J

be a pseudofunctor for which every aK
J : CK −→ C J for K ⊆ J is a localization with

right adjoint i K
J and Ker(aK

J ) = S K
J . Suppose moreover that for K ⊆ J1 and K ⊆ J2

the corresponding localizations are compatible and S K
J1∪J2

= S K
J1

∗ S K
J2

. Consider the descent
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category Des(C•) with canonical functors

aK : Des(C•) −→ CK : (X J )J −→ X K .

Proposition 2.6. (1) The functor aK is a localization with fully faithful right adjoint iK with

aJ iK = i J
K∪J aK

K∪J : CK −→ C J .

(2) The localizations aK are compatible.
(3) The localizations aK constitute a covering of Des(C•).
(4) If the functors i J

K∪J are exact, then so are the functors iK .

Proof. (1) For X ∈ CK , using compatibility of the localizations occurring in C•,
(i J

K∪J aK
K∪J (X))J can be made into a descent datum iK (X), and iK can be made into a functor

right adjoint to aK . Since aK iK = 1CK , the functor iK is fully faithful. (2), (3) Immediate from
Proposition 2.5. (4) Immediate from the formula in (1). �

2.3. Coverings of triangulated categories

Next we review the situation for triangulated categories. For an excellent introduction to the
localization theory of triangulated categories, we refer the reader to [10].

Let T be a triangulated category. A (Bousfield) localization of T consists of an exact functor

a : T −→ T ′

with a fully faithful (automatically exact) right adjoint i : T ′
−→ T . A subcategory I ⊆ T is

called triangulated if it is closed under cones and shifts and thick if it is moreover closed under
direct summands. A thick subcategory gives rise to an exact Verdier quotient

a : T −→ T /I

with Ker(a) = I . The thick subcategory I is called a Bousfield subcategory if a is the left adjoint
in a localization.

For every localization a : T −→ T ′, I = Ker(a) is Bousfield, a factors over an equivalence
T /I ∼= T ′, and putting

I ⊥
= {T ∈ T | HomT (I, T ) = 0 ∀I ∈ I},

the right adjoint i : T ′
−→ T factors over an equivalence T ′ ∼= I ⊥. Clearly, in the picture of a

localization, the data of I , a and i determine each other uniquely.
For full subcategories I1, I2 of T , the Verdier product is given by

I1 ∗ I2 = {T ∈ T | ∃ I1 ∈ I1, I2 ∈ I2, I1 −→ T −→ I2 −→}.

Clearly, if I contains the zero object and is closed under shifts, then I is triangulated if and only
if I = I ∗ I .

Definition 2.7 ([21,15]). Full subcategories I1, I2 of T are called compatible if

I1 ∗ I2 = I2 ∗ I1.

Remark 2.8. In Definition 2.7, we adopted the same terminology as in the abelian setup, see
Definition 2.1. Note that in our Refs. [21,15], compatible subcategories are called properly
intersecting.
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For two compatible triangulated subcategories I1 and I2, I1 ∗ I2 is the smallest triangulated
subcategory containing I1 and I2. If I1 and I2 are localizing (resp. Bousfield), the same holds
for I1 ∗ I2 (see [21,15]).

Proposition 2.9 ([21,15]). Consider localizations (I1, a1, i1) and (I2, a2, i2) of C. Put q1 =

i1a1 and q2 = i2a2. The following are equivalent:

(1) I1 and I2 intersect properly.
(2) q1(I2) ⊆ I2 and q2(I1) ⊆ I1.
(3) q1q2 = q2q1.

In the situation of Proposition 2.9, we speak about compatible localizations. A collection of
subcategories (resp. localizations) is called compatible if the subcategories (resp. localizations)
are pairwise compatible.

Definition 2.10. A collection Θ of full subcategories of T is called a covering of T if
Θ =


I∈Θ

I = 0.

Remark 2.11. In [21], the term cocovering is reserved for a collection of Bousfield subcategories
which is covering in the sense of Definition 2.10 and properly intersecting.

By Definition 2.10, for a covering collection Θ of thick subcategories, the collection of
quotient functors a : T −→ T /I with I ∈ Θ “generates” T in the sense that T ∈ T is
non-zero if and only if a(T ) is non-zero for some I ∈ Θ .

Proposition 2.12. Consider a collection Θ of Bousfield subcategories of T . The following are
equivalent:

(1) Θ is a covering of T .
(2) The objects i(D) for D ∈ T /I and I ∈ Θ cogenerate T , i.e. an object T in T is non-zero if

and only if there exists a non-zero morphism T −→ i(D) with D ∈ T /I for some I ∈ Θ .

Proof. This easily follows from the adjunction between a and i . �

2.4. Induced coverings

Given the formal parallelism between Sections 2.1 and 2.3, and the fact that a localization
a : C −→ D with right adjoint i : D −→ C of Grothendieck categories gives rise to an induced
Bousfield localization

La = a : D(C) −→ D(D)

with fully faithful right adjoint

Ri : D(D) −→ D(C)

of the corresponding derived categories, it is natural to ask what happens to the notions of
compatibility and coverings under this operation of taking derived categories.

For coverings, the situation is very simple. For a full subcategory S of C, let DS(C) denote
the full subcategory of D(C) consisting of complexes whose cohomology lies in S .
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Lemma 2.13. Let a : C −→ D be an exact functor between Grothendieck categories with
Ker(a) = S , and consider La = a : D(C) −→ D(D). We have Ker(La) = DS(C).

Proof. For a complex X ∈ D(C), we have Hn(a(X)) = a(Hn(X)). �

Lemma 2.14. For a collection Σ of full subcategories of a Grothendieck category C, we have

D 
S∈Σ

S(C) =


S∈Σ

DS(C).

Proposition 2.15. Let Σ be a collection of full subcategories of a Grothendieck category C. Then
Σ is a covering of C if and only if the collection {DS(C) | S ∈ Σ } is a covering of D(C).

Now consider a Grothendieck category C and localizations ak : C −→ Dk with right adjoints
ik , qk = ikak , and Sk = Ker(ak) for k ∈ {1, 2}.

Taking derived functors yields Bousfield localizations Lak = ak : D(C) −→ D(C/Sk) with
right adjoints Rik : D(C/Sk) −→ D(C) and Ker(Lak) = DSk (C).

We have the following inclusion between thick subcategories:

Lemma 2.16. We have DS1(C) ∗ DS2(C) ⊆ DS1∗S2(C).

Proof. A triangle X1 −→ X −→ X2 −→ with Xk ∈ DSk (C) gives rise to a long exact sequence
· · · −→ Hn X1 −→ Hn X −→ Hn X2 −→ · · · . Since Sk is closed under subquotients, we
obtain an exact sequence 0 −→ S1 −→ Hn X −→ S2 −→ 0 with Sk ∈ Sk . �

In general, we have:

Proposition 2.17. If DS1(C) and DS2(C) are compatible in D(C), then S1 and S2 are
compatible in C.

Proof. Immediate from Lemma 2.18 and the characterizations (2) in Propositions 2.2 and 2.9.
�

Lemma 2.18. If Ri1a1(DS2(C)) ⊆ DS2(C), then i1a1(S2) ⊆ S2.

Proof. Let S2 ∈ S2. We have i1a1(S2) = R0i1a1(S2) = H0 Ri1a1(S2) and since Ri1a1(S2) ∈

DS2(C), it follows that i1a1(S2) ∈ S2 as desired. �

Unfortunately, the converse implication does not hold in general. However, in the special
situation where i1 and i2 are exact, it is equally straightforward.

Definition 2.19. A localization a : C −→ D is called affine if the right adjoint i : D −→ C
is exact. A localizing subcategory S ⊆ C is called affine if the corresponding localization
C −→ C/S is affine.

Example 2.20. If X is a quasi-compact separated scheme and U ⊂ X an affine open subscheme,
then Qch(X) −→ Qch(U ) is an affine localization.

Remark 2.21. Other variants of “affineness” have been used in the non-commutative algebraic
geometry literature. For instance, Paul Smith calls an inclusion functor i : D −→ C affine if it
has both adjoints. In particular, if i : D −→ C is the right adjoint in a localization, it becomes a
forteriori exact. In this paper, we have chosen the most convenient notion of “affineness” for our
purposes.
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Proposition 2.22. If S1 and S2 are compatible and affine, then DS1(C) and DS2(C) are
compatible.

Proof. Immediate from Lemma 2.23 and the characterizations (2) in Propositions 2.2 and
2.9. �

Lemma 2.23. If i1a1(S2) ⊆ S2 and i1 is exact, then Ri1a1(DS2(C)) ⊆ DS2(C).

Proof. For a complex X ∈ DS2(C), we have Ri1a1(X) = i1a1(X) and since i1a1 is exact,
Hn(i1a1(X)) = i1a1(Hn(X)) ∈ S2. �

The affineness condition in Proposition 2.22 does not describe the only situation where
compatible abelian localizations give rise to compatible Bousfield localizations, but it is the only
situation we will need in this paper. To end this section, we will describe another situation,
inspired by the behavior of large categories of sheaves of modules.

Recall that the functor i : C/S −→ C has finite cohomological dimension if there exists an
N ∈ Z such that if X ∈ D(C/S) has Hn(X) = 0 for n > 0, then Rni(X) = Hn(Ri(X)) = 0 for
n ≥ N .

Proposition 2.24. Let S1 and S2 be compatible and suppose the following conditions hold:

(1) There exist a class of objects A ⊆ C and classes Ak ⊆ C/Sk consisting of ik-acyclic objects
such that ak(A) ⊆ Ak and ik(Ak) ⊆ A.

(2) The functors ik have finite cohomological dimension.

Then DS1(C) and DS2(C) are compatible.

Example 2.25. Let X be a quasi-compact scheme with quasi-compact open subschemes j1 :

U1 −→ X and j2 : U2 −→ X . We have restriction functors j∗k : Mod(X) −→ Mod(Uk)

between the categories of all sheaves of modules with right adjoints ik,∗ : Mod(Uk) −→

Mod(X) with finite cohomological dimension. In Proposition 2.24, we can take for A and Ak
the classes of flabby sheaves. Hence the localizations j∗k : D(Mod(X)) −→ D(Mod(Uk)) are
compatible.

2.5. Rouquier’s theorem

Compactly generated triangulated categories were invented by Neeman [16] with the compact
generation of derived categories of “nice” schemes as one of the principal motivations. As proved
in [16], for a scheme with a collection of ample invertible sheaves, these sheaves constitute a
collection of compact generators of the derived category. But also in [16], a totally different
proof of compact generation is given for arbitrary quasi-compact separated schemes, based upon
the work of Thomason and Trobaugh [23]. The result is further improved by Bondal and Van den
Bergh in [2], where a single compact generator is constructed for quasi-compact semi-separated
schemes. These proofs are by induction on the opens in a finite affine cover, and the ingredients
eventually crystallized in Rouquier’s theorem [21] which is entirely expressed in terms of a
cover of a triangulated category. Finally, in [15], Murfet obtained a version of the theorem with
compactness replaced by α-compactness. We start by recalling the theorem.

Theorem 2.26 ([15]). Let T be a triangulated category with small coproducts with a compatible
covering of Bousfield subcategories Ii ⊆ T for i ∈ I = {1, . . . , n}. Let α be a regular cardinal.
Suppose:
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(1) T /Ii is α-compactly generated for every i ∈ I .
(2) For every i ∈ I and ∅ ≠ J ⊆ I \ {i}, the essential image of

j∈J

I j −→ T −→ T /Ii

is α-compactly generated in T /Ii .

Then T is α-compactly generated, and an object in T is α-compact if and only if its image in
every T /Ii for i ∈ I is α-compact.

Remark 2.27. The α = ℵ0-case of the theorem is Rouquier’s cocovering theorem [21].

We now obtain the following application to Grothendieck categories:

Theorem 2.28. Let C be a Grothendieck category with a compatible covering of affine localizing
subcategories Si ⊆ C for i ∈ I = {1, . . . , n}. Suppose:

1. D(C/Si ) is α-compactly generated for every i ∈ I .
2. For every i ∈ I and ∅ ≠ J ⊆ I \ {i}, suppose the essential image E of

j∈J

S j −→ C −→ C/Si

is such that DE (C/Si ) is α-compactly generated in D(C/Si ).

Then D(C) is α-compactly generated, and an object in D(C) is α-compact if and only if its image
in every D(C/Si ) for i ∈ I is α-compact.

Proof. This is an application of Theorem 2.26 by invoking Propositions 2.15 and 2.22 and
Lemma 2.29. �

Lemma 2.29. With the notations of Theorem 2.28, ∩ j∈J S j is a localizing Serre subcategory
which is compatible with Si , and the essential image E of

j∈J

S j −→ C −→ C/Si

is a localizing Serre subcategory given by the kernel of

C/Si −→ C/(Si ∗


j∈J

S j ).

The essential image of
j∈J

DS j (C) −→ D(C) −→ D(C/Si )

is given by DE (C/Si ).

Remark 2.30. By the Gabriel–Popescu theorem, all Grothendieck categories are localizations
of module categories, and thus their derived categories are well-generated [18,9] (and thus α-
compactly generated for some α) as localizations of compactly generated derived categories of
rings. However, they are not necessarily compactly generated as was shown in [17].

Remark 2.31. Compatibility between localizations can be considered a commutative phe-
nomenon (after all, it expresses that two localization functors commute). The non-commutative
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topology developed by Van Oystaeyen [25] encompasses notions of coverings (and in fact, non-
commutative Grothendieck topologies) which apply to the situation of non-commuting local-
izations. An investigation whether this approach can be extended to the triangulated setup, and
whether it is possible to obtain results on compact generation extending Theorems 2.26 and 2.28,
is work in progress.

3. Deformations

In this section we obtain an application of Theorem 2.28 to deformations of Grothendieck
categories, based upon application to the undeformed categories (Theorem 3.8). For simplicity,
we focus on compact generation (α = ℵ0). By the work of Keller [7], compact generation of
the derived category D(C) of a Grothendieck category leads to the existence of a dg algebra A
– the derived endomorphism algebra of a generator – representing the category in the sense that
D(C) ∼= D(A). At this point, most of non-commutative derived algebraic geometry has been
developed with dg algebras (or A∞-algebras) as models, although a definitive theory should
also include more general algebraic enhancements on the level of the entire categories. For the
topic of deformations, a satisfactory treatment on the level of dg algebras does certainly not
exist in complete generality [8], due to obstructions which also play an important role in the
present paper. A deformation theory for triangulated categories on the level of enhancements of
the entire categories is still under construction [11,4], and is also subject to obstructions. Thus,
Grothendieck enhancements are the only ones for which a satisfactory intrinsic deformation
theory exists for the moment, and for this reason our intermediate Theorem 2.28 is crucial.

3.1. Deformation and localization

Infinitesimal deformations of abelian categories were introduced in [14]. We deform along a
surjective ringmap R −→ k between coherent commutative rings, with a nilpotent kernel I and
such that k is finitely presented over R. This includes the classical infinitesimal deformation setup
in the direction of Artin local k-algebras. Deformations are required to be flat in an appropriate
sense, which was introduced in [14]. It was shown in the same paper that deformations
of Grothendieck categories remain Grothendieck. The interaction between deformation and
localization was treated in [14, Section 7].

Let C −→ D be a deformation of Grothendieck categories. There are inverse bijections
between the Serre subcategories of C and the Serre subcategories of D described by the maps

S −→ S̄ = ⟨S⟩D = {D ∈ D | k ⊗R D ∈ S}

and

S −→ S ∩ C.

These restrict to bijections between localizing subcategories, and for corresponding localizing
subcategories S of C and S̄ of D, there is an induced deformation C/S −→ D/S̄ and there are
commutative diagrams

D ā // D/S̄

C

OO

a
// C/S

OO D D/S̄ı̄oo

C

OO

C/S.

OO

i
oo

(1)
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Proposition 3.1. Let Σ be a collection of Serre subcategories of C and consider the
corresponding collection Σ̄ = {S̄ | S ∈ Σ } of Serre subcategories of D. Then Σ is a covering of
C if and only if Σ̄ is a covering of D.

Proof. Immediate from Lemma 3.2. �

Lemma 3.2. Let Σ be a collection of Serre subcategories of C. We have
S∈Σ

S =


S∈Σ

S.

Proof. Immediate from the description of the bijections between Serre subcategories of C and
D. �

Proposition 3.3 ([13, Proposition 3.8]). Let Sk ⊆ C be localizing subcategories for k ∈ {1, 2}.
If S1 and S2 are compatible in C, then S1 and S2 are compatible in D. In this case, we have
S1 ∗ S2 = S1 ∗ S2.

We will need the following lifting result later on.

Lemma 3.4. Let Sk ⊆ C be compatible localizing subcategories for k ∈ {1, 2}. The essential
image E of

S2 −→ C −→ C/S1

is the kernel of

a1
2 : C/S1 −→ C/S1 ∗ S2.

The lift E of E to D/S1 is the essential image of

S2 −→ D −→ D/S1.

Finally, we investigate the behavior of affine localizations in the sense of Definition 2.19 under
deformation. We use the notations from diagram (1).

Proposition 3.5. (i) There is a commutative diagram

D(D) D(D/S̄)Rı̄oo

D(C)

OO

D(C/S).

OO

Ri
oo

(ii) If S is an affine localizing subcategory of C, then S̄ is an affine localizing subcategory of D.

Proof. (i) By Lemma 3.6, the commutativity of the diagram follows from the commutativity
of the right hand diagram in (1), by computing the right derived functor of the composition in
two ways. (ii) follows in the standard way from (i) by writing an arbitrary object in D/S̄ as an
extension of objects in C/S . �

Lemma 3.6. The inclusion functor C/S −→ D/S̄ sends injectives to ı̄ -acyclic objects.
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Proof. Let F ∈ D/S̄ be the unique, D/S̄ -injective lift of E along HomR(k,−) : D/S̄ −→ C/S
(see [14, Corollary 6.15] and [12, Proposition 5.5]). We thus have

HomR(k, F) = E .

Choose a resolution of k by finitely generated free R-modules.

· · · −→ P1 −→ P0 −→ k −→ 0. (2)

Apply HomR(−, F) to this resolution. Since injectives are coflat (all categories are assumed to
be flat) we obtain an injective resolution of E in D/S̄ .

0 −→ E −→ HomR(P0, F) −→ HomR(P1, F) −→ · · · .

Applying ı̄ we obtain a complex

0 −→ ı̄ HomR(P0, F) −→ ı̄ HomR(P1, F) −→ · · · (3)

which computes Ri ı̄(E).
On the other hand we may also apply HomR(−, ı̄ F) to (2) which yields an exact sequence

HomR(P0, ı̄ F) −→ HomR(P1, ı̄ F) −→ · · ·

which is easily seen to be the same as (3) (except for the zero on the left). The result follows. �

3.2. Lifts of compact generators

Let ι : C −→ D be a deformation of Grothendieck categories, let S be a localizing Serre
subcategory of C and let S be the corresponding localizing subcategory of D.

For an abelian category A, let Ind(A) be the ind-completion of A, i.e. the closure of A inside
Mod(A) under filtered colimits, and let Pro(A) = (Ind(Aop

))
op

be the pro-completion of A.
Consider the commutative diagram

DS̄(D) // D(D)

DS(C)

OO

// D(C)

Rι

OO

and the derived functor

k ⊗
L
R − : D(Pro(D)) −→ D(Pro(C)).

For a collection A of objects in a triangulated category T , we denote by ⟨A⟩T the smallest
localizing (i.e. triangulated and closed under direct sums) subcategory of T containing A.

Recall from [5] that we have a balanced action

− ⊗
L
R − : D−(Mod(R))⊗ D−(D) −→ D−(D).

The following is a refinement of [5, Proposition 5.9].

Proposition 3.7. Consider a collection g of objects of D−(D) such that the collection k ⊗
L
R g =

{k ⊗
L
R G | G ∈ g} compactly generates DS(C) inside D(C). Then g compactly generates DS(D)

inside D(D).
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Proof. The objects of g are compact by [5, Proposition 5.8]. Consider ⟨g⟩D(D), i.e. the closure
of g in D(D) under cones, shifts and direct dums. We are to show that ⟨g⟩D(D) = DS(D). First
we have to make sure that every G ∈ g is contained in DS(D). Writing I = Ker(R −→ k)
as a homotopy colimit of cones of finite free k-modules, we obtain that both k ⊗

L
R G and

I ⊗
L
R G ∼= I ⊗

L
k (k ⊗

L
R D) belong to DS(C) and hence to DS(D). From the triangle

I ⊗
L
R G −→ G −→ k ⊗

L
R G −→

we deduce that G also belongs to DS(D). Consequently ⟨g⟩D(D) ⊆ DS(D).
Next we look at the other inclusion DS(D) ⊆ ⟨g⟩D(D). For an arbitrary complex D ∈ DS(D),

we can write D = hocolim∞

n=0τ
≤n D with τ≤n D ∈ D−

S (D). Consequently, it suffices to show

that D−

S (D) ⊆ ⟨g⟩D(D). For D ∈ D−

S (D), consider the triangle

I ⊗
L
R D −→ D −→ k ⊗

L
R D −→ .

First note that writing k as a homotopy colimit of cones of finite free R-modules, we see that

k ⊗
L
R D ∈ ⟨D⟩D(D). (4)

Using I ⊗
L
R D ∼= I ⊗

L
k (k ⊗

L
R D), we deduce from balancedness of the derived tensor product

that I ⊗
L
R D and k ⊗

L
R D belong to both D(C) and DS(D), whence to DS(C). Consequently, it

suffices to show that ⟨k ⊗
L
R g⟩D(C) = DS(C) ⊆ ⟨g⟩D(D). To see this, it suffices to consider (4)

for all D ∈ g. �

3.3. Compact generation of deformations

Putting together all our results so far, we now describe a situation in which one obtains
compact generation of the derived category D(D) of a deformation D. Let C be a Grothendieck
abelian category with a deformation ι : C −→ D. Let Si ⊆ C for i ∈ I = {1, . . . , n} be a
covering collection of compatible affine localizing subcategories of C and let Si ⊆ D be the
corresponding covering collection of compatible affine localizing subcategories of D.

Theorem 3.8. Suppose:

(1) For every i ∈ I , there is a collection gi of objects of D−(D/Si ) such that the collection
k ⊗

L
R gi compactly generates D(C/Si ).

(2) For every i ∈ I and J ⊆ I \ {i}, the essential image E of
j∈J

S j −→ C −→ C/Si

is such that there is a collection g of objects of D−(D/Si ) for which the collection k ⊗
L
R g

compactly generates DE (C/Si ) inside D(C/Si ).

Then D(D) is compactly generated and an object in D(D) is compact if and only if its image in
each D(D/Si ) is compact.

Proof. By Propositions 3.1, 3.3 and 3.5, we are in the basic setup of Theorem 2.28. By
Proposition 3.7, the collections gi and g in assumptions (1) and (2) constitute collections of
compact generators of D(D/Si ) and of DE (D/S i ) inside D(D/S i ) respectively. Finally, using
Lemma 3.4, assumptions (1) and (2) in Theorem 2.28 are fulfilled and the theorem applies to the
deformed situation. �
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4. Lifting Koszul complexes

For an object M in D(A) for a k-algebra A, we denote by ⟨M⟩A the smallest thick subcategory
of D(A) containing M and by ⟨M⟩A the smallest localizing subcategory of D(A) containing M .

For a k-algebra map A −→ B we have a restriction functor

A(−) : D(B) −→ D(A)

with left adjoint given by the derived tensor product

B ⊗
L
A − : D(A) −→ D(B)

(the actual map A −→ B will never be in doubt).

4.1. An auxiliary result

Let k be a field and let n be the Lie algebra freely generated by x1, . . . , xn subject to the
relations that all expressions involving ≥d brackets vanish. Since there are only a finite number
of expressions in (xi )i involving <d brackets, n is finite dimensional over k. Let U be the
universal enveloping algebra of n. Let I ⊆ U be the two sided ideal generated by ([xi , x j ])i j .
Then U/I = k[x1, . . . , xn]. Our arguments below will be mostly based on the k-algebra maps

U // U/I
xi →0 // k.

The left k-module k gives rise to a left U -module U k = U/(x1, . . . , xn) and a left U/I -
module U/I k = (U/I )/(x1, . . . , xn). Since U (as well as U/I ) is noetherian of finite global
dimension, U k is a perfect left U -module and U/I k is a perfect U/I -module. By tensoring we
obtain another perfect U/I -module: U/I ⊗

L
U U k.

The following result was pointed out to us by the referee:

Lemma 4.1. Consider A = k[x1, . . . , xn] and k = A/(x1, . . . , xn) ∈ D(A). For 0 ≠ F ∈ ⟨k⟩A,
we have ⟨k⟩A = ⟨F⟩A.

Proof. We are to prove that k ∈ ⟨F⟩A. Since k is perfect over A, we have k ⊗
L
A F ∈ ⟨F⟩A.

Further, using the ringmap A −→ k : xi −→ 0, we can view k ⊗
L
A F = Ak ⊗

L
A F as the image

of kk ⊗
L
A F ∈ D(k) along the forgetful functor. But in D(k), we have kk ⊗

L
A F = ⊕i Σ ni kk, and

hence Ak ⊗
L
A F = ⊕i Σ ni Ak. Thus k ∈ ⟨k ⊗

L
A F⟩A ⊆ ⟨F⟩A as desired. �

Proposition 4.2. We have the following equalities: ⟨U/I k⟩U/I = ⟨U/I ⊗
L
U U k⟩U/I and

⟨U/I k⟩U/I = ⟨U/I ⊗
L
U U k⟩U/I .

Proof. By Lemma 4.1, it remains to prove that U/I ⊗
L
U U k ∈ ⟨U/I k⟩U/I . Note that ⟨U/I k⟩U/I

consists of all complexes of U/I -modules whose total cohomology is finite dimensional and
receives a nilpotent action from all the xi . To check that the cohomology of U/I ⊗

L
U U k

is finite dimensional, we only have to look at the underlying k-module. Hence we compute
k(U/I ⊗

L
U U k) (restriction for k ↩→ U/I ) which we can do using a finite free resolution of

(U/I )U as a right U -module. Things then reduce to the trivial fact k(U ⊗
L
U U k) ∼= k. Giving

every xi ∈ U/I degree 1, the cohomology of U/I ⊗
L
U U k further becomes Z-graded. Since it is

finite dimensional, the action of the xi is necessarily nilpotent. �
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4.2. Koszul precomplexes

Let A be a possibly non-commutative k-algebra and consider a finite sequence of elements
x = (x1, . . . , xn) in A. We will work in the category Mod(A) of left A-modules. We define a

precomplex K (x) of A-modules with K (x)p = A ⊗k Λpkn the free A-module of rank


n
p


with

basis ei1 ∧ · · · ∧ ei p with i1 < · · · < i p. We define the A-linear morphism

dp : K (x)p −→ K (x)p−1

by

dp(ei1 ∧ · · · ∧ ei p ) =

p
k=1

(−1)k+1xik ei1 ∧ · · · ∧ êik ∧ · · · ∧ ei p .

The differential may be compactly written as d =


i Rxi δ/δei where we consider the ei as
odd and Rxi (a) = axi which yields:

d2
=


1≤i< j≤p

R[x j ,xi ] δ
2/δeiδe j .

Thus K (x) is a complex if and only if the (xi )i commute.

4.3. Lifting Koszul complexes

Let (R,m) be a finite dimensional k-algebra with md
= 0 and R/m = k and let A′ be an

R-algebra with A′/m A′
= A. Consider a sequence f = ( f1, . . . , fn) of element in A and a

sequence f ′
= ( f ′

1, . . . , f ′
n) of elements in A′ such that the reduction of f ′

i to A equals fi . Let
K ( f ) be the Koszul complex associated to f . As soon as some of the f ′

i do not commute, the
Koszul precomplex K ( f ′) fails to be a complex according to Section 4.2. For this reason, we
will now use the result of Section 4.1 to lift a perfect complex generating the same localizing
subcategory as K ( f ). In fact, this “liftable complex” happens to be independent of A′ or R! Its
size depends however in a major way on d .

Theorem 4.3. Let (R,m) be a finite dimensional algebra with md
= 0 and R/m = k, and let A

be a commutative k-algebra and f = ( f1, . . . , fn) a sequence of elements in A. There exists a
perfect complex X ∈ D(A) with ⟨K ( f )⟩A = ⟨X⟩A and

⟨K ( f )⟩A = ⟨X⟩A

which is such that for every R-algebra A′ with A′/m = A there exists a perfect complex
X ′

∈ D(A′) with A ⊗
L
A′ X ′

= X. We can take X = A ⊗
L
U U k.

Proof. Let f ′
= ( f ′

1, . . . , f ′
n) be an arbitrary sequence of elements in A′ such that the reduction

of f ′

i to A equals fi . From the definition of the algebra U in Section 4.1, we obtain a commutative
diagram

U //

��

A′

��
U/I // A
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with the horizontal maps determined by xi −→ f ′

i and xi −→ fi respectively. We thus have

A ⊗
L
A′(A′

⊗
L
U U k) = A ⊗

L
U/I (U/I ⊗

L
U U k). (5)

By Proposition 4.2 we have ⟨U/I k⟩U/I = ⟨U/I ⊗
L
U U k⟩U/I and hence

⟨A ⊗
L
U/I U/I k⟩A = ⟨A ⊗

L
U/I (U/I ⊗

L
U U k)⟩A. (6)

Over U/I = k[x1, . . . , xn], the Koszul complex K (x1, . . . , xn) constitutes a projective
resolution of U/I k. Hence, on the left hand side of (6) we have A ⊗

L
U/I U/I k =

A ⊗U/I K (x1, . . . , xn) = K ( f ). Hence, by (5) it suffices to take X = A ⊗
L
U U k and X ′

=

A′
⊗

L
U U k. �

Since over U , the Chevalley–Eilenberg complex V (n) of n constitutes a projective resolution
of U k, in Theorem 4.3 we concretely obtain X = A ⊗U V (n) = A ⊗k Λ∗n and X ′

=

A′
⊗U V (n) = A′

⊗k Λ∗n, both equipped with the Chevalley–Eilenberg differential

d(a ⊗ y1 ∧ · · · ∧ yp) =

p
i=1

(−1)i+1ayi ⊗ y1 ∧ · · · ∧ ŷi ∧ · · · ∧ yp

+


i< j

(−1)i+ j a ⊗ [yi , y j ] ∧ · · · ∧ ŷi · · · ∧ ŷ j · · · ∧ yp

for a basis (yi )i for n. Let us look at some examples.
If d = 1 or n = 1, we have n = kx1 ⊕ · · · ⊕ kxn , U = k[x1, . . . , xn], V (n) = K (x1, . . . , xn)

and X = K ( f1, . . . , fn). For n = 1 we have X ′
= K ( f ′

1).
Thus, the first non-trivial case to consider is d = 2 and n = 2. We have n = kx1 ⊕ kx2 ⊕

k[x1, x2] and consequently X is given by the complex

0 // A
d3

// A3
d2

// A3
d1

// A // 0

with basis elements over A given by x1 ∧ x2 ∧ [x1, x2] in degree 3, x1 ∧ x2, x2 ∧ [x1, x2],
[x1, x2] ∧ x1 in degree 2, x1, x2, [x1, x2] in degree 1 and 1 in degree 0 and differentials given by

d3 =

[ f1, f2]

f1
f2

 , d2 =

− f2 0 [ f1, f2]

f1 −[ f1, f2] 0
−1 f2 − f1

 ,

d1 =


f1 f2 [ f1, f2]

.

Similarly X ′ is given by the same expressions with A replaced by A′ and fi replaced by the
chosen lift f ′

i . Note that [ f1, f2] = 0 but we possibly have [ f ′

1, f ′

2] ≠ 0.

5. Deformations of schemes

In this section we specialize Theorem 3.8 to the scheme case. In Theorem 5.2, we give a
general formulation in the setup of a Grothendieck deformation of the category Qch(X) over a
quasi-compact, separated scheme. After discussing some special cases in which direct lifting of
Koszul complexes already leads to compact generation of the deformed category (like the case
in which all deformed rings on an affine cover are commutative), in Section 5.4 we prove our
main Theorem 5.10 which states that all non-commutative deformations are in fact compactly
generated. The proof is based upon the change from Koszul complexes to liftable generators
from Theorem 4.3.
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5.1. Deformed schemes using ample line bundles

Let X be a quasi-compact separated scheme over a field k. If we want to investigate compact
generation of D(D) for an abelian deformation D of C = Qch(X), by Proposition 3.7 (and in
fact, its special case [5, Proposition 5.9]) a global approach is to look for compact generators of
D(C) that lift to D(D) under k ⊗

L
R −. We easily obtain the following result:

Proposition 5.1. Suppose X has an ample line bundle L. If H2(X,O X ) = 0, all infinitesimal
deformations of Qch(X) have compactly generated derived categories.

Proof. According to [18], D(Qch(X)) is compactly generated by the tensor powers Ln for
n ∈ Z. By [12], the obstructions to lifting Ln along an infinitesimal deformation lie in
Ext2X (Ln, I ⊗k Ln) for I ∼= km for some m. But we have

Ext2X (L, I ⊗k L) ∼= [Ext2(L,L)]m
= [Ext2X (O X ,O X )]

m
= [H2(X,O X )]

m
= 0

as desired. �

5.2. Deformed schemes using coverings

Let (X,O) be a quasi-compact, separated scheme and put C = Qch(X). Since the
homological condition in Proposition 5.1 excludes interesting schemes, we now investigate a
different approach based upon affine covers.

Let Ui for i ∈ I = {1, . . . , n} be an affine cover of X , with Ui ∼= Spec(O(Ui )). Put
Zi = X \ Ui . With Ci = Qch(Ui ) and Si = QchZi (X), the category of quasi-coherent sheaves
on X supported on Zi , we are in the situation of a covering collection of compatible localizations
of C.

For J ⊆ I , put UJ = ∩ j∈J U j and C J = Qch(UJ ). For i ∈ I and J ⊆ I \ {i}, put
Z i

J = Ui \ ∪ j∈J U j = Ui ∩ ∩ j∈J Z j . The essential image E of ∩ j∈J S j −→ C −→ C/Si is
given by E = QchZ i

J
(Ui ).

Let ∆ and ∆∅ be as in Section 2.2. For K ⊆ J , we have UJ ⊆ UK and the corresponding
localization is given by restriction of sheaves aK

J : Qch(UK ) −→ Qch(UJ ) with right adjoint
direct image functor i K

J . Moreover, the localization can be entirely described in terms of module
categories. If O(UK ) −→ O(UJ ) is the canonical restriction, then we have

aK
J

∼= O(UJ )⊗O(UK )− : Mod(O(UK )) −→ Mod(O(UJ ))

and the right adjoint i K
J is simply the restriction of scalars functor, which is obviously exact. For

the resulting pseudofunctor

Mod(O(U•)) : ∆ −→ Cat : J −→ Mod(O(UJ )),

we have Qch(X) ∼= Des(Mod(O(U•))). According to [13], this situation is preserved under
deformation. More precisely, up to equivalence an arbitrary abelian deformation ι : C −→ D is
obtained as D ∼= Des(Mod(O•)) where

O• : ∆ −→ Rng : J −→ O J

is a pseudofunctor (a “twisted presheaf”) deforming O(U•), and D J = Mod(O J ) is the
deformation of C J corresponding to S J . By Proposition 2.6, the functors i K : DK −→ D are
exact, and the ak : D −→ Dk constitute a covering collection of compatible localizations of D.
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We note that by taking gi = {Oi }, condition (1) in Theorem 3.8 is automatically fulfilled. We
conclude:

Theorem 5.2. Let X be a quasi-compact, separated scheme with an affine cover Ui for i ∈ I =

{1, . . . , n}. Let ι : Qch(X) −→ D be an abelian deformation with induced deformations Di
of Qch(Ui ). For every i ∈ I and J ⊆ I \ {i}, consider Z i

J = Ui ∩ ∩ j∈J Z j . Suppose there
is a collection gi

J of objects in D−(Di ) such that k ⊗
L
R gi

J compactly generates DZ i
J
(Ui ) inside

D(Ui ). Then D(D) is compactly generated and an object in D(D) is compact if and only if its
image in each D(Di ) is compact.

Remark 5.3. Before it makes sense to investigate the more general situation of deformations
of quasi-compact, quasi-separated schemes X , for which DQch(X)(Mod(X)) is known to be
compactly generated by [2], a better understanding of the direct relation between deformations
of Qch(X) and Mod(X) should be obtained. It follows from [13] that these two Grothendieck
categories have equivalent deformation theories, the deformation equivalence passing through
twisted non-commutative deformations of the structure sheaf. An interesting question in its
own right is to understand whether corresponding deformations of Qch(X) and of Mod(X)
are related by an inclusion functor and a quasi-coherator like in the undeformed setup.

5.3. Twisted deformed schemes

In this section we collect some observations which follow immediately from Theorem 5.2,
based upon direct lifting of Koszul complexes. In the slightly more restrictive deformation setup
of Section 5.4, all compact generation results we state here also follow from the more general
Theorem 5.10, but there the involved generators are more complicated.

Let A be a commutative k-algebra and f = ( f1, . . . , fn) a finite sequence of elements in A.
Put X = Spec(A). Consider the closed subset

Z = V ( f ) = V ( f1, . . . , fn) = {p ∈ Spec(A) | f1, . . . , fn ∈ p} ⊆ X.

Let QchZ (X) be the localizing subcategory of quasi-coherent sheaves on X supported on Z and
put DZ (X) = DQchZ (X)(Qch(X)). We recall the following:

Proposition 5.4 ([1]). The category DZ (X) is compactly generated by K ( f ) inside D(X).

Let A be an R-deformation of A and let D = Mod(A) be the corresponding abelian
deformation of C = Qch(X) ∼= Mod(A). Let QchZ (X) ⊆ D be the localizing subcategory
corresponding to QchZ (X) ⊆ C. Let f = ( f1, . . . , fn) be a sequence of lifts of the elements
fi ∈ A to fi in A under the canonical map A −→ A. Clearly the precomplex K ( f ) of finite free
A-modules satisfies k ⊗R K ( f ) = K ( f ). If K ( f ) is a complex, we thus have

k ⊗
L
R K ( f ) = K ( f ).

From Proposition 3.7 we deduce:

Proposition 5.5. If every two distinct elements fl and fk commute, then K ( f ) compactly
generates DQchZ (X)

(D) inside D(D).

Corollary 5.6. If A is a commutative deformation of A, then DQchZ (X)
(D) is compactly

generated inside D(D).
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Corollary 5.7. If f = ( f1) consists of a single element, then DQchZ (X)
(D) is compactly

generated inside D(D).
We can now formulate some corollaries of Theorem 5.2:

Proposition 5.8. Let X be a quasi-compact separated scheme with affine cover Ui for i ∈ I =

{1, . . . , n}. Let

O• : ∆ −→ Rng : J −→ O J

be a pseudofunctor deforming

O(U•) : ∆ −→ Rng : J −→ O(U•)

such that all the rings O J are commutative. Then the category D(D) for D = Des(Mod(O•))

is compactly generated and an object in D(D) is compact if and only if its image in each of the
categories Mod(Oi ) is compact.

In particular, we recover the fact that for a smooth scheme, the components H2(X,O X ) ⊕

H1(X, T X ) of H H2(X) correspond to compactly generated deformations of Qch(X), a fact
which also follows from [24].

Proposition 5.9. Let X be a scheme with an affine cover U1, U2 with Ui ∼= Spec(Ai ) such that
U1∩U2 ∼= Spec(A1x )

∼= Spec(A2 y) for x ∈ A1 and y ∈ A2. Then every deformation of Qch(X)
is compactly generated.

Unfortunately, Proposition 5.9 typically applies to curves, and they tend to have no genuinely
non-commutative deformations. For instance, for a smooth curve X the Hochschild cohomology
is seen to reduce to H H2(X) = H1(X, T X ) for dimensional reasons, whence there are only
scheme deformations of X .

5.4. Non-commutative deformed schemes

Let k be a field and (R,m) a finite dimensional k algebra with md
= 0 and R/m = k. In this

section we prove our main result, namely that non-commutative deformations of quasi-compact
separated schemes are compactly generated. Based upon Section 4.3, we remedy the fact that for
general non-commutative deformations of schemes, the relevant Koszul precomplexes fail to be
complexes and hence cannot be used as lifts, unlike in the special cases discussed in Section 5.3.

Theorem 5.10. Let X be a quasi-compact separated k-scheme with an affine cover Ui for
i ∈ I = {1, . . . , n}. Let ι : Qch(X) −→ D be an abelian R-deformation with induced
deformations Di of Qch(Ui ). Then D(D) is compactly generated and an object in D(D) is
compact if and only if its image in each D(Di ) is compact.

Proof. The theorem is an application of Theorem 3.8. For i ∈ I and J ⊆ I \ {i}, put
Y = Ui = Spec(A) and Z = Ui ∩ ∩ j∈J Z j . For a finite sequence of elements f = ( f1, . . . , fk)

we can write

Z = V ( f ) = {p ∈ Spec(A) | f1, . . . , fk ∈ p} ⊆ Y.

For the induced deformation Di of Qch(Ui ) ∼= Mod(A) we have Di ∼= Mod(A) for an R-
deformation A of A. By Proposition 5.4, the category DZ (Y ) is compactly generated by K ( f )
inside D(Y ). Now by Theorem 4.3, there exists a perfect complex X ′

∈ D(A) for which
A ⊗

L
A

X ′
= k ⊗

L
R X ′ compactly generates DZ (Y ) inside D(Y ) ∼= D(A) as desired. �
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The theorem shows in particular that the entire second Hochschild cohomology is realized by
means of compactly generated abelian deformations.
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Appendix. Removing obstructions

In this appendix we discuss an approach to removing obstructions to first order deformations
from [8] based upon the Hochschild complex, which applies in the case of length two Koszul
complexes and thus leads to an alternative proof of Theorem 5.10 in the case of first order
deformations of surfaces. We compare the explicit lifts we obtain in both approaches.

A.1. Hochschild complex

Let p be a k-linear abelian category. Recall that the Hochschild complex C(p) is the complex
of k modules with, for n ≥ 0,

Cn(p) =


P0,...,Pn∈C

Homk(p(Pn−1, Pn)⊗ · · · ⊗ p(P0, P1), p(P0, Pn))

endowed with the familiar Hochschild differential. Let C(p) be the dg category of complexes of
p-objects with Hochschild complex C(C(p)) with

Cn(C(p)) =


C0,...,Cn∈C(p)

Homk(Hom(Cn−1,Cn)⊗ · · · ⊗ Hom(C0,C1),Hom(C0,Cn)).

An element of Cn(p) can be naively extended to C(p), yielding

Cn(p) −→ Cn(C(p)) : φ −→ φ.

A.2. Linear deformations and lifts of complexes

If m is the composition of the category p, then a Hochschild 2-cocycle φ corresponds to the
first order deformation

(p = p[ϵ],m = m + φϵ).

Here Ob(p) ∼= Ob(p) and we denote objects in p by P for P ∈ p. For objects P0, P1 ∈ p, we have
p(P1, P0) = p(P1, P0)[ϵ]. A morphism f : P1 −→ P0 in p naturally gives rise to a morphism
f = f + 0ϵ : P1 −→ P0 in p(P1, P0), the trivial lift. For a complex (P, d) of p-objects, there
thus arises a natural lifted precomplex (P, d) of p-objects.
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In p we have

m(d, d) = φ(d, d)ϵ

and in fact,

[φ(d, d)] ∈ K (p)(P[−2], P)

is precisely the obstruction to the existence of a complex (P, d
′
) in K (p) with k ⊗R(P, d

′
) ∼=

(P, d) in K (p) (see [12]). In general this obstruction will not vanish, but in some cases it is seen
to vanish on the nose.

Proposition A.1. If the differential d of P has no two consecutive non-zero components dn :

Pn −→ Pn−1, then φ(d, d) = 0 and (P, d) is a complex lifting (P, d).

A.3. Removing obstructions

If 0 ≠ [φ(d, d)] ∈ Ext2p(P, P), following [8] we consider the morphism φ(d, d) : Σ−2 P −→

P and we turn to the related complex

P(1) = cone(φ(d, d)) = P ⊕ Σ−1 P

with differential

d(1) =


d φ(d, d)
0 −d


.

The obstruction associated to the complex P(1) is then given by

φ(1) = φ(d(1), d(1)) =


φ(d, d) φ(d, φ(d, d))− φ(φ(d, d), d)

0 φ(d, d)


.

According to [8, Lemma 3.18], the degree two morphism
φ(d, d) 0

0 φ(d, d)


: P(1) −→ P(1)

is nullhomotopic (a nullhomotopy is given by


0 0
1 0


).

Put ψ (1) = φ(d, φ(d, d)) − φ(φ(d, d), d). It follows that the obstruction associated to P(1)

is given by

φ̃(1) =


0 ψ (1)

0 0


∈ K (p)(P(1)[−2], P(1)).

In general there is no reason why φ̃(1) should be nullhomotopic, but in some cases it can be
seen to be zero on the nose.

Proposition A.2. Suppose the differential d of P has no three consecutive non-zero components
dn : Pn −→ Pn−1. Then ψ (1) = 0 and there is a complex P(1) ∈ K (p) with k ⊗R P(1) ∼= P(1) ∈

K (p).

Following [8, Proposition 3.16], we note that the original complex P can sometimes be
reconstructed from P(1).
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Proposition A.3 ([8]). If φ(d, d) is nilpotent, P can be constructed from P(1) using cones,
shifts and direct summands. This applies in particular if d has no m consecutive non-zero
components dn : Pn −→ Pn−1 for some m ≥ 1.

Proof. This follows from the octahedral axiom (see [8, Proposition 3.16]). �

A.4. The case of Koszul complexes

The approach to removing obstructions discussed in Appendix A.3 applies to the case of
length two Koszul complexes. In this section we compare this approach with the solution from
Section 4.3. Let A be a commutative k-algebra with a first order deformation Ā determined by a
Hochschild 2 cocycle φ ∈ Homk(A ⊗k A, A). For a sequence f = ( f1, f2) of elements in A we
consider the Koszul complex (K ( f ), d) which is given by

0 // A 
f1

− f2

// A2
f2 f1

// A // 0 .

In Appendix, we take p to be the category of finite free A-modules. The obstruction φ(d, d) :

Σ−2 K ( f ) −→ K ( f ) is determined by the element

α = φ( f1, f2)− φ( f2, f1) ∈ A.

The complex K ( f )(1) = cone(φ(d, d)) is given by

0 // A
d(1)3

// A3
d(1)2

// A3
d(1)1

// A // 0

with differentials given by

d(1)3 =

 0
− f1

f2

 , d(1)2 =

− f2 0 0
f1 0 0
α f2 f1

 , d(1)1 =

− f1 − f2 0


.

Apart from the signs, the main difference with the complex X from Section 4.3 lies in the fact
that here α depends on the Hochschild cocycle, whereas in X it is replaced by the constant value
1. The nulhomotopy δ for the obstruction φ(1) gives rise to the lifted complex K ( f )(1)[ϵ] with
differential d − δϵ. Concretely, the differential is given by

d̄(1)3 =

 −ϵ

− f1
f2

 , d̄(1)2 =

− f2 0 −ϵ

f1 −ϵ 0
α f2 f1

 , d̄(1)1 =

− f1 − f2 −ϵ


.

On the other hand, if for X ′ we choose f ′

i = fi + 0ϵ, then we have [ f ′

1, f ′

2] = αϵ and hence
X ′ has differential d ′ given by

d ′

3 =

αϵf1
f2

 , d ′

2 =

− f2 0 αϵ

f1 −αϵ 0
−1 f2 − f1

 , d ′

1 =


f1 f2 αϵ

.

Clearly, the computations leading to (d̄(1))2 = 0 and to d ′2
= 0 are almost identical and have the

definition of α as main ingredient.
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